
Control FPWIN Pro

FP-Sigma
FP-X

Programming

A
C

G
M

0132V
20E

N
D

04/2006
P

anasonic
E

lectric
W

orks
E

urope
A

G
C

o
n

tro
lF

P
W

IN
P

ro
F

P
-S

ig
m

a,F
P

-X
P

ro
g

ram
m

in
g

BEFORE BEGINNING

Liability and Copyright for the Hardware
This manual and everything described in it are copyrighted. You may not copy this manual,
in whole or part, without written consent of Panasonic Electric Works Europe AG (PEWEU).

PEWEU pursues a policy of continuous improvement of the design and performance of its
products, therefore, we reserve the right to change the manual/product without notice. In no
event will PEWEU be liable for direct, special, incidental, or consequential damage resulting
from any defect in the product or its documentation, even if advised of the possibility of such
damages.

We invite your comments on this manual. Please email us at:

tech-doc@eu.pewg.panasonic.com.

Please direct support matters and technical questions to your local Panasonic
representative.

LIMITED WARRANTY
If physical defects caused by distribution are found, PEWEU will replace/repair the product
free of charge. Exceptions include:

• When physical defects are due to different usage/treatment of the product other than
described in the manual.

• When physical defects are due to defective equipment other than the distributed
product.

• When physical defects are due to modifications/repairs by someone other than
PEWEU.

• When physical defects are due to natural disasters.

© MS-DOS and Windows are registered trademarks of Microsoft Corporation.
© IBM Personal Computer AT is registered trademark of the International Business Machines Corporation.

Important Symbols
One or more of the following symbols may be used in this manual:

Warning.
The warning triangle indicates especially important
safety instructions. If they are not adhered to, the
results could be:

• fatal or critical injury and/or

• significant damage to instruments or their contents,
e.g. data

Contains important additional information.

Contains an illustrative example of the previous text section.

Indicates that a step-by-step procedure follows.

Indicates where you can find additional information on the subject at hand.

Indicates that you should proceed with caution.

Summarizes key points in a concise manner.

Provides helpful keyboard shortcuts.

Provides brief explanation of a function, e.g. why or when you should use it.

 next page

Indicates that the text will be continued on the next page.

The manual uses the following conventions to indicate elements from the user interface or
the keyboard:

"Data Field" Data field entries and option names are rendered in quotation marks.

[Button] Buttons are indicated by square brackets.
<Key> Keys are indicated by pointed brackets

FPWIN Pro Programming

Table of Contents

v

Table of Contents

Part I Basics

1. Basics ...1

1.1 Operands .. 2

1.1.1 Inputs/Outputs ..2

1.1.2 Internal Relays ..2

1.1.3 Special Internal Relays... 2

1.1.4 Timers and Counters.. 3

1.1.5 Data Registers (DT) ... 4

1.1.6 Special Data Registers (DT)...4

1.1.6.1 Data Transfer To and From Special Data Registers 4
1.1.7 File Registers (FL).. 5

1.1.8 Link Relays and Registers (L/LD)... 6

1.2 Addresses ... 7

1.2.1 FP Addresses .. 7

1.2.2 IEC Addresses .. 7

1.2.3 Specifying Relay Addresses... 10

1.2.4 Timer Contacts (T) and Counter Contacts (C) ... 10

1.2.5 External Input (X) and Output Relays (Y)...10

1.2.6 Word Representation of Relays (WX, WY, WR, and WL).................................. 11

1.3 Constants.. 12

1.3.1 Decimal Constants ... 12

1.3.2 Hexadecimal Constants ... 12

Table of Contents

FPWIN Pro Programming

vi

1.3.3 BCD Constants ..12

1.4 Data Types ..13

1.4.1 BOOL ..13

1.4.2 INT ..13

1.4.3 DINT ..14

1.4.4 STRING ..14

1.4.4.1 Strings as Constants...17
1.4.4.2 Transfer of Character Strings to Functions or Function Blocks18
1.4.4.3 String with EN/ENO ..18

1.4.5 WORD ..20

1.4.6 DWORD ..20

1.4.7 ARRAY and Data Unit Type ...20

1.4.7.1 One dimensional ARRAY..21
1.4.7.2 Two dimensional ARRAY..22
1.4.7.3 Three dimensional ARRAY...24

1.4.8 REAL ..25

Part II IEC Instructions

2. Data Transfer Instructions.. 27

MOVE Move value to specified destination ···28

3. Arithmetic Instructions ... 29

ADD Add ··30
SUB Subtract ··31
MUL Multiply ··33
DIV Divide ··35
ABS Absolute Value··37
MOD Modular arithmetic division, remainder stored in output variable38

FPWIN Pro Programming

Table of Contents

vii

SQRT Square root···39
SIN Sine with Radian Input Data···41
ASIN Arcsine ··43
COS Cosine ··45
ACOS Arccosine·· 47
TAN Tangent ·· 49
ATAN Arctangent ··51
LN Natural logarithm ·· 53
LOG Logarithm to the Base 10 ··· 55
EXP Exponent of input variable to base e·· 57
EXPT Raises 1st input variable by the power of the 2nd input variable59
CRC16 Cyclic Redundancy Check ··· 61

4. Bitwise Boolean Instructions ...63

AND Logical AND operation ··· 64
OR Logical OR operation·· 66
XOR Exclusive OR operation··68
NOT Bit inversion ·· 70

5. Bitshift Instructions...71

SHR Shift bits to the right··72
SHL Shift bits to the left ·· 74
ROR Rotate N bits the right···76
ROL Rotate N bits to the left ··· 78

6. Comparison Instructions ..81

GT Greater than ···82
GE Greater than or equal to ··· 84
EQ Equal to 86

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Table of Contents

FPWIN Pro Programming

viii

LE Less than or equal to ··88
LT Less than ··90
NE Not equal ··92

7. Conversion Instructions ... 95

WORD_TO_BOOL WORD in BOOL ··96
DWORD_TO_BOOL DOUBLE WORD in BOOL ··97
INT_TO_BOOL INTEGER into BOOL ··98
DINT_TO_BOOL DOUBLE INTEGER into BOOL···································99
BOOL_TO_WORD BOOL into WORD ···100
BOOL16_TO_WORD BOOL16 to WORD··101
BOOLS_TO_WORD 16 Variables of the data type BOOL to WORD·········102
DWORD_TO_WORD DOUBLE WORD in WORD·······································104
INT_TO_WORD INTEGER into WORD ···105
DINT_TO_WORD DOUBLE INTEGER into WORD ·······························106
TIME_TO_WORD TIME into WORD···107
STRING_TO_WORD STRING (hexadecimal format) to WORD ·················108
STRING_TO_WORD_STEPSAVER STRING (Hexadecimal Format right-

justified) to WORD···109
BOOL_TO_DWORD BOOL into DOUBLE WORD ·····································110
BOOL32_TO_DWORD BOOL32 to DOUBLE WORD····································111
BOOLS_TO_DWORD 32 Variables of the data type BOOL to DWORD ······112
WORD_TO_DWORD WORD in DOUBLE WORD·······································114
INT_TO_DWORD INTEGER into DOUBLE WORD ·······························115
DINT_TO_DWORD DOUBLE INTEGER into DOUBLE WORD ···············116
TIME_TO_DWORD TIME into DOUBLE WORD·······································117
STRING_TO_DWORD STRING (Hexadecimal Format) to DOUBLE WORD118
STRING_TO_DWORD_STEPSAVER STRING (Hexadecimal Format right-

justified) to DOUBLE WORD·····································119
BOOL_TO_INT BOOL into INTEGER ··120
BOOL16_TO_INT BOOL16 to INTEGER ···121

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

FPWIN Pro Programming

Table of Contents

ix

BOOLS_TO_INT 16 Variables of the data type BOOL to INT ·············· 122
WORD_TO_INT WORD in INTEGER··124
BCD_TO_INT BCD into INTEGER···125
DWORD_TO_INT DOUBLE WORD in INTEGER ··································126
DINT_TO_INT DOUBLE INTEGER into INTEGER ··························127
REAL_TO_INT REAL into INTEGER···128
TRUNC_TO_INT Truncate (cut off) decimal digits of REAL input variable,

convert to INTEGER ···129
TIME_TO_INT TIME into INTEGER··131
STRING_TO_INT STRING (decimal format) to INTEGER ····················132
STRING_TO_INT_STEPSAVER STRING (Decimal Format right-justified) to

INTEGER ··133
BOOL_TO_DINT BOOL into DOUBLE INTEGER ································ 134
BOOL32_TO_DINT BOOL32 to DOUBLE INTEGER ······························· 135
BOOLS_TO_DINT 32 Variables of the data type BOOL to DINT············ 136
WORD_TO_DINT WORD in DOUBLE INTEGER ··································138
BCD_TO_DINT BCD into DOUBLE INTEGER···································139
DWORD_TO_DINT DOUBLE WORD in DOUBLE INTEGER ·················· 140
INT_TO_DINT INTEGER into DOUBLE INTEGER ··························141
REAL_TO_DINT REAL into DOUBLE INTEGER·································142
TRUNC_TO_DINT Truncate (cut off) decimal digits of REAL input variable,

convert to DOUBLE INTEGER ·································143
TIME_TO_DINT TIME into DOUBLE INTEGER·································· 144
STRING_TO_DINT STRING (Decimal Format) to DOUBLE INTEGER···145
STRING_TO_DINT_STEPSAVER STRING (Decimal Format right-justified) to

DOUBLE INTEGER ··146
INT_TO_REAL INTEGER into REAL···147
DINT_TO_REAL DOUBLE INTEGER into REAL ································· 148
TIME_TO_REAL TIME into REAL ··149
STRING_TO_REAL STRING to REAL ··150
WORD_TO_TIME WORD in TIME ···151
DWORD_TO_TIME DOUBLE WORD in TIME ···152
INT_TO_TIME INTEGER into TIME··153

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Table of Contents

FPWIN Pro Programming

x

DINT_TO_TIME DOUBLE INTEGER into TIME··································154
REAL_TO_TIME REAL into TIME···155
BOOL_TO_STRING BOOL into STRING···156
WORD_TO_STRING WORD into STRING ···158
DWORD_TO_STRING DOUBLE WORD into STRING··································160
INT_TO_STRING INTEGER into STRING···162
INT_TO_STRING_LEADING_ZEROS INTEGER into STRING······················164
DINT_TO_STRING DOUBLE INTEGER into STRING·····························165
DINT_TO_STRING_LEADING_ZEROS DOUBLE INTEGER into STRING ···167
REAL_TO_STRING REAL into STRING ···168
TIME_TO_STRING TIME into STRING ··170
IPADDR_TO_STRING IP Address to STRING ··172
IPADDR_TO_STRING_NO_LEADING_ZEROS IP Address to STRING········173
ETLANADDR_TO_STRING··· ETLAN Address to STRING 174
ETLANADDR_TO_STRING_NO_LEADING_ZEROS ETLAN Address to

STRING···175
WORD_TO_BOOL16 WORD to BOOL16··176
INT_TO_BOOL16 INTEGER to BOOL16 ···177
DWORD_TO_BOOL32 DOUBLE WORD to BOOL32····································178
DINT_TO_BOOL32 DOUBLE INTEGER to BOOL32 ·······························179
WORD_TO_BOOLS WORD to 16 variables of the data type BOOL ·········180
DWORD_TO_BOOLS DOUBLE WORD to 32 variables of the data type BOOL181
INT_TO_BOOLS INTEGER to 16 variables of the data type BOOL·····183
DINT_TO_BOOLS DOUBLE INTEGER to 32 variables of the data type

BOOL ··184
INT_TO_BCD INTEGER into BCD···186
DINT_TO_BCD DOUBLE INTEGER into BCD···································187
STRING_TO_IPADDR STRING to IP Address ··188
STRING_TO_IPADDR_STEPSAVER STRING (IP-Address Format

00a.0bb.0cc.ddd) to DWORD ···································189
STRING_TO_ETLANADDR STRING to ETLAN Address ·······························190
STRING_TO_ETLANADDR_STEPSAVER STRING (IP-address format

00a.0bb.0cc.ddd) to ETLAN Address ·······················191

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

FPWIN Pro Programming

Table of Contents

xi

8. Selection Instructions ...193

MAX Maximum value ··194
MIN Minimum value ···195
LIMIT Limit value for input variable···196
MUX Select value from multiple channels···198
SEL Select value from one of two channels ····································200

9. String Instructions...203

LEN String Length ··204
LEFT Copy characters from the left ···206
RIGHT Copy characters from the right ···208
MID Copy characters from a middle position···································210
CONCAT Concatenate (attach) a string ···212
DELETE Delete characters from a string ··214
FIND Find string's position···216
INSERT Insert characters···218
REPLACE Replaces characters···220

10. Date and Time Instructions...223

ADD_TIME Add TIME ··224
SUB_TIME Subtract TIME ···225
MUL_TIME_INT Multiply TIME by INTEGER ······································226
MUL_TIME_DINT Multiply TIME by DOUBLE INTEGER······················· 227
MUL_TIME_REAL Multiply TIME by REAL ··· 228
DIV_TIME_INT Divide TIME by INTEGER···229
DIV_TIME_DINT Divide TIME by DOUBLE INTEGER························· 230
DIV_TIME_REAL Divide TIME by REAL ···231

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Table of Contents

FPWIN Pro Programming

xii

11. Bistable Instructions... 233

SR Set/reset ··234
RS Reset/set ··236

12. Edge Detection Instructions... 239

R_TRIG Rising edge trigger ···240
F_TRIG Falling edge trigger···241

13. Counter Instructions ... 243

CTU Up counter ··244
CTD Down counter··246
CTUD Up/down counter ··249

14. Timer Instructions ... 253

TP Timer with defined period ···254
TON Timer with switch-on delay ···256
TOF Timer with switch-off delay ···258

Part III F/P Instructions

15. Data Transfer Instructions.. 261

15.1 Data Transfer Within the PLC..262
F0_MV 16-bit data move···263
F1_DMV 32-bit data move···265
F2_MVN 16-bit data inversion and move ··267
F3_DMVN 32-bit data inversion and move ··269
F7_MV2 Two 16-bit data move ···271

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

FPWIN Pro Programming

Table of Contents

xiii

F8_DMV2 Two 32-bit data move···272
F190_MV3 Three 16-bit data move ··274
F191_DMV3 Three 32-bit data move ··276
F10_BKMV Block move ···277
F10_BKMV_NUMBER Block move by number ···279
F10_BKMV_OFFSET Block move to an offset from source························· 281
F10_BKMV_NUMBER_OFFSET Block move by number to an offset from

source ···282
F11_COPY Block copy ··284
F15_XCH 16-bit data exchange··286
F16_DXCH 32-bit data exchange··287
F17_SWAP Higher/lower byte in 16-bit data exchange·······························288
F18_BXCH 16-bit blocked data exchange ··290
F147_PR Parallel printout···292

15.2 Data Transfer Between PLCs and Modules.. 295

F143_IORF Partial I/O update··296
F12_EPRD EEPROM read from memory ···297
P13_EPWT EEPROM write to memory ···299
F150_READ Data read from intelligent units··· 301
F151_WRT Data read from intelligent units··· 304

15.3 Data Transfer Between PLCs and Other Devices
(via COM Port or Network).. 307

15.3.1 Transmission and Reception of Data via COM Ports.......................................307

15.3.1.1 Description of the Communication Modes..307
15.3.1.2 Setting the Communication Parameters...309
15.3.1.3 Getting the Communication Parameters and Statuses 310

IsTransmissionDone Returns the value of the "Transmission Done" flag ··311
IsReceptionDone Returns the value of the "Reception Done" flag ······· 312
IsReceptionDoneByTimeout Evaluates a "Reception Done" condition ··········· 314
IsCommunicationError Returns the value of the "Communication Error" flag315
IsPlcLink Returns the value of the "PLC Link" flag··················· 316

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Table of Contents

FPWIN Pro Programming

xiv

IsProgramControlled Returns the value of the "Program Controlled" flag ··317
IsModbusNotActive Returns the value of the "IsModbusNotActive" flag ··318
IsModbusError Returns the value of the "Modbus Error" flag············319

15.3.1.4 Getting the Communication Parameters and Statuses in RUN Mode via
Special Relays and Special Data Registers from the CPU's
COM Ports ..320

15.3.1.5 Data Transfer in Program Controlled Mode..320
F159_MTRN Serial Data Communication to CPU or MCU Port ····················324
F161_MRCV Read Serial Data from the MCU's COM Port ···························330

15.3.1.6 Data Transfer via Modbus RTU Master/Slave Mode (FP-X)333
F145_MODBUS_WRITE_DATA Write Data in MODBUS RTU Master/Slave

Mode ···334
Command for Function Code 05 Write Single Bit to Y or R·····························337
Command for Function Code 06 Write Single Word to DT······························338
Command for Function Code 15 Write Multiple Bits to Y or R·························339
Command for Function Code 16 Write Multiple Words to DT··························341
F146_MODBUS_READ_DATA Read Data in MODBUS RTU Master/Slave

Mode ···343
Command for Function Code 01 Read Single Bit from R or Y·························346
Command for Function Code 01_x Read Multiple Bits from R or Y ················347
Command for Function Code 02 Read Single Bit from X ································348
Command for Function Code 02_x Read Multiple Bits from X ························349
Command for Function Code 03 Read Multiple Words from DT ·····················351
Command for Function Code 04 Read Multiple Words from LD ·····················352
Command for Function Code 04 Read Multiple Words from WL·····················353

16. Arithmetic Instructions ... 355

F20_ADD 16-bit addition ···356
F21_DADD 32-bit addition ···358
F22_ADD2 16-bit addition, destination can be specified ····························360
F23_DADD2 32-bit addition, destination can be specified ····························362
F40_BADD 4-digit BCD addition··364

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

FPWIN Pro Programming

Table of Contents

xv

F41_DBADD 8-digit BCD addition··366
F42_BADD2 4-digit BCD addition, destination can be specified··················· 368
F43_DBADD2 8-digit BCD addition, destination can be specified··················· 370
F35_INC 16-bit increment··372
F36_DINC 32-bit increment··374
F55_BINC 4-digit BCD increment ··376
F56_DBINC 8-digit BCD increment ··378
F25_SUB 16-bit subtraction··380
F26_DSUB 32-bit subtraction··382
F27_SUB2 16-bit subtraction, destination can be specified ······················· 384
F28_DSUB2 32-bit subtraction, destination can be specified ·······················386
F45_BSUB 4-digit BCD subtraction ··388
F46_DBSUB 8-digit BCD subtraction ··390
F47_BSUB2 4-digit BCD subtraction, destination can be specified·············· 392
F48_DBSUB2 8-digit BCD subtraction, destination can be specified··············394
F37_DEC 16-bit decrement···396
F38_DDEC 32-bit decrement···398
F57_BDEC 4-digit BCD decrement ···400
F58_DBDEC 8-digit BCD decrement ···402
F30_MUL 16-bit multiplication, destination can be specified ···················· 404
F31_DMUL 32-bit multiplication, destination can be specified ···················· 406
F34_MULW 16-bit data multiply (result in 16 bits)··408
F39_DMULD 32-bit data multiply (result in 32 bits)··410
F50_BMUL 4-digit BCD multiplication, destination can be specified··········· 412
F51_DBMUL 8-digit BCD multiplication, destination can be 11 specified ····· 414
F32_DIV 16-bit division, destination can be specified·····························416
F33_DDIV 32-bit division, destination can be specified·····························418
F52_BDIV 4-digit BCD division, destination can be specified ··················· 420
F53_DBDIV 8-digit BCD division, destination can be specified ··················· 422
F313_FDIV Floating Point Data Divide··424
F70_BCC Block check code calculation ···426

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Table of Contents

FPWIN Pro Programming

xvi

F160_DSQR 32-bit data square root ···429
F87_ABS 16-bit data absolute value ··431
F88_DABS 32-bit data absolute value ··433
F287_BAND 16-bit data deadband control··434
F288_DBAND 32-bit data deadband control··436
F348_FBAND Floating point data deadband control ·······································438
F289_ZONE 16-bit data zone control ··440
F290_DZONE 32-bit data (double word data) zone control·····························442
F349_FZONE Floating point data zone control ···444
F85_NEG 16-bit data two's complement···446
F86_DNEG 32-bit data two's complement···448
F270_MAX Maximum value search in 16-bit data table······························450
F271_DMAX Maximum value search in 32-bit data table······························452
F272_MIN Minimum value search in 16-bit data table·······························454
F273_DMIN Minimum value search in 32-bit data table·······························456
F275_MEAN Total and mean numbers calculation in 16-bit data table·········458
F276_DMEAN Total and mean numbers calculation in 32-bit data table·········460
F282_SCAL Linearization of 16-bit data ···462
F283_DSCAL Linearization of 32-bit data ···465
F96_SRC Table data search (16-bit search)···469
F97_DSRC 32-bit table data search ··471

16.1 Introduction into the FIFO Buffer ...473

F115_FIFT FIFO buffer area definition··474
F116_FIFR Read from FIFO buffer ···477
F117_FIFW Write to FIFO buffer··480
F98_CMPR Data table shift-out and compress··484
F99_CMPW Data table shift-in and compress··487
F277_SORT Sort data in 16-bit data table (in smaller or larger number order)489
F278_DSORT Sort data in 32-bit data table (in smaller or larger number order)491

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

FPWIN Pro Programming

Table of Contents

xvii

17. Bitwise Boolean Instructions ...493

F5_BTM Bit data move··494
F6_DGT Digit data move···496
F65_WAN 16-bit data AND··500
F66_WOR 16-bit data OR ··502
F67_XOR 16-bit data exclusive OR ··504
F68_XNR 16-bit data exclusive NOR··506
F69_WUNI 16-bit data unite··508
F215_DAND 32-bit data AND··510
F216_DOR 32-bit data OR ··512
F217_DXOR 32-bit data XOR··514
F218_DXNR 32-bit data XNR··516
F219_DUNI 32-bit data unites 12···518
F130_BTS 16-bit data bit set ··520
F131_BTR 16-bit data bit reset···521
F132_BTI 16-bit data bit invert ··522
F133_BTT 16-bit data test··523
F135_BCU Number of ON bits in 16-bit data··525
F136_DBCU Number of ON bits in 32-bit data··526
F84_INV 16-bit data invert (one's complement) ······································527
F93_UNIT 16-bit data combine··529
F94_DIST 16-bit data distribution ··531

18. Bitshift Instructions...533

LSR Left shift register ···534
F100_SHR Right shift of 16-bit data in bit units ··535
F101_SHL Left shift of 16-bit data in bit units··· 537
F102_DSHR Right shift of 32-bit data in bit units ··539
F103_DSHL Left shift of 32-bit data in bit units··· 541
F105_BSR Right shift of one hexadecimal digit (4 bits) of 16-bit data ······· 543

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Table of Contents

FPWIN Pro Programming

xviii

F106_BSL Left shift of one hexadecimal digit (4 bits) of 16-bit data··········545
F108_BITR Right shift of multiple bits of 16-bit data range ·························547
F109_BITL Left shift of multiple bits of 16-bit data range····························549
F110_WSHR Right shift of one word (16 bits) of 16-bit data range ···············551
F111_WSHL Left shift of one word (16 bits) of 16-bit data range··················553
F112_WBSR Right shift of one hex. digit (4 bits) of 16-bit 5 data range········555
F113_WBSL Left shift of one hex. digit (4 bits) of 16-bit data range ·············557
F119_LRSR LEFT/RIGHT shift register ··559
F120_ROR 16-bit data right rotate ··562
F121_ROL 16-bit data left rotate···564
F122_RCR 16-bit data right rotate with carry-flag data·······························566
F123_RCL 16-bit data left rotate with carry-flag data ·································568
F125_DROR 32-bit data right rotate ··570
F126_DROL 32-bit data left rotate···572
F127_DRCR 32-bit data right rotate with carry flag data ·······························574
F128_DRCL 32-bit data right rotate with carry flag data ·······························576

19. Comparison Instructions.. 579

F60_CMP 16-bit data compare··580
F61_DCMP 32-bit data compare··582
F62_WIN 16-bit data band compare···584
F63_DWIN 32-bit data band compare···586
F64_BCMP Block data compare··588
F346_FWIN Floating point data band compare··590
F373_DTR 16-bit data revision detection··592
F374_DDTR 32-bit data revision detection··594

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

FPWIN Pro Programming

Table of Contents

xix

19.1 Further Comparison Instructions... 596

20. Conversion Instructions ...597

F71_HEX2A HEX -> ASCII conversion ···598
F72_A2HEX ASCII -> HEX conversion ···602
F73_BCD2A BCD -> ASCII conversion···605
F74_A2BCD ASCII -> BCD conversion···608
F75_BIN2A 16-bit BIN -> ASCII conversion ··612
F76_A2BIN ASCII -> 16-bit BIN conversion ··616
F77_DBIN2A 32-bit BIN -> ASCII conversion ··619
F78_DA2BIN ASCII -> 32 bit BIN conversion ··622
F80_BCD 16-bit BIN -> 4-digit BCD conversion ·······································625
F81_BIN 4-digit BCD -> 16-bit BIN conversion ·······································627
F82_DBCD 32-bit BIN -> 8-digit BCD conversion ·······································629
F83_DBIN 8-digit BCD -> 32-bit BIN conversion ·······································631
F89_EXT 16-bit data sign extension, INT -> DINT···································633
F90_DECO Decode hexadecimal -> bit state··635
F91_SEGT 16-bit data 7-segment decode··637
F92_ENCO Encode bit state -> hexadecimal ·· 638
F95_ASC 12 Character -> ASCII transfer···640
F235_GRY 16-bit data -> 16-bit Gray code ··643
F236_DGRY 32-bit data -> 32-bit Gray code ··644
F237_GBIN 16-bit Gray code -> 16-bit binary data······································ 645
F238_DGBIN 32-bit Gray code -> 32-bit binary data······································ 646
F240_COLM Bit line to bit column conversion···647
F241_LINE Bit column to bit line conversion···649
F327_INT Floating point data -> 16-bit integer data (the largest integer not

exceeding the floating point data) ····························· 651
F328_DINT Floating point data -> 32-bit integer data (the largest integer not

exceeding the floating point data) ·····························653
F333_FINT Rounding the first decimal point down ·····································655

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Table of Contents

FPWIN Pro Programming

xx

F334_FRINT Rounding the first decimal point off ··657
F335_FSIGN Floating point data sign changes

(negative/positive conversion)···································659
F337_RAD Conversion of angle units (Degrees -> Radians) ·····················661
F338_DEG Conversion of angle units (Radians -> Degrees) ·····················663

21. Selection Instructions... 665

F285_LIMT 16-bit data upper and lower limit control ··································666
F286_DLIMT 32-bit data upper and lower limit control ··································668

22. Date and Time Instructions .. 671

F138_TIMEBCD_TO_SECBCD h:min:s -> s conversion ································672
F139_SECBCD_TO_TIMEBCD s -> h:min:s conversion ································673
F157_ADD_DTBCD_TIMEBCD Time addition ··674
F158_SUB_DTBCD_TIMEBCD Time subtraction ···675
GET_RTC_DTBCD Read Real-Time Clock ··676
SET_RTC_DTBCD Set the Real-Time Clock ···677

23. Bistable Instructions... 679

KEEP Serves as a relay with set and reset inputs······························680
SET SET, RESET···681

24. Edge Detection Instructions... 685

DF Leading edge differential ··686
DFN Trailing edge differential ···687
DFI Leading edge differential (initial execution type) ······················688
ALT Alternative out···690

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

FPWIN Pro Programming

Table of Contents

xxi

25. Counter Instructions ...691

CT_FB Down Counter···692
CT Counter ··695
F118_UDC UP/DOWN counter ···698

26. High Speed Counter and Pulse Output Instructions......701

F0_MV High-speed counter control ··702

26.1.1.1 Setting the Control Code for High-Speed Counter with FP-X705
26.1.1.2 Setting the Control Code for High-Speed Counter with FP-Sigma......... 706
26.1.1.3 Setting the Control Code for Pulse Output with FP-X............................. 707
26.1.1.4 Setting the Control Code for Pulse Output with FP-Sigma..................... 707

26.1.2 Reading the Elapsed Value and Setting the Target Values............................. 708

26.1.2.1 Elapsed Values and Target Values for FP-X..708
26.1.2.2 Elapsed Values and Target Values for FP-Sigma..................................710

F162_HC0S High-speed counter output set ···711
F163_HC0R High-speed counter output reset ··713
F164_SPD0 Pulse output control; Pattern output control ····························· 715
F165_CAM0 Can control ···716
F166_HC1S Sets Output of High-Speed Counter (4 channels)····················717
F167_HC1R Resets Output of High-Speed Counter (4 channels)················720
F171_SPDH Pulse Output Instruction for Trapezoidal Control and Home

Return with Channel Specification···························· 723
F172_PLSH Pulse output instruction with channel specification (JOG

operation) ·· 732
F173_PWMH Pulse output instruction with channel specification

(PWM output) ··736
F174_SP0H Pulse output instruction, table control with

channel specification···739
F175_SPSH_LINEAR Pulse output (Linear interpolation) ···························· 746

26.1.3 Precautions during programming ...747
F176_SPCH_CENTER Pulse output (Arc interpolation)·································750
F176_SPCH_PASS Pulse output (Arc interpolation)································· 755

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Table of Contents

FPWIN Pro Programming

xxii

27. Timer Instructions ... 759

TM_1ms_FB Timer for 1ms intervals (0 to 32.767s)······································760
TM_10ms_FB Timer for 10ms intervals (0 to 327.67s)····································763
TM_100ms_FB Timer for 100ms intervals (0 to 3276.7s)··································766
TM_1s_FB Timer for 1s intervals (0 to 32767s)··769
TM_1ms Timer for 1ms intervals (0 to 32.767s)······································772
TM_10ms Timer for 10ms intervals (0 to 327.67s)····································774
TM_100ms Timer for 100ms intervals (0 to 3276.7s)··································776
TM_1s Timer for 1s intervals (0 to 32767s)··778
F137_STMR Timer 16-bit···780
F183_DSTM Timer 32-bit···781

28. Process Control Instructions ... 783

28.1 Explanation of the Operation of the PID Instuctions784
F355_PID_DUT PID processing instruction ··788
F356_PID_PWM Easy PID processing instruction ·······························791

28.1.1 F356_Control_DUT ..794

28.1.2 F356_Parameters_Hold_DUT..795

28.1.3 F356_Parameters_NonHold_DUT ...796
PID_FB PID processing instruction··799
PID_FB_DUT PID processing instruction··802

29. System Register Instructions... 805

SYS1 Change PLC system setting ···806
SYS2 Change System Register Settings for PC Link Area················818

30. Special Instructions .. 821

F140_STC Carry-flag set ··822

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

FPWIN Pro Programming

Table of Contents

xxiii

F141_CLC Carry-flag reset···823
F148_ERR Self-diagnostic error set ···824
F149_MSG Message display···826

31. Program Execution Control Functions............................827

MC Master control relay··828
MCE Master control relay end···829
JP Jump to label ··830
LOOP Loop to label ···831
LBL Label for the JP- and LOOP-instruction ··································· 832
ICTL Interrupt Control··833

32. Appendix Programming Information835

32.1 FP TOOL Library... 836

32.2 Floating Point Instructions... 838

32.3 Relays, Memory Areas and Constants ... 839

32.3.1 Relays, Memory Areas and Constants for FP-Sigma 839

32.3.2 Relays, Memory Areas and Constants for FP-X ..842

32.4 System Registers.. 844

32.4.1 Precautions When Setting System Registers ..844

32.4.2 Types of System Registers ..844

32.4.3 Checking and Changing System Registers..845

32.4.4 Table of System Registers for FP-Sigma...846

32.4.5 Table of System Registers for FP-X...850

32.5 Special Internal Relays ... 858

32.5.1 Special Internal Relays for FP-Sigma ..858

32.5.2 Special Internal Relays for FP-X ..864

Table of Contents

FPWIN Pro Programming

xxiv

32.6 Special Data Registers ..875

32.6.1 Special Data Registers for FP-Sigma...875

32.6.2 Special Data Registers for FP-X ..898

32.7 Error Codes ...912

32.7.1 General Information about Errors...912

32.7.1.1 FP-Series PLCs and ERROR Display ..912
32.7.1.2 MEWTOCOL-COM Transmission Errors..912

32.7.2 Table of Syntax Check Error ..912

32.7.3 Table of Self-Diagnostic Errors...914

32.7.4 MEWTOCOL-COM Error Codes ..918

32.8 MEWTOCOL-COM Communication Commands...920

32.9 Hexadecimal/Binary/BCD ..921

32.10 ASCII Codes...922

32.11 Availability of All Instructions on All PLC Types923

Index .. 937

Record of Changes

Chapter 1
 Basics

Basics

FPWIN Pro Programming

2

1.1 Operands
In FPWIN Pro the following operands are available:

• in- and outputs (X/Y) as well as internal memory areas

• internal relays

• special internal relays

• timers and counters

• data registers

• special data registers

• file registers

• link registers and relays
The number of operands which are available depends on the PLC-type and its configuration.
To see how many of the respective operands are available, see your hardware description.

1.1.1 Inputs/Outputs

The amount of inputs/outputs available depends on the PLC and unit type. Each input
terminal corresponds to one input X, each output terminal corresponds to one output Y.

In system register 20 you set whether an output can be used once or more during the
program.

 Outputs which do not exist physically can be used like flags. These flags
are non-holding, which means their contents will be lost, e.g. after a
power failure.

1.1.2 Internal Relays

Internal Relays are memory areas where you can store interim results. Internal relays are
treated like internal outputs.

In system register no. 7 you define which internal relays are supposed to be holding/non-
holding. Holding means that its values will be retained even after a power failure.

The number of available internal relays depends on the PLC type (see hardware description
of your PLC).

1.1.3 Special Internal Relays

Special internal relays are memory areas which are reserved for special PLC functions. They
are automatically set/reset by the PLC and are used:

• to indicate certain system states, e.g. errors

FPWIN Pro Programming

Basics

3

• as an impulse generator

• to initialize the system

• as ON/OFF control flag under certain conditions
such as when some flags get a certain status if data are ready for transmission in a
PLC network.

The number of special internal relays available depends on the PLC type (see hardware
description of your PLC).

 Special internal relays can only be read.

1.1.4 Timers and Counters

Timers and Counters use one common memory and address area.

Define in system registers 5 and 6 how the memory area is to be divided between timers and
counters and which timers/counters are supposed to be holding or non-holding. Holding
means that even after a power failure all data will be saved, which is not the case in non-
holding registers.

Entering a number in system register 5 means that the first counter is defined. All smaller
numbers define timers.

For example, if you enter zero, you define counters only. If you enter the highest value
possible, you define timers only.

In the default setting the holding area is defined by the start address of the counter area. This
means all timers are holding and all counters are non-holding. You can of course customize
this setting and set a higher value for the holding area, which means some of the timers, or if
you prefer, all of them can be defined as holding.

In addition to the timer/counter area, there is a memory area reserved for the set value (SV)
and the elapsed value (EV) of each timer/counter contact. The size of both areas is 16 bits
(WORD). In the SV and EV area one INTEGER value from 0 to 32,767 can be stored.

Timer/Counter No. SV EV Relay
TM0 SV0 EV0 T0

.

.

.

.

.

.

.

.

.

.

.

.

TM99 SV99 EV99 T99

CT100 SV100 EV100 C100

.

.

.

.

.

.

.

.

.

.

.

.

While a timer or counter is being processed, the respective acual value can be read and
under certain conditions be edited.

Basics

FPWIN Pro Programming

4

 After changing the settings in system register 5, do not forget to adjust
the addresses of the timers/counters in your PLC program because they
correspond to the TM/CT numbers.

1.1.5 Data Registers (DT)

Data registers have a width of 16 bits. You can use them, for example, to write and read
constants/parameters. If an instruction requires 32 bits, two 16-bit data registers are used. If
this is the case, enter the address of the first data register with the prefix DDT instead of DT.
The next data register (word) will be used automatically (for more information, please refer to
addresses (see page 7)).

Data registers can be holding or non-holding. Holding means that even after a power failure
all data will be saved. Set the holding/non-holding areas in system register 8 by entering the
start address of the holding area.

The amount of data registers available depends on the PLC type (see hardware description).

1.1.6 Special Data Registers (DT)

Special data registers are like the special internal relays reserved for special functions and are
in most cases set/reset by the PLC.

The register has a width of 16 bits (data type = WORD). The amount of special data registers
available depends on the PLC type (see hardware description).

Most special data registers can only be read. Here some exceptions:

• interrupts and scan time (DT9027, DT9023-DT9024)...

•

1.1.6.1 Data Transfer To and From Special Data Registers

FPWIN Pro offers three possibilities to read from or write to special relays/special data
registers.

1. Via system variables (recommended from version 5.1 onwards)

FPWIN Pro Programming

Basics

5

For each special data register and relay a system variable exists according to the
following syntax:

sys_ * _system variable

b
w
dw
i
di

BOOL
WORD
DWORD
INT
DINT

You can insert these system variables into the body via the "Variable Selection"
dialog.

In addition these system variables are also displayed under Monitor → Special
Relays and Registers as the last entries in the comments, e.g.
"sys_w_HSC_ControlFlags".

Example for accessing the special data for HSC

Example for accessing the special data for the RTC

2. via global variables

3. via direct addresses in the body

1.1.7 File Registers (FL)

Some PLC types (see hardware description) provide additional data registers which can be
used to increase the number of data registers. File registers are used in the same way as data

Basics

FPWIN Pro Programming

6

registers. Set the holding/non-holding area in system register 9. Holding means that even
after a power failure all data will be saved.

1.1.8 Link Relays and Registers (L/LD)

Link relays have a width of 1 bit (BOOL). In system registers 10-13 and 40-55, set the:

• transmission area

• amount of link relay words to be sent

• holding/non-holding area
Link registers have a width of 16 bits (WORD). In system registers 10-13 and 40-55, set the:

• transmission area

• amount of link relay words to be sent

• holding/non-holding area

FPWIN Pro Programming

Basics

7

1.2 Addresses
In the List of Global Variables, enter the physical address in the field “Address” for each global
variable used in the PLC program.

The operand and the address number are part of the address. In FPWIN Pro you can use
either FP and/or IEC addresses. The following abbreviations are used:

Meaning FP IEC
Input X I

Output Y Q

Memory (internal memory area) R M0

Timer relay T M1

Counter relay C M2

Set value SV M3

Elapsed value EV M4

Data register DT/DD
T

M5

You find the register numbers (e.g. DT9000/DT90000) in your hardware description. The next
two sections show how FP and IEC addresses are composed.

1.2.1 FP Addresses

An address represents the hardware address of an in-/output, register, or counter.

For example, the hardware address of the 1st input and the 4th output of a PLC is:

• X0 (X = input, 0 = first relay)

• Y3 (Y = output, 3 = fourth relay)
Use the following address abbreviations for the memory areas. You find the register numbers
in your hardware description.

Memory Area Abbr. FP Example
Memory (internal memory area) R R9000: self diagnostic error

Timer relay T T200: timer relay no. 200
(settings in system register 5+6)

Counter relay C C100: counter relay no. 100
(settings in system register 5+6)

Set value SV SV200 (set value for counter relay 200)

Elapsed value EV EV100 (elapsed value for timer relay 100)

Data register DT DT9001/DT90001 (signals power failure)

1.2.2 IEC Addresses

The composition of an IEC-1131 address depends on:

Basics

FPWIN Pro Programming

8

• operand type

• data type

• slot no. of the unit (word address)

• relay no. (bit address)

• PLC type
In- and Outputs are the most important components of a programmable logic controller (PLC).
The PLC receives signals from the input relays and processes them in the PLC program. The
results can either be stored or sent to the output relays, which means the PLC controls the
outputs.

A PLC provides special memory areas, in short “M”, to store interim results, for example.

If you want to read the status of the input 1 of the first module and control the output 4 of the
second module, for example, you need the physical address of each in-/output. Physical
FPWIN Pro addresses are composed of the per cent sign, an abbreviation for in-/output, an
abbreviation for the data type and of the word and bit address:

Example IEC address for an input

The per cent sign is the indicator of a physical address. “I” means input, “X” means
data type BOOL. The first zero represents the word address (slot no.) and the second
one the bit address. Note that counting starts with zero and that counting word and bit
addresses differs among the PLC types.

Each PLC provides internal memory areas (M) to store interim results, for example.
When using internal memory areas such as data registers, do not forget the additional
number (here 5) for the memory type:

Example IEC address for an internal memory area

Bit addresses do not have to be defined for data registers, counters, timers, or the set
and actual values.

According to IEC 1131, abbreviations for in- and output are “I” and “O”, respectively.
Abbreviations for the memory areas are as follows:

Memory Type No. Example

Internal Relay (R) 0 %MX0.900.0 = internal relay R9000

FPWIN Pro Programming

Basics

9

Memory Type No. Example

Timer (T) 1 %MX1.200 = counter no. 200

Counter (C) 2 %MX2.100 = counter no. 100

Set Value counters/timers (SV) 3 %MW3.200 = set value of the counter no. 200

Elapsed Value counters/timers
(EV)

4 %MW4.100 = elapsed value of the timer no. 100

Data Registers (DT, DDT) 5 %MW5.9001 = data register DT9001
%MD5.90001 = 32-bit data register DDT90001

 Tables with hardware addresses can be found in the hardware
description of your PLC.

The following data types are available:

Data Type Abbreviation Range of Values Data Width
BOOL BOOL 0 (FALSE), 1 (TRUE) 1 bit

INTEGER INT -32,768 to 32,768 16 bits

DOUBLE INTEGER DINT -2,147,438,648 to 2,147,438,647 32 bits

WORD WORD 0 to 65,535 16 bits

DOUBLE WORD DWORD 0 to 4,294,987,295 32 bits

TIME 16-bit TIME T#0.00s to T#327.67s 16 bits

TIME 32-bit TIME T#0,00s to T#21 474 836.47s 32 bits

STRING STRING 1 to 255 bytes (ASCII) 8 bits per bytes

REAL REAL -1,175494 x 10-38 to -3,402823 x 10-38 and
1,175494 x 10-38 to 3,402823 x 10-38

32 bits

 Please take into account that not all data types can be used with each
IEC command.

• Find the tables with all memory areas in your hardware description.

• When using timers, counters, set/elapsed values, and data registers,
the bit address does not have to be indicated.

• You can also enter the register number (R9000, DT9001/90001) or the
FP address, e.g. “X0” (input 0), instead of the IEC address.

Basics

FPWIN Pro Programming

10

1.2.3 Specifying Relay Addresses

External input relay (X), external output relay (Y), internal relay (R), link relay (L) and pulse
relay (P)The lowest digit for these relay’s adresses is expressed in hexadecimals and the
second and higher digits are expressed in decimals as shown below.

Example Configuration of external input relay (X)

1.2.4 Timer Contacts (T) and Counter Contacts (C)

Addresses of timer contacts (T) and counter contacts (C) correspond to the TM and CT
instruction numbers and depend on the PLC type.

 Since addresses for timer contacts (T) and counter contacts (C)
correspond to the TM and CT instruction numbers, if the TM and CT
instruction sharing is changed by system register 5, timer and counter
contact sharing is also changed.

1.2.5 External Input (X) and Output Relays (Y)

• The external input relays available are those actually allocated for input use.

• The external output relays actually allocated for output can be used for turning ON or
OFF external devices. The other external output relays can be used in the same way
as internal relays.

FPWIN Pro Programming

Basics

11

I/O allocation is based on the combination of I/O and intelligent modules installed.

1.2.6 Word Representation of Relays (WX, WY, WR, and WL)

The external input relay (X), external output relay (Y), internal relay (R) and link relay (L) can
also be expressed in word format. The word format treats 16-bit relay groups as one word.
The word expressions for these relays are word external input relay (WX), word external
output relay (WY), word internal relay (WR) and word link relay (WL), respectively.

Example:

Configuration of word external input relay (WX)

 Since the contents of the word relay correspond to the state of its relays
(components), if some relays are turned ON, the contents of the word
change.

Basics

FPWIN Pro Programming

12

1.3 Constants
A constant represents a fixed value. Depending on the application, a constant can be used as
an addend, multiplier, address, in-/output number, set value, etc.

There are 3 types of constants:

• decimal

• hexadecimal

• BCD

1.3.1 Decimal Constants

Decimal constants can have a width of either 16 or 32 bits.

Range 16 bit: -32,768 to 32,768

Range 32 bit: -2,147,483,648 to 2,147,483,648

Constants are internally changed into 16-bit binary numbers including character bit and are
processed as such. Simply enter the decimal number in your program.

1.3.2 Hexadecimal Constants

Hexadecimal constants occupy fewer digit positions than binary data. 16 bit constants can be
represented by 4-digit, 32-bit constants by 8-digit hecadecimal constants.

Range 16 bit: 8000 to 7FFF

Range 32 bit: 80000000 to 7FFFFFFFF

Enter e.g.: 16#7FFF for the hexadecimal value 7FFF in your program.

1.3.3 BCD Constants

BCD is the abbreviation for Binary Coded Decimal.

Range 16 bit: 0 to 9999

Range 32 bit: 0 to 99999999

Enter BCD constants in the program either as:

binary: 2#0001110011100101 or
hexadecimal: 16#9999

FPWIN Pro Programming

Basics

13

1.4 Data Types
FPWIN Pro provides elementary and user defined data types.

Elementary data types

Data Type Abbreviation Value Range Data
Width

BOOL BOOL 0 (FALSE) or 1 (TRUE) 1 bit

INTEGER INT -32,768 to 32,768 16 bits

DOUBLE INTEGER DINT -2,147,483,648 to 2,147,483,647 32 bits

WORD WORD 0 to 65,535 16 bits

DOUBLE WORD DWORD 0 to 4,294,967,295 32 bits

TIME 16- bit TIME T#0,00s to T#327.67s 16 bits

TIME 32 -bit TIME T#0,00s to T#21 474 836,47s 32 bits

STRING STRING 1 to 255 bytes (ASCII) 8 bits per byte

REAL REAL -1,175494 x 10-38 to -3,402823 x 10-38 and
1,175494 x 10-38 to 3,402823 x 10-38

32 bits

A data type has to be assigned to each variable.

User defined data types

We differentiate between array and Data Unit Types (DUT). An array consists of several
elementary data types which are all of the same type. A DUT consists of several elementary
data types but of different data types. Each represents a new data type.

1.4.1 BOOL

Variables of the data type BOOL are binary variables. They can only have the value 0 or 1,
and always have a width of 1 bit.

The condition 0 corresponds to FALSE (e.g. initial value in the POU header) and means that
the variable is switched off. In this case we also speak of the variable not being set.

The condition 1 corresponds to TRUE (e.g. initial value in the POU header) and means that
the variable is switched on. In this case we also speak of the variable being set.

The default initial value, e.g. for the variable declaration in the POU header or in the global
variable list = 0 (FALSE). In this case the variable is not set during the PLC program start. If
this is not the case, the initial value may also be set to TRUE.

1.4.2 INT

Variable values of the data type INTEGER are natural numbers without decimal places. The
range of values for INTEGER values is from -32768 to 32767

The default initial value, e.g. for the variable declaration in the POU header or in the global
variable list = 0

Basics

FPWIN Pro Programming

14

INTEGER numbers can be entered in DEC-, HEX- or BIN- format:

Decimal Number Hexadecimal Number Binary Number
1234 16#4D2 2#10011010010
-1234 16#FB2E 2#1111101100101110

1.4.3 DINT

Variable values of the data type DOUBLE INTEGER are natural numbers without decimal
places. The value range for a DOUBLE INTEGER values is from -2147483648 to 2147483647

The default initial value, e.g. for the variable declaration in the POU header or in the global
variable list = 0

DOUBLE INTEGER numbers can be entered in DEC-, HEX- or BIN- format.

Decimal Number Hexadecimal Number Binary Number
123456789 16#75BCD15 2#111010110111100110100010101
-123456789 16#F8A432EB 2#1111100010100100001100101110

1.4.4 STRING

The data type STRING consists of a series, i.e. string, of ASCII characters up to 255
characters (default setting under Extras → Options → Compile options → Code
Generation). All ASCII characters are considered as characters.

The default for the initial value, e.g. for the variable declaration in the POU header or in the
global variable list is ' ' that corresponds to an empty string.

Internal memory structure of strings on the PLC
Each character of the string is stored in a byte. The memory to which a string is allotted
consists of a head (2 words) that contains the following information:

• The first word contains the number of characters that are reserved in the memory for
this string (the standard value is 32 characters).

FPWIN Pro Programming

Basics

15

• The second word contains the actual number of characters that are stored in this
string.

You may declare the number of characters (n) in a string and thereby determine the size of
the allotted memory.

The following condition applies: Reserved memory = 2 words (for the head) + (n+1)/2 words
(for the characters)

Since the memory is organized according to words, it is always rounded up to
the next larger whole number.

String Literals (according to IEC 61131-3)
A character string literal is a sequence of zero or more characters prefixed and terminated by
the single quote character (').

Three-character combinations of the dollar sign ($) followed by two hexadecimal digits are to
be interpreted as the hexadecimal representation of the eight-bit character code.

Two-character combinations beginning with the dollar sign are to be interpreted as shown in
the table:

Combination Interpretation When Printed
$$ Dollar sign ($24)

$' Single quote ($27)

$L or $l Line feed ($0A)

$N or $n New line ($0D$0A)

$P or $p Form feed (page) ($0C)

$R or $r Carriage return ($0D)

$T or $t Tab ($09)

Examples of String Literals

Example Explanation
'' Empty string (length zero)

Basics

FPWIN Pro Programming

16

Example Explanation
'A' String of length one containing the single character A

' ' String of length one containing the space character

'$'' String of length one containing the single quote character

'RL' String of length two containing CR and LF characters

'$$1.00' String of length five which would print as "$1.00"

'$02$03' String of length two containing STX and ETX characters

The hexadecimal value 0 ($00) cannot be entered in a string literal. But the
string commands can handle these values correctly if they occur in string
variables. So you can, for example, also use strings in supplying telegrams with
raw data for data communication.

Strings as constants
It is possible to enter values of the data type STRING directly as constants into a function or a
function block. A declaration in the POU Header is not necessary in this case.

Transfer of the character string constant ': Pressure too high' to a function.

LD Body

IL Body

Transfer of character strings to functions or function blocks
When character strings are transferred, only as many characters that fit into the target string
are transferred. Various examples include:
Example 1 Copy of a character string source to a character string target that has less reserved memory

than source. For a description of these examples, please refer to the online help under the
keyword ‘Example 1…5 for STRING’.

Example 2 Copy of a constant character string to a character string that has less reserved memory than
the constant.

Example 3 A longer character string is attached to the input contact of a function than is reserved for the
input variable in the POU header of the function.

Example 4 A longer character string is calculated for a function than the value of the function can return.
Example 5 A function returns a longer character string than the target variable can store.

The replace functions (E_)INT_TO_STRING (see page 162),
(E_)DINT_TO_STRING (see page 165), (E_)REAL_TO_STRING (see page 168),

FPWIN Pro Programming

Basics

17

(E_)TIME_TO_STRING (see page 170) etc. require relatively many system
resources (program steps and processing time). Therefore define User-defined
functions when you use these functions repeatedly.

Restrictions:
• When using the data type STRING in PLCs that do not employ String

instructions per se (FP-Sigma):

• Can only be used for initializations in the header, as constant in the body,
as function or function block argument or in the following commands:
- BOOL_TO_STRING (see page 156)
- CONCAT (see page 212)
- DINT_TO_STRING (see page 165)
- DWORD_TO_STRING (see page 160)
- EQ (see page 86)
- FIND (see page 216)
- INT_TO_STRING (see page 162)
- LEN (see page 204)
- MOVE (see page 28)
- NE (see page 92)
- REAL_TO_STRING (see page 168)
- SEL (see page 200)
- TIME_TO_STRING (see page 170)
- WORD_TO_STRING (see page 158)

• The functions Concat and Find require relatively many system resources
(program steps, labels and processing time). Therefore define User-defined
functions when you use these functions repeatedly. Only use these
functions when absolutely necessary or define User-defined functions when
you use these functions repeatedly.

1.4.4.1 Strings as Constants

It is possible to enter values of the data type STRING directly as constants into a function or a
function block. A declaration in the POU Header is not necessary in this case.

Example Transfer of the character string constant ’: Pressure too high’ to a
function.

 LD Body

Basics

FPWIN Pro Programming

18

1.4.4.2 Transfer of Character Strings to Functions or Function Blocks

When character strings are transferred, only as many characters that fit into the target string
are transferred. Various examples include:

1. Copy of a character string source to a character string target that has less reserved
memory than source.

2. Copy of a constant character string to a character string that has less reserved
memory than the constant.

3. A longer character string is attached to the input contact of a function than is reserved
for the input variable in the POU header of the function.

4. A longer character string is calculated for a function than the value of the function can
return.

5. A function returns a longer character string than the target variable can store.

1.4.4.3 String with EN/ENO

Using STRING instructions with enable input (EN) and enable output (ENO) in ladder
diagrams (LD) and function block diagrams (FBD)

STRING instructions with EN/ENO contacts cannot be connected to each other in LD and
FBD.

However, you may use this configuration if the instructions in question are first connected to
each other and then an instruction with EN/ENO is used in the final position. The enable input
(EN) determines the output of its overall result.

This arrangement is not possible:

This arrangement is possible:

Using STRING instructions in instruction lists (IL)

STRING instructions with EN/ENO may be connected to each other in IL. Nevertheless, in
order to avoid intermediate variables, it is suggested that you use a conditional jump instead
of connecting a series of functions with EN/ENO.

FPWIN Pro Programming

Basics

19

POU Header of a program with a dummy string

IL Body

POU Header of a program with a conditional jump

IL Body

The difficulty of programming with a dummy string lies in correctly choosing its length. When
connecting unconditional string instructions in series, this is calculated automatically.

Basics

FPWIN Pro Programming

20

1.4.5 WORD

A variable of the data type WORD consists of 16 binary states. The switching states of 16
in/outputs can be combined as a unity in one word (WORD).

The default for the initial value, e.g. for the variable declaration in the POU header or in the
global variable list = 0

You can enter WORD values in (DEC-), HEX- or BIN- format.

(Decimal Number) Hexadecimal Number Binary Number
1234 16#4D2 2#10011010010
64302 16#FB2E 2#1111101100101110

1.4.6 DWORD

A variable of the data type DOUBLE WORD consists of 32 binary states. The switching states
of 32 in/outputs can be combined as a unity in one DOUBLE WORD.

The default for the initial value, e.g. for the variable declaration in the POU header or in the
global variable list = 0

You can enter numbers in (DEC-), HEX- or BIN- format.

(Decimal Number) Hexadecimal Number Binary Number
123456789 16#75BCD15 2#111010110111100110100010101
4171510507 16#F8A432EB 2#1111100010100100001100101110

1.4.7 ARRAY and Data Unit Type

ARRAYs
An array is a group of variables which all have the same elementary data type and that are
grouped together, one after the other, in a continuous data block. This variable group itself is
a variable and must hence be declared for this reason. In the program you can either use the
whole array or individual array elements.

An array cannot be used as a variable by another array.

Data types valid for arrays are:

• BOOL

• INT

• DINT

• REAL

FPWIN Pro Programming

Basics

21

• WORD

• DWORD

• TIME

• STRING

Arrays can be 1, 2 or 3-dimensional. In each dimension, an array can have several fields.

Data Unit Type
A Data Unit Type (DUT) is a group of variables composed of several different elementary
data types (BOOL, WORD etc.). These groups are used when tables are edited, such as for
the bit sample edition in the F164_SPD0 command (FP1, FP-M) of the FP Library (see online
help). You can use the bit sample edition of this command for regulating the speed of a motor
via a speed governor, for example. Define a DUT in the DUT pool first. Then you can use the
DUT in the “Type” field of the global variable list or of a POU header similarly to the integer,
BOOL etc. data types. In the program you can then use either the whole DUT or individual
variables of the DUT.

A DUT cannot be used as a variable by another DUT.

For details on working with ARRAYs or DUTs, please refer to the online help or programming
manuals.

1.4.7.1 One dimensional ARRAY

The declared array can be imagined as follows:

Initialize 1-dim arrays with values
If subsequent array elements are initialized with the same value, the abbreviated writing
number(value) is possible.

* number stands for the number of array elements

* value stands for the initialization value

Basics

FPWIN Pro Programming

22

In the example element 1 was initialized with value 1, element 2 with value 2, etc.

Use 1-dim array elements in the program
You may use a one-dimensional array element by entering identifier[Var1].

* identifier (name of the array, see field Identifier)

* Var1 is a variable of the type INT or a constant which has to be within the value range of the
array declaration. For this example Var1 is assigned to the range 0...15

In the example you call up the third array element (Element 3) with onedim_array[2]. If you
wish to assign a value to this element in an IL program, for example, enter the following:

LD current_temp
ST onedim_array[2]

Addresses of 1-dim array elements
The array elements of the one-dimensional array are subsequently saved in the memory of
the PLC starting with element 1. The following memory allocation results for the example
described above:

Array element
name

Array
element

FP Address IEC Address

onedim_array[0] Element 1 DT0 %MW5.0

onedim_array[1] Element 2 DT1 %MW5.1

onedim_array[2] Element 3 DT2 %MW5.2

onedim_array[3] Element 4 DT3 %MW5.3

onedim_array[4] Element 5 DT4 %MW5.4

...

onedim_array[13] Element 14 DT13 %MW5.13

onedim_array[14] Element 15 DT14 %MW5.14

onedim_array[15] Element 16 DT15 %MW5.15

1.4.7.2 Two dimensional ARRAY

The declared array can be imagined as follows:

FPWIN Pro Programming

Basics

23

Initialize 2-dim arrays with values
The initialization of arrays with values starts with the first array element (element 1) and ends
with the last array element (element 18). The initialization values are entered one after
another into the field initial and are separated from each other by commas.

If subsequent array elements are initialized with the same value, the abbreviated writing
number(value) is possible.

* number stands for the number of array elements

* value stands for the initialization value

In the example element 1 was initialized with the value FALSE, element 2 with the value
TRUE and the remaining array elements are initialized with FALSE.

Use 2-dim array elements in the program
You may use a two-dimensional array element by entering identifier[Var1Var2].

* identifier (name of the array, see field Identifier)

* Var1 and Var2 are variables of the type INT or constants which have to be within the value
range of the array declaration. For this example Var1 is assigned to the range 3...5 and Var2
to the range 1...6.

In the example you call up the element 12 with twodim_array[4,6]. If you wish to assign a
value to this element in an IL program, for example, enter the following:

LD motor_on
ST twodim_array[4,6]

Addresses of 2-dim array elements
The array elements of the two-dimensional array are subsequently saved in the memory of
the PLC starting with element 1. The following memory allocation results for the example
described above:

Array element
name

Array
element

FP
Address

IEC
Address

twodim_array[3,1] Element 1 R0 %MX0.0.0

twodim_array[3,2] Element 2 R1 %MX0.0.1

twodim_array[3,3] Element 3 R2 %MX0.0.2

...

twodim_array[3,6] Element 6 R5 %MX0.0.5

twodim_array[4,1] Element 7 R6 %MX0.0.6

twodim_array[4,2] Element 8 R7 %MX0.0.7

...

twodim_array[5,4] Element 16 RF %MX0.0.15

twodim_array[5,5] Element 17 R10 %MX0.1.0

twodim_array[5,6] Element 18 R11 %MX0.1.1

Basics

FPWIN Pro Programming

24

1.4.7.3 Three dimensional ARRAY

Declaration in the global variable list:

The declared array can be imagined as follows:

Initialize 3-dim arrays with values
The initialization of arrays with values starts with the first array element (element 1) and ends
with the last array element (element 111). The initialization values are entered one after
another into the field initial and are separated from each other by commas.

If subsequent array elements are initialized with the same value, the abbreviated writing
number(value) is possible.

* number stands for the number of array elements

* value stands for the initialization value

In the example all array elements were initialized with the value 123.

Use array elements in the program
Accessing a three-dimensional array is possible if you enter identifier[Var1,Var2,Var3,Var4].*
identifier is the name of the array, (see field Identifier)

* Var1, Var2 and Var3 are variables of the type INT or constants which have to be within the
value range of the array declaration (see field Type). For this example Var1 is assigned to the
range 8...1, Var2 to the range 0...3 and Var3 to the range 2...4.

In the example you call up element 15 with threedim_array[-7,0,4]. If you wish to assign a
value to this element in an IL program, for example, enter the following:

FPWIN Pro Programming

Basics

25

LD binaer_value
ST threedim_array[-7,0,4]

Addresses of 3-dim array elements
The array elements of the three-dimensional array are subsequently saved in the memory of
the PLC starting with element 1. The following memory allocation results for the example
described above:

Array element
name

Array
element

FP
Address

IEC
Address

threedim_array[-8,0,2] Element 1 DT0 %MW5.0

threedim_array[-8,0,3] Element 2 DT1 %MW5.1

threedim_array[-8,0,4] Element 3 DT2 %MW5.2

threedim_array[-8,1,2] Element 4 DT3 %MW5.3

threedim_array[-8,1,3] Element 5 DT4 %MW5.4

...

threedim_array[-8,3,3] Element 11 DT10 %MW5.10

threedim_array[-8,3,4] Element 12 DT11 %MW5.11

threedim_array[-7,0,2] Element 13 DT12 %MW5.12

threedim_array[-7,0,3] Element 14 DT13 %MW5.13

...

threedim_array[1,3,2] Element 118 DT117 %MW5.117

threedim_array[1,3,3] Element 119 DT118 %MW5.118

threedim_array[1,3,4] Element 120 DT119 %MW5.119

1.4.8 REAL

Variables of the data type REAL are real numbers or floating point constants. There are up to
seven effective digits. The mantissa is 23 bits and the exponent is 8 bits (Based on IEEE754).

The value range for REAL values is between -3.402823*E38 to -1.175494*E-38, 0.0,
+1.175494*E-38 to +3.402823*E38.

The default for the initial value, e.g. for the variable declaration in the POU header or in the
global variable list = 0.0

You can enter REAL values in the following format:

[+-] Integer.Integer [(Ee) [+-] Integer]

Examples:

5.983e-7

Basics

FPWIN Pro Programming

26

-33.876e12

3.876e3

0.000123

123.0

 The REAL value always has to be entered with a decimal point (e.g. 123.0).

Chapter 2
 Data Transfer Instructions

Data Transfer Instructions

FPWIN Pro Programming

28

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

MOVE Move value to specified destination

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of MOVE (see page 934)

Data type I/O Function
all data types input source

all data types output as input destination

In this example the input variable (input_value) has been declared. Instead, you
may enter a constant directly at the input contact of a function.

Description MOVE assigns the unchanged value of the input variable to the output variable.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body Input_value is assigned to output_value without being modified.

LD

ST output_value:= input_value;

Chapter 3
 Arithmetic Instructions

Arithmetic Instructions

FPWIN Pro Programming

30

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ADD Add

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of ADD (see page 923)

 • All operands must be of the same data type.

• This function can be expanded to a maximum of 28 input contacts.

• The data type REAL is available only for FP-Sigma.

Data type I/O Function
INT, DINT, REAL 1st input augend

INT, DINT, REAL 2nd input addend

INT, DINT, REAL output as input sum

In this example the input variables (summand_1, summand_2 and enable)
have been declared. Instead, you may enter constants directly into the function
(enable input e.g. for tests).

Description This function adds the input variables IN1 + IN2 +... and writes the addition result
into the output variable.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body If enable is set (TRUE), summand_1 is added to summand_2. The result is
written into sum.

LD

FPWIN Pro Programming

Arithmetic Instructions

31

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

SUB Subtract

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of SUB (see page 935)

 • All operands must be of the same data type.

• This function can be expanded to a maximum of 28 input contacts.

• The data type REAL is available only for FP-Sigma.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

Data type I/O Function
INT, DINT, REAL 1st input minuend

INT, DINT, REAL 2nd input subtrahend

INT, DINT, REAL output as input result

In this example the input variables (minuend, subtrahend and enable) have
been declared. Instead, you may enter constants directly into the function
(enable input e.g. for tests).

Description The content of the accumulator is subtracted from the operand defined in the
operand field. The result is transferred to the accumulator.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body If enable is set, subtrahend (data type INT) is subracted from minuend. The
result will be written into result (data type INT).

Arithmetic Instructions

FPWIN Pro Programming

32

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LD

FPWIN Pro Programming

Arithmetic Instructions

33

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

MUL Multiply

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of MUL (see page 934)

 • All operands must be of the same data type.

• This function can be expanded to a maximum of 28 input contacts.

• The data type REAL is available only for FP-Sigma.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

Data type I/O Function
INT, DINT, REAL 1st input multiplicand

INT, DINT, REAL 2nd input multiplicator

INT, DINT, REAL output as input result

In this example the input variables (multiplicand, multiplicator and enable)
have been declared. Instead, you may enter constants directly into the function
(enable input e.g. for tests).

Description MUL multiplies the values of the input variables with each other and writes the
result into the output variable.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body If enable is set (TRUE), the multiplicant is multiplied with the multiplicator. The
result will be written into result.

Arithmetic Instructions

FPWIN Pro Programming

34

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LD

FPWIN Pro Programming

Arithmetic Instructions

35

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DIV Divide

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DIV (see page 924)

 • Input and output variables must be of one of the above noted data
types. All operands must be of the same data type.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

Data type I/O Function
INT, DINT, REAL 1st input dividend

INT, DINT, REAL 2nd input divisor

INT, DINT, REAL output as input result

Description DIV divides the value of the first input variable by the value of the second.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

In this example the input variables (dividend, divisor and enable) have been
declared. Instead, you may enter constants directly into the function (enable input
e.g. for tests).

Body If enable is set (TRUE), dividend is divided by divisor. The result is written into
result.

Arithmetic Instructions

FPWIN Pro Programming

36

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LD

FPWIN Pro Programming

Arithmetic Instructions

37

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ABS Absolute Value

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of ABS (see page 923)

Data type I/O Function
INT, DINT,
REAL

input input data type

INT, DINT,
REAL

output as input absolute value

This example uses variables. You may also use a constant for the input variable.

Description ABS calculates the value in the accumulator into an absolute value. The result is
saved in the output variable.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body Input_value of the data type INTEGER is converted into an absolute value of the
data type INTEGER. The converted value is written into absolute_value.

LD

ST absolute_value:=ABS(input_value);

Arithmetic Instructions

FPWIN Pro Programming

38

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

MOD Modular arithmetic division, remainder
stored in output variable

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of MOD (see page 934)

 With FP1-C14/C16 MOD cannot be used for a 32-bit division (DINT) as this will
cause a compiler error.

Data type I/O Function
INT, DINT 1st input dividend

INT, DINT 2nd input divisor

INT, DINT output as input remainder

Description MOD divides the value of the first input variable by the value of the second. The
rest of the integral division (5 : 2 : 2 + rest = 1) is written into the output variable.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body This example uses variables. You may also use constants for the input variables.
Dividend (11) is divided by divisor (4). The remainder (3) of the division is written
in remainder.

LD

ST remainder:= dividend MOD divisor;

FPWIN Pro Programming

Arithmetic Instructions

39

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

SQRT Square root

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of SQRT (see page 935)

 The number of steps may vary depending on the PLC and parameters used, see
also table of steps in the online help.

Data type I/O Function
REAL input input value

REAL output as input square root of input value

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input variable does not have the data type
REAL or input variable is not ≥ 0.0

R900B %MX0.900.11 permanently - output variable is zero

R9009 %MX0.900.9 for an instant - processing result overflows the output
variable

This example uses variables. You may also use a constant for the input variable.

Description SQRT calculates the square root of an input variable of the data type REAL
(value ≥ 0.0). The result is written into the output variable.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body The square root of input_value is calculated and written into output_value.

LD

Arithmetic Instructions

FPWIN Pro Programming

40

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ST output_value:= SQRT(input_value);

FPWIN Pro Programming

Arithmetic Instructions

41

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

SIN Sine with Radian Input Data

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

 • The accuracy of the calculation decreases as the angle data specified
in the input variable increases. Therefore, we recommend to enter
angle data in radians ≥ -2π and ≤ 2π.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

PLC types: Availability of SIN (see page 934)

Data type I/O Function
REAL input input value, angle data in radians

REAL output as input SINE of input value

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input variable does not have the data type
REAL or
input variable ≥ 52707176

R900B %MX0.900.11 permanently - output variable is zero

R9009 %MX0.900.9 for an instant - processing result overflows the output
variable

This example uses variables. You may also use a constant for the input variable.

Description SIN calculates the sine of the input variable and writes the result into the output
variable. The angle data has to be specified in radians (value < 52707176).

Data types

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body The sine of input_value is calculated and written into output_value.

Arithmetic Instructions

FPWIN Pro Programming

42

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LD

FPWIN Pro Programming

Arithmetic Instructions

43

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ASIN Arcsine

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

 The number of steps may vary depending on the PLC and parameters used, see
also table of steps in the online help.

PLC types: Availability of ASIN (see page 923)

Data type I/O Function
REAL input input value between -1 and +1

REAL output as
input

arcsine of input value in radians

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input variable does not have the data type
REAL or
input variable is not ≥ -1.0 and ≤ 1.0

R900B %MX0.900.11 permanently - output variable is zero

R9009 %MX0.900.9 for an instant - processing result overflows the output
variable

This example uses variables. You may also use a constant for the input variable.

Description ASIN calculates the arcsine of the input variable and writes the angle data in
radians into the output variable. The function returns a value from - π/2 to π/2.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body The arc sine of input_value is calculated and written into output_value.

LD

Arithmetic Instructions

FPWIN Pro Programming

44

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ST output_value:=ASIN(input_value);

FPWIN Pro Programming

Arithmetic Instructions

45

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

COS Cosine

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

 • The accuracy of the calculation decreases as the angle data specified
in the input variable increases. Therefore, we recommend to enter
angle data in radians ≥ -2π and ≤ 2π.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

PLC types: Availability of COS (see page 924)

Data type I/O Function
REAL input input value, angle data in radians

REAL output as input cosine of input value

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input variable does not have the data type
REAL or input variable ≥ 52707176

R900B %MX0.900.11 permanently - output variable is zero

R9009 %MX0.900.9 for an instant - processing result overflows the output
variable

This example uses variables. You may also use a constant for the input variable.

Description COS calculates the cosine of the input variable and writes the result into the
output variable. The angle data has to be specified in radians (value <
52707176).

Data types

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body The cosine of input_value is calculated and written into output_value.

Arithmetic Instructions

FPWIN Pro Programming

46

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LD

ST output_value:=COS(input_value);

FPWIN Pro Programming

Arithmetic Instructions

47

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ACOS Arccosine

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

 The number of steps may vary depending on the PLC and parameters used, see
also table of steps in the online help.

PLC types: Availability of ACOS (see page 923)

Data type I/O Function
REAL input input value between -1 and +1

REAL output as input arccosine of input value in radians

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input variable does not have the data type
REAL or input variable is not ≥ -1.0 and ≤ 1.0

R900B %MX0.900.11 permanently - output variable is zero

R9009 %MX0.900.9 for an instant - processing result overflows the output
variable

This example uses variables. You may also use a constant for the input variable.

Description ACOS calculates the arccosine of the input variable and writes the angle data in
radians into the output variable. The function returns a value from 0.0 to π.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body The arc cosine of input_value is calculated and written into output_value.

LD

Arithmetic Instructions

FPWIN Pro Programming

48

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ST output_value:=ACOS(input_value);

FPWIN Pro Programming

Arithmetic Instructions

49

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

TAN Tangent

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

 • The accuracy of the calculation decreases as the angle data specified
in the input variable increases. Therefore, we recommend to enter
angle data in radians ≥ -2π and ≤ 2π.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

PLC types: Availability of TAN (see page 935)

Data type I/O Function
REAL input input value in radians

REAL output as
input

tangent of input value

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input variable does not have the data type
REAL or input variable ≥ 52707176

R900B %MX0.900.11 permanently - output variable is zero

R9009 %MX0.900.9 for an instant - processing result overflows the output
variable

Description TAN calculates the tangent of the input variable and writes the result into the
output variable. The angle data has to be specified in radians (value <
52707176).

Data types

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body The tangent of input_value is calculated and written into output_value.

Arithmetic Instructions

FPWIN Pro Programming

50

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LD

FPWIN Pro Programming

Arithmetic Instructions

51

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ATAN Arctangent

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

 The number of steps may vary depending on the PLC and parameters used, see
also table of steps in the online help.

PLC types: Availability of ATAN (see page 923)

Data type I/O Function
REAL input input value between -52707176 and +52707176

REAL output as
input

arctangent of input value in radians

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input variable does not have the data type
REAL or input variable ≥ 52707176

R900B %MX0.900.11 permanently - output variable is zero

R9009 %MX0.900.9 for an instant - processing result overflows the output
variable

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

This example uses variables. You may also use a constant for the input variable.

Description ATAN calculates the arctangent of the input variable (value ± 52707176) and
writes the angle data in radians into the output variable. The function returns a
value greater than -π/2 and smaller than π/2.

Data types

Error flags

Example

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body The arc tangent of input_value is calculated and written into output_value.

Arithmetic Instructions

FPWIN Pro Programming

52

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LD

ST output_value:=ATAN(input_value);

FPWIN Pro Programming

Arithmetic Instructions

53

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LN Natural logarithm

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

 The number of steps may vary depending on the PLC and parameters used, see
also table of steps in the online help.

PLC types: Availability of LN (see page 933)

Data type I/O Function
REAL input input value

REAL output as input natural logarithm of input value

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input variable does not have the data type
REAL or input variable is not > 0.0

R900B %MX0.900.11 permanently - output variable is zero

R9009 %MX0.900.9 for an instant - processing result overflows the output
variable

Description LN calculates the logarithm of the input variable (value > 0.0) to the base e
(Euler’s number = 2.7182818) and writes the result into the output variable. This
function is the reversion of the EXP (see page 57) function.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body The logarithm of input_value is calculated to the base e and written into
output_value.

LD

Arithmetic Instructions

FPWIN Pro Programming

54

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ST output_value:=LN(input_value);

FPWIN Pro Programming

Arithmetic Instructions

55

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LOG Logarithm to the Base 10

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

 The number of steps may vary depending on the PLC and parameters used, see
also table of steps in the online help.

PLC types: Availability of LOG (see page 933)

Data type I/O Function
REAL input input value

REAL output as
input

logarithm of input value

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input variable does not have the data type
REAL or input variable is not > 0.0

R900B %MX0.900.11 permanently - output variable is zero

R9009 %MX0.900.9 for an instant - processing result overflows the output
variable

Description LOG calculates the logarithm of the input variable (value > 0.0) to the base 10
and writes the result into the output variable.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body The logarithm of input_value is calculated to the base 10 and written into
output_value.

LD

Arithmetic Instructions

FPWIN Pro Programming

56

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ST output_value:=LOG(input_value);

FPWIN Pro Programming

Arithmetic Instructions

57

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

EXP Exponent of input variable to base e

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

 The number of steps may vary depending on the PLC and parameters used, see
also table of steps in the online help.

PLC types: Availability of EXP (see page 925)

Data type I/O Function
REAL input input value between -87.33 and +88.72

REAL output as input exponent of input variable to base e

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input variable does not have the data type
REAL or input variable is not > -87.33 and <
88.72

R900B %MX0.900.11 permanently - output variable is zero

R9009 %MX0.900.9 for an instant - processing result overflows the output
variable

Description EXP calculates the power of the input variable to the base e (Euler’s number =
2.7182818) and writes the result into the output variable. The input variable has
to be greater than -87.33 and smaller than 88.72. This function is the reversion of
the LN (see page 53) function.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body The power of input_value is calculated to the base e and written into
output_value.

Arithmetic Instructions

FPWIN Pro Programming

58

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LD

ST output_value:=EXP(input_value);

FPWIN Pro Programming

Arithmetic Instructions

59

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

EXPT Raises 1st input variable by the power of
the 2nd input variable

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of EXPT (see page 925)

Data type I/O Function
REAL 1st input input value

REAL 2nd input exponent of the input value

REAL output as 1st input result

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- first and the second input variable do not
have the data type REAL

R900B %MX0.900.11 permanently - output variable is zero

R9009 %MX0.900.9 for an instant - processing result overflows the output
variable

Description EXPT raises the first input variable to the power of the second input variable
(OUT = IN1IN2) and writes the result into the output variable. Input variables have
to be within the range -1.70141 x 10 E38 to 1.70141 x 10 E38.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

In this example the input variables (input_value_1 and input_value_2) have
been declared. Instead, you may enter constants directly at the input contacts of
a function.

Arithmetic Instructions

FPWIN Pro Programming

60

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body Input_value_1 is raised to the power of input_value_2. The result is written into
output_value.

LD

ST output_value:=input_value_1**input_value_2;

FPWIN Pro Programming

Arithmetic Instructions

61

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

CRC16 Cyclic Redundancy Check

Depending on the PLC type, one of the following two implementations of the
function will be used:
PLCs which support the instruction F70_BCC (see page 426) with the parameter
s1=10 to calculate CRC16 (FP-Sigma) use F70_BCC directly.

 The number of steps can increase up to approx. 200 when CRC16 is used as a
sub-program.

PLC types: Availability of CRC16 (see page 924)

Description This function calculates the CRC16 (Cyclic Redundancy Check) for all PLC types
by using 8 bytes (8 bits) specified with the parameter NumberOfBytes and the
starting address StartAddress.

Symbol:

Arithmetic Instructions

FPWIN Pro Programming

62

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Input variables (VAR_INPUT):

Variable Data
type Function

StartAddress ANY

Starting address for the calculation of the check sum. For PLCs
which do not support the instruction F70_BCC (see page 426)
with CRC16 calculation (), the starting address must be in the DT
or FL area.

NumberOfBytes INT The number of bytes (8 bits), beginning with AdrStart, on which
the CRC16 calculation is performed.

Output variables (VAR_OUTPUT):

CRC ANY16 The calculated check sum, which is only valid if the flag IsValid
is set to TRUE.

IsValid

BOOL

Flag indicating whether the calculated check sum is valid or not.
For PLCs which do not support the instruction F70_BCC (see
page 426) with CRC16 calculation () the CRC is not valid:
- during the first eight execution scans when an internal table is

built
- if the address area of the variable StartAddress is not in the DT

or FL area.
For PLCs that support the instruction F70_BCC with CRC16
calculation, the CRC is always valid.

Data types

Example In this example, the same POU header is used for all programming languages.

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body
LD

ST CRC16(StartAddress := Array1,

 NumberOfBytes := ARRAY1_BYTES,

 CRC => Array1Crc,

 IsValid => CrcIsvalid);

Chapter 4
 Bitwise Boolean Instructions

Bitwise Boolean Instructions

FPWIN Pro Programming

64

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

AND Logical AND operation

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of AND (see page 923)

 • All operands must be of the same data type.

• The number of input contacts lies in the range of 2 to 28.

Data type I/O Function
BOOL, WORD, DWORD 1st input element 1 of logical AND operation

BOOL, WORD, DWORD 2nd input element compared to input 1

BOOL, WORD, DWORD output as input result

 Input 1 Input 2 Output

0 0 0

0 1 0

1 0 0

Signal

1 1 1

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description The content of the accumulator is connected with the operand defined in the
operand field by a logical AND operation. The result is transferred to the
accumulator.

Data types

Truth table:

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body bvar_1 will be logically AND-linked with bvar_2. The result will be written into the
output variable bvar_3.

LD

FPWIN Pro Programming

Bitwise Boolean Instructions

65

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ST bvar_3:= bvar_1&bvar_2;

Bitwise Boolean Instructions

FPWIN Pro Programming

66

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

OR Logical OR operation

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of OR (see page 934)

 • All operands must be of the same data type.

• The number of input contacts lies in the range of 2 to 28.

Data type I/O Function
BOOL, WORD, DWORD 1st input element 1 of logical OR operation

BOOL, WORD, DWORD 2nd input element compared to input 1

BOOL, WORD, DWORD output as input result

Input 1 Input 2 Output

0 0 0

1 0 1

0 1 1

Signal

1 1 1

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description The content of the accumulator is connected with the operand defined in the
operand field by a logical OR operation. The result is transferred to the
accumulator.

Data types

Truth table:

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body bvar_1 and bvar_2 are linked with a logical OR. The result will be written in
bvar_3. This example uses variables. You may also use constants for the input
variables.

FPWIN Pro Programming

Bitwise Boolean Instructions

67

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LD

ST bvar_3:= var_1 OR bvar_2;

Bitwise Boolean Instructions

FPWIN Pro Programming

68

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

XOR Exclusive OR operation

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of XOR (see page 936)

 • All operands must be of the same data type.

• The number of input contacts lies in the range of 2 to 28.

Data type I/O Function
BOOL, WORD, DWORD 1st input element 1 of logical XOR operation

BOOL, WORD, DWORD 2nd input element compared to input 1

BOOL, WORD, DWORD output as input result

Input 1 Input 2 Output

0 0 0

1 0 1

0 1 1

Signal

1 1 0

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description The content of the accumulator is connected with the operand defined in the
operand field by a logical XOR operation. The result is transferred to the
accumulator.

Data types

Truth table:

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The Boolean variables bvar_1 and bvar_2 are logically EXCLUSIVE-OR linked
and the result is written in bvar_3.

LD

FPWIN Pro Programming

Bitwise Boolean Instructions

69

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ST var_3:= var_1 XOR var_2;

Bitwise Boolean Instructions

FPWIN Pro Programming

70

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

NOT Bit inversion

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of NOT (see page 934)

 All operands must be of the same data type.

Data type I/O Function
BOOL, WORD,
DWORD

input input for NOT operation

BOOL, WORD,
DWORD

output as input result

This example uses variables. You may also use a constant for the input variable.

Description NOT performs a bit inversion of input variables. The result will be written into the
output variable.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body The bits of input_value are inversed (0 is inversed to 1 and vice versa). The
inversed result is written into negation.

LD

ST negation:= NOT(input_value);

Chapter 5
 Bitshift Instructions

Bitshift Instructions

FPWIN Pro Programming

72

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

SHR Shift bits to the right

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Bit shift to the right, zero-filled on left:

PLC types: Availability of SHR (see page 934)

Data type I/O Function
BOOL,
WORD,
DWORD

1st input input value

BOOL,
WORD,
DWORD

2nd input number of bits by which the input value is shifted to the right

BOOL,
WORD,
DWORD

output as input result

 • If the second input variable N (the number of bits to be shifted) is of
the data type DWORD, then only the lower 16 bits are taken into
account.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

Description SHR shifts a bit value by a defined number of positions (N) to the right and fills
the vacant positions with zeros.

Data types

FPWIN Pro Programming

Bitshift Instructions

73

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Example

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body The last N bits (here 4) of source_register are right-shifted. The vacant
positions on the left are filled with zeros. The result is written into
target_register.

LD

Bitshift Instructions

FPWIN Pro Programming

74

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

SHL Shift bits to the left

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Bit shift to the left, zero-filled on right:

PLC types: Availability of SHL (see page 934)

Data type I/O Function
BOOL,
WORD,
DWORD

1st input input value

BOOL,
WORD,
DWORD

2nd input number of bits by which the input value is shifted to the left

BOOL,
WORD,
DWORD

output as input result

 • If the second input variable N (the number of bits to be shifted) is of
the data type DWORD, then only the lower 16 bits are taken into
account.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

Description SHL shifts a bit value by a defined number of positions (N) to the left and fills the
vacant positions with zeros.

Data types

FPWIN Pro Programming

Bitshift Instructions

75

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body The first N bits (here 3) of source_register are left-shifted, the vacant positions
on the right are filled with zeros. The result is written into target_register.

LD

Bitshift Instructions

FPWIN Pro Programming

76

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ROR Rotate N bits the right

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of ROR (see page 934)

Data type I/O Function
BOOL,
WORD,
DWORD

1st input input value

BOOL,
WORD,
DWORD

2nd input number of bits by which the input value is rotated to the
right

BOOL,
WORD,
DWORD

output as input result

 The number of steps may vary depending on the PLC and parameters used, see
also table of steps in the online help.

Description ROR rotates a defined number (N) of bits to the right.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

FPWIN Pro Programming

Bitshift Instructions

77

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body The first N bits (here N = 3) of source_register are right-rotated. The result will
be written into target_register.

LD

Bitshift Instructions

FPWIN Pro Programming

78

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ROL Rotate N bits to the left

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of ROL (see page 934)

Data type I/O Function
BOOL,
WORD,
DWORD

1st input input value

BOOL,
WORD,
DWORD

2nd input number of bits by which the input value is rotated to the left

BOOL,
WORD,
DWORD

output as input result

 The number of steps may vary depending on the PLC and parameters used, see
also table of steps in the online help.

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description ROL rotates a defined number (N) of bits to the left.

Data types

Example

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

FPWIN Pro Programming

Bitshift Instructions

79

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body The last N bits (here 3) of source_register are left-rotated. The result will be
written in target_register.

LD

Chapter 6
 Comparison Instructions

Comparison Instructions

FPWIN Pro Programming

82

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

GT Greater than

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of GT (see page 932)

 • Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

• The number of input contacts lies in the range of 2 to 28.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

Data type I/O Function
all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if 2nd input value is greater than the
reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second
input is compared with the third input etc. If the first value is greater than the
second value AND the second value greater than third etc., TRUE will be written
into result, otherwise FALSE.

In this example the input variables (comparison_value, reference_value and
enable) have been declared. Instead, you may enter constants directly into the
function (enable input e.g. for tests).

Description The content of the accumulator is compared with the operand defined in the
operand field. If the accumulator is greater than the reference value, "TRUE" is
stored in the accumulator, otherwise "FALSE".

Data types

Example IIn this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

FPWIN Pro Programming

Comparison Instructions

83

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body If enable is set (TRUE), the comparison_value is compared with the
reference_value. If the comparison_value is greater than the reference_value,
the value TRUE will be written into result, otherwise FALSE.

LD

Comparison Instructions

FPWIN Pro Programming

84

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

GE Greater than or equal to

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of GE (see page 932)

 • Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

• The number of input contacts lies in the range of 2 to 28.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

Data type I/O Function
all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if 2nd input value is greater than or
equal to the reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second
input is compared with the third input etc. If the first value is greater than or equal
to the second value AND the second value is greater than or equal to the third
value etc., TRUE will be written into result, otherwise FALSE.

In this example the input variables (comparison_value, reference_value and
enable) have been declared. Instead, you may enter constants directly into the
function (enable input e.g. for tests).

Description The content of the accumulator is compared with the operand defined in the
operand field. If the accumulator is greater or equal to the reference value,
"TRUE" is stored in the accumulator, otherwise "FALSE".

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

FPWIN Pro Programming

Comparison Instructions

85

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body If enable is set (TRUE), the comparison_value is compared with the
reference_value. If the comparison_value is greater than or equal to the
reference_value, the value TRUE will be written into result, otherwise FALSE.

LD

Comparison Instructions

FPWIN Pro Programming

86

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

EQ Equal to

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of EQ (see page 925)

 • Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

• The number of input contacts lies in the range of 2 to 28.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

Data type I/O Function
all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if 2nd input value is equal to the
reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second
input is compared with the third input etc. If the first value is equal to the second
value AND the second value is equal to the third value etc., TRUE will be written
into result, otherwise FALSE.

In this example the input variables (comparison_value, reference_value and
enable) have been declared. Instead, you may enter constants directly into the
function (enable input e.g. for tests).

Description The content of the accumulator is compared with the operand defined in the
operand field. If both values are equal, "TRUE" is stored in the accumulator,
otherwise "FALSE".

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

FPWIN Pro Programming

Comparison Instructions

87

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body If enable is set (TRUE), the variable comparison_value is compared with the
variable reference_value. If the values of the two variables are identical, the
value TRUE will be written into result, otherwise FALSE.

LD

Comparison Instructions

FPWIN Pro Programming

88

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LE Less than or equal to

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of LE (see page 933)

 • Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

• The number of input contacts lies in the range of 2 to 28.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

Data type I/O Function
all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if 2nd input value is less than or equal
to the reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second
input is compared with the third input etc. If the first value is less than or equal to
the second value AND the second value is less than or equal to the third value
etc., TRUE will be written into result, otherwise FALSE.

In this example the input variables (comparison_value, reference_value and
enable) have been declared. Instead, you may enter constants directly into the
function (enable input e.g. for tests).

Description The content of the accumulator is compared with the operand defined in the
operand field. If the accumulator is less or equal to the reference value, "TRUE"
is stored in the accumulator, otherwise "FALSE".

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

FPWIN Pro Programming

Comparison Instructions

89

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body If enable is set (TRUE), the comparison_value is compared with the variable
reference_value. If the comparison_value is less than or equal to the
reference_value, TRUE will be written into result, otherwise FALSE.

LD

Comparison Instructions

FPWIN Pro Programming

90

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LT Less than

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of LT (see page 933)

 • Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

• The number of input contacts lies in the range of 2 to 28.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

Data type I/O Function
all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if 2nd input value is less than the
reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second
input is compared with the third input etc. If the first value is less than the second
value AND the second value is less than the third value etc., TRUE will be written
into result, otherwise FALSE.

Description The content of the accumulator is compared with the operand defined in the
operand field. If the accumulator is less than the reference value, "TRUE" is
stored in the accumulator, otherwise "FALSE".

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

In this example the input variables (comparison_value, reference_value and
enable) have been declared. Instead, you may enter constants directly into the
function (enable input e.g. for tests).

FPWIN Pro Programming

Comparison Instructions

91

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body If enable is set (TRUE), the comparison_value is compared with the
reference_value. If the comparison_value is less than or equal to the
reference_value, TRUE will be written into result, otherwise FALSE.

LD

Comparison Instructions

FPWIN Pro Programming

92

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

NE Not equal

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of NE (see page 934)

 • Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

• The number of input contacts lies in the range of 2 to 28.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

Data type I/O Function
all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if 2nd input value is unequal to the
reference value, otherwise FALSE

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second
input is compared with the third input etc. If the first value is not equal to the
second value AND the second value is not equal to the third value etc., TRUE
will be written into result, otherwise FALSE.

In this example the input variables (comparison_value, reference_value and
enable) have been declared. Instead, you may enter constants directly into the
function (enable input e.g. for tests).

Description The content of the accumulator is compared with the operand defined in the
operand field. If both values are not equal, "TRUE" is stored in the accumulator,
otherwise "FALSE".

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

FPWIN Pro Programming

Comparison Instructions

93

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body If enable is set (TRUE), the comparison_value is compared with the
reference_value. If the two values are unequal, TRUE will be written into result,
otherwise FALSE.

LD

Chapter 7
 Conversion Instructions

Conversion Instructions

FPWIN Pro Programming

96

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

WORD_TO_BOOL WORD in BOOL

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of WORD_TO_BOOL (see page 936)

 If the value of WORD_value = 0 (16#0000), the conversion result will be = 0
(FALSE), in any other case = 1 (TRUE).

Data type I/O Function
WORD input input data type

BOOL output conversion result

Description WORD_TO_BOOL converts a value of the data type WORD into a value of the
data type BOOL.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body WORD_value of the data type WORD (16-bit) is converted into a Boolean value
(1-bit). The result will be written into Boolean_value.

LD

ST Boolean_value:=WORD_TO_BOOL(WORD_value);

FPWIN Pro Programming

Conversion Instructions

97

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DWORD_TO_BOOL DOUBLE WORD in BOOL

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DWORD_TO_BOOL (see page 924)

 If the variable DWORD_value has the value 0 (16#00000000) the conversion
result will be FALSE, in any other case it will be TRUE.

Data type I/O Function
DWORD input input data type

BOOL output conversion result

Description DWORD_TO_BOOL converts a value of the data type DOUBLE WORD into a
value of the data type BOOL.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body DWORD_value of the data type DOUBLE WORD is converted into a Boolean
value (1-bit). the converted value is written into Boolean_value.

LD

ST Boolean_value:=DWORD_TO_BOOL(DWORD_value);

Conversion Instructions

FPWIN Pro Programming

98

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

INT_TO_BOOL INTEGER into BOOL

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of INT_TO_BOOL (see page 932)

Data type I/O Function
INT input input data type

BOOL output conversion result

 If INT_value has the value 0, the conversion result will be 0 (FALSE), in any other
case it will be 1 (TRUE).

Description INT_TO_BOOL converts a value of the data type INT into a value of the data
type BOOL.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body INT_value (16-bit) of the data type INTEGER is converted into a Boolean value.
The result is written into Boolean_value.

LD

ST Boolean_value:=INT_TO_BOOL(INT_value);

FPWIN Pro Programming

Conversion Instructions

99

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DINT_TO_BOOL DOUBLE INTEGER into BOOL

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DINT_TO_BOOL (see page 924)

Data type I/O Function
DINT input input data type

BOOL output conversion result

 If the variable DINT_value has the value 0, the conversion result is FALSE, in
any other case TRUE.

Description DINT_TO_BOOL converts a value of the data type DINT into a value of the data
type BOOL.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

In this example the input variable (DINT_value) has been declared. Instead, you
may enter a constant directly at the input contact of a function.

Body DINT_value of the data type DOUBLE INTEGER is converted into a value of the
data type BOOL. The converted value in written into Boolean_value.

LD

ST Boolean_value:=DINT_TO_BOOL(DINT_value);

Conversion Instructions

FPWIN Pro Programming

100

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BOOL_TO_WORD BOOL into WORD

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of BOOL_TO_WORD (see page 923)

Data type I/O Function
BOOL input input data type

WORD output conversion result

In this example the input variable (Boolean_value) has been declared. Instead,
you may enter a constant directly at the input contact of a function.

Description BOOL_TO_WORD converts a value of the data type BOOL into a value of the
data type WORD.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body The Boolean_value of the data type BOOL is converted into a value of the data
type WORD. The converted value is written into WORD_value.

LD

ST IF Boolean_value THEN
 WORD_value:=BOOL_TO_WORD(Boolean_value);
END_IF;

FPWIN Pro Programming

Conversion Instructions

101

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BOOL16_TO_WORD BOOL16 to WORD

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of BOOL16_TO_WORD (see page 923)

Data type Comment
ARRAY (see page
20) of BOOL

ARRAY with 16 elements

WORD output variable

POU header:

Body with and without EN/ENO:

Description This function copies a variable of the special data type BOOL16 (an array with 16
elements of the data type BOOL or a DUT of 16 members of the data type
BOOL) at the input to the data type WORD at the output.

Data types

Conversion Instructions

FPWIN Pro Programming

102

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BOOLS_TO_WORD 16 Variables of the data type BOOL to
WORD

The inputs Bool0 to Bool15 need not be allocated in LD or FBD, or used explicitly
in the ST editor's formal list of parameters. Such unused inputs are assumed to
be FALSE. No program code is generated for these inputs (or for any input
allocated with the constants TRUE or FALSE). Program code is only generated
for inputs to which a variable is allocated.

PLC types: Availability of BOOLS_TO_WORD (see page 923)

Variable Data type Function
BOOL0 ...
BOOL15

BOOL 16 input variables of the data type BOOL

 WORD output variable

POU header:

Description This function converts 16 values of the data type BOOL bit-wise to a value of the
data type WORD.

Data types

FPWIN Pro Programming

Conversion Instructions

103

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body with and without EN/ENO:

Conversion Instructions

FPWIN Pro Programming

104

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DWORD_TO_WORD DOUBLE WORD in WORD

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DWORD_TO_WORD (see page 924)

 The first 16 bits of the input variable are assigned to the output variable.

Data type I/O Function
DWORD input input data type

WORD output conversion result

Description DWORD_TO_WORD converts a value of the data type DOUBLE WORD into a
value of the data type WORD.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body DWORD_value of the data type DOUBLE WORD (32-bit) is converted into a
value of the data type WORD (16-bit). The converted value is written into
WORD_value.

LD

ST WORD_value:=DWORD_TO_WORD(DWORD_value);

FPWIN Pro Programming

Conversion Instructions

105

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

INT_TO_WORD INTEGER into WORD

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of INT_TO_WORD (see page 933)

 The bit combination of the input variable is assigned to the output variable.

Data type I/O Function
INT input input data type

WORD output conversion result

Description INT_TO_WORD converts a value of the data type INT into a value of the data
type WORD.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body INT_value of the data type INTEGER is converted into a value of the data type
WORD. The result is written into WORD_value.

LD

ST WORD_value:=INT_TO_WORD(INT_value);

Conversion Instructions

FPWIN Pro Programming

106

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DINT_TO_WORD DOUBLE INTEGER into WORD

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DINT_TO_WORD (see page 924)

 The first 16 bits of the input variable are assigned to the output variable.

Data type I/O Function
DINT input input data type

WORD output conversion result

Description DINT_TO_WORD converts a value of the data type DINT into a value of the data
type WORD.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER (32-bit) is converted into a
value of the data type WORD (16-bit). The converted value is written into
WORD_value.

LD

ST WORD_value:=DINT_TO_WORD(DINT_value);

FPWIN Pro Programming

Conversion Instructions

107

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

TIME_TO_WORD TIME into WORD

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of TIME_TO_WORD (see page 935)

Data type I/O Function
TIME input input data type

WORD output conversion result

Examples: Input variable Output variable

 T#123.4s 1234

 T#1.00s 16#0064

Description TIME_TO_WORD converts a value of the data type TIME into a value of the data
type WORD.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body Time_value of the data type TIME is converted into a value of the data type
WORD. The result will be written into the output variable WORD_value.

LD

ST WORD_value:=TIME_TO_WORD(time_value);

Conversion Instructions

FPWIN Pro Programming

108

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

STRING_TO_WORD STRING (hexadecimal format) to WORD

Thereby the attached string is first converted to a value of the data type
STRING[32]. Finally this is converted to a value of the data type WORD via a
sub-program of approx. 270 steps that is also used in the functions
STRING_TO_INT, STRING_TO_WORD, STRING_TO_DINT and
STRING_TO_DWORD.

Example with and without EN/ENO:

Permissible format:

'[Space][Hexadecimal numbers][Space]' e.g. ' afFE '

Permissible characters:
Space All characters except for "+“ (plus), "-" (minus) and all hexadecimal numbers

Hexadecimal
numbers

Hexadecimal numbers in the ranges "0 - 9“, "A - F“ or "a - f“.

The analysis ends with the first non-hexadecimal number.

PLC types: Availability of STRING_TO_WORD (see page 935)

Data type Comment
STRING input variable

WORD output variable

Description This function converts a STRING in hexadecimal format to a value of the data
type WORD.

Data types

FPWIN Pro Programming

Conversion Instructions

109

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

STRING_TO_WORD
_STEPSAVER

STRING (Hexadecimal Format right-
justified) to WORD

Input Defined as Results in
'D' STRING[1] 16#D

'CD' STRING[2] 16#CD

'BCD' STRING[3] 16#BCD

'ABCD' STRING[4] 16#ABCD

'0ABCD' STRING[5] 16#ABCD

'00ABCD' STRING[6] 16#ABCD

The basic instruction F72_A2HEX (see page 602) is used. The PLC delivers an
operation error especially when a character appears that is not a hexadecimal
number “0 - 9" or "A-F”.

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Data type Comment
STRING Input variable

WORD Output variable

Acceptable Format for STRING[4]:

'Hex1Hex2Hex3Hex4' e.g. perhaps 'AFFE'

Acceptable characters:
Hex1 to Hex4 Hexadecimal numbers in the range "0 - 9“ or "A - F“ (not "a - f").

PLC types: Availability of STRING_TO_WORD_STEPSAVER (see page 935)

Description This function converts the string with the maximum possible number of
characters that are right aligned in hexadecimal format to a value of the data type
WORD.

Examples

Example

Data types

Conversion Instructions

FPWIN Pro Programming

110

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BOOL_TO_DWORD BOOL into DOUBLE WORD

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of BOOL_TO_DWORD (see page 923)

Data type I/O Function
BOOL input input data type

DWORD output conversion result

In this example the input variable (Boolean_value) has been declared. Instead,
you may enter a constant directly at the input contact of a function.

Description BOOL_TO_DWORD converts a value of the data type BOOL into a value of the
data type DWORD.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body The Boolean_value of the data type BOOL is converted into a value of the data
type DOUBLE INTEGER. The converted value is written into DWORD_value.

LD

ST IF Boolean_value THEN
 DWORD_value:=BOOL_TO_DWORD(Boolean_value);

END_IF;

FPWIN Pro Programming

Conversion Instructions

111

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BOOL32_TO_DWORD BOOL32 to DOUBLE WORD

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of BOOL32_TO_DWORD (see page 923)

Data type Comment
ARRAY (see page
20) of BOOL

ARRAY with 32 elements

DWORD output variable

POU header:

Body with and without EN/ENO:

Description This function copies a variable of the special data type BOOL32 (an array with 32
elements of the data type BOOL or a DUT of 32 members of the data type
BOOL) at the input to the data type DWORD at the output.

Data types

Conversion Instructions

FPWIN Pro Programming

112

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BOOLS_TO_DWORD 32 Variables of the data type BOOL to
DWORD

The inputs Bool0 to Bool31 need not be allocated in LD or FBD, or used explicitly
in the ST editor's formal list of parameters. Such unused inputs are assumed to
be FALSE. No program code is generated for these inputs (or for any input
allocated with the constants TRUE or FALSE). Program code is only generated
for inputs to which a variable is allocated.

PLC types: Availability of BOOLS_TO_DWORD (see page 923)

Variable Data type Function
BOOL0 ...
BOOL31

BOOL 32 input variables of the data type BOOL

 DWORD output variable

POU header:

etc. to Bool31

Description This function converts 32 values of the data type BOOL bit-wise to a value of the
data type DWORD.

Data types

FPWIN Pro Programming

Conversion Instructions

113

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body with and without EN/ENO:

Conversion Instructions

FPWIN Pro Programming

114

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

WORD_TO_DWORD WORD in DOUBLE WORD

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of WORD_TO_DWORD (see page 936)

 The bit combination of WORD_value is assigned to DWORD_value.

Data type I/O Function
WORD input input data type

DWORD output conversion result

Description WORD_TO_DWORD converts a value of the data type WORD into a value of the
data type DWORD.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body WORD_value of the data type WORD is converted into a value of the data type
DOUBLE WORD. The result will be written into DWORD_value.

LD

ST DWORD_value:=WORD_TO_DWORD(WORD_value);

FPWIN Pro Programming

Conversion Instructions

115

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

INT_TO_DWORD INTEGER into DOUBLE WORD

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of INT_TO_DWORD (see page 933)

Data type I/O Function
INT input input data type

DWORD output conversion result

Description INT_TO_DWORD converts a value of the data type INT into a value of the data
type DWORD.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body INT_value of the data type INTEGER is converted into a value of the data type
DOUBLE WORD (32-bit). The result is written into DWORD_value.

LD

ST DWORD_value:=INT_TO_DWORD(INT_value);

Conversion Instructions

FPWIN Pro Programming

116

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DINT_TO_DWORD DOUBLE INTEGER into DOUBLE WORD

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DINT_TO_DWORD (see page 924)

 The bit combination of the input variable is assigned to the output variable.

Data type I/O Function
DINT input input data type

DWORD output conversion result

Description DINT_TO_DWORD converts a value of the data type DINT into a value of the
data type DWORD.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER is converted into a value of the
data type DOUBLE WORD. The converted value is written into DWORD_value.

LD

ST DWORD_value:=DINT_TO_DWORD(DINT_value);

FPWIN Pro Programming

Conversion Instructions

117

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

TIME_TO_DWORD TIME into DOUBLE WORD

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of TIME_TO_DWORD (see page 935)

Data type I/O Function
TIME input input data type

DWORD output conversion result

Description TIME_TO_DWORD converts a value of the data type TIME into a value of the
data type DWORD. The time 10ms corresponds to the value 1, e.g. an input
value of T#1s is converted to the value 100 (16#64).

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

This example uses variables. You may also use a constant for the input variable.

Body time_value of the data type TIME is converted to value of the data type DWORD
and written into the output variable DWORD_value.

LD

ST DWORD_value:=TIME_TO_DWORD(time_value);

Conversion Instructions

FPWIN Pro Programming

118

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

STRING_TO_DWORD STRING (Hexadecimal Format) to DOUBLE
WORD

At first the string is converted to a value of the data type STRING[32]. Finally this
is converted to a value of the data type DWORD in a subprogram of
approximately 270 steps, which is also used by the functions STRING_TO_INT,
STRING_TO_WORD, STRING_TO_DINT and STRING_TO_DWORD.

See also: STRING_TO_DWORD_STEPSAVER

Example with and without EN/ENO:

Acceptable Format:

´[Space][Hexadecimal number][Space]´ e.g. perhaps ' afFE '

Acceptable characters:
Space Space “ “

Signs Plus "+“ and minus "-"

Hexadecimal
numbers

Hexadecimal numbers in the range "0 - 9“ or "A - F“ or "a - f".

The analysis ends with the first non-decimal number.

PLC types: Availability of STRING_TO_DWORD (see page 935)

Data type Comment
STRING Input variable

DWORD Output variable

Description This function converts a string in hexadecimal formal to a value of the data type
DWORD.

Data types

FPWIN Pro Programming

Conversion Instructions

119

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

STRING_TO_DWORD_
STEPSAVER

STRING (Hexadecimal Format right-justified)
to DOUBLE WORD

Examples:

Input Defined as Results in
 'FE' STRING[2] 16#FE

'EFFE' STRING[4] 16#EFFE

'CDEFFE' STRING[6] 16#CDEFFE

'ABCDEFFE' STRING[8] 16#ABCDEFFE

'00ABCDEFFE' STRING[10] 16#ABCDEFFE

The basic instruction F72_A2HEX (see page 602) is used. The PLC delivers an
operation error especially when a character appears that is not a hexadecimal
number “0 - 9" or "A - F”.

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Data type Comment
STRING Input variable

DWORD Output variable

Acceptable Format for STRING[8]:

'Hex1Hex2Hex3Hex4Hex5Hex6Hex7Hex8' e.g. perhaps '001AAFFE'

Acceptable characters:
Hex1 to Hex8 Hexadecimal numbers in the range "0 - 9“ or "A - F“ (not "a - f").

PLC types: Availability of STRING_TO_DWORD_STEPSAVER (see page 935)

Description This function converts the string with the maximum possible number of
characters that are right aligned in hexadecimal format to a value of the data type
DWORD.

Example

Data types

Conversion Instructions

FPWIN Pro Programming

120

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BOOL_TO_INT BOOL into INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of BOOL_TO_INT (see page 923)

Data type I/O Function
BOOL input input data type

INT output conversion result

In this example the input variable (Boolean_value) has been declared. Instead,
you may enter a constant directly at the input contact of a function.

Description BOOL_TO_INT converts a value of the data type BOOL into a value of the data
type INT.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body The Boolean_value of the data type BOOL is converted into a value of the data
type INTEGER. The converted value is written into INT_value.

LD

ST IF Boolean_value THEN
 INT_value:=BOOL_TO_INT(Boolean_value);
END_IF;

FPWIN Pro Programming

Conversion Instructions

121

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BOOL16_TO_INT BOOL16 to INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of BOOL16_TO_INT (see page 923)

Data type Comment
ARRAY (see page
20) of BOOL

ARRAY with 16 elements

INT output variable

POU header:

LD body with and without EN/ENO:

Description This function copies a variable of the special data type BOOL16 (an array with 16
elements of the data type BOOL or a DUT of 16 members of the data type
BOOL) at the input to the data type INT at the output.

Data types

Conversion Instructions

FPWIN Pro Programming

122

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BOOLS_TO_INT 16 Variables of the data type BOOL to INT

The inputs Bool0 to Bool15 need not be allocated in LD or FBD, or used explicitly
in the ST editor's formal list of parameters. Such unused inputs are assumed to
be FALSE. No program code is generated for these inputs (or for any input
allocated with the constants TRUE or FALSE). Program code is only generated
for inputs to which a variable is allocated.

PLC types: Availability of BOOLS_TO_INT (see page 923)

Variable Data type Function
BOOL0 ...
BOOL15

BOOL 16 input variables of the data type BOOL

 INT output variable

POU header:

Description This function converts 16 values of the data type BOOL bit-wise to a value of the
data type INT.

Data types

FPWIN Pro Programming

Conversion Instructions

123

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body with and without EN/ENO:

Conversion Instructions

FPWIN Pro Programming

124

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

WORD_TO_INT WORD in INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of WORD_TO_INT (see page 936)

 The bit combination of WORD_value is assigned to INT_value.

Data type I/O Function
WORD input input data type

INT output conversion result

Description WORD_TO_INT converts a value of the data type WORD into a value of the data
type INT.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body WORD_value of the data type WORD is converted into a value of the data type
INTEGER. The result will be written into INT_value.

LD

ST INT_value:=WORD_TO_INT(WORD_value);

FPWIN Pro Programming

Conversion Instructions

125

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BCD_TO_INT BCD into INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of BCD_TO_INT (see page 923)

Data type I/O Function
WORD input input data type

INT output conversion result

This example uses variables. You may also use a constant for the input variable.

BCD constants can be indicated in Control FPWIN Pro as follows:

2#0001100110010101 or
16#1995

Description BCD_TO_INT converts binary coded decimal numbers (BCD) into binary values
of the type INTEGER.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body BCD_value_16bit of the data type WORD is converted into an INTEGER value.
The converted value is written into output variable INT_value.

LD

ST INT_value:=BCD_TO_INT(BCD_value_16bit);

Conversion Instructions

FPWIN Pro Programming

126

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DWORD_TO_INT DOUBLE WORD in INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DWORD_TO_INT (see page 924)

 The first 16 bits of the input variable are assigned to the output variable.

Data type I/O Function
DWORD input input data type

INT output conversion result

Description DWORD_TO_INT converts a value of the data type DWORD into a value of the
data type INT.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

In this example the input variable (DWORD _value) has been declared. Instead,
you may enter a constant directly at the input contact of a function.

Body DWORD_value of the data type DOUBLE WORD (32-bit) is converted into an
INTEGER value (16-bit). The converted value is written into INT_value.

LD

ST INT_value:=DWORD_TO_INT(DWORD_value);

FPWIN Pro Programming

Conversion Instructions

127

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DINT_TO_INT DOUBLE INTEGER into INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DINT_TO_INT (see page 924)

 The value of the input variable should be between -32768 and 32767.

Data type I/O Function
DINT input input data type

INT output conversion result

Description DINT_TO_INT converts a value of the data type DINT into a value of the data
type INT.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER (32-bit) is converted into a
value of the data type INTEGER (16-bit). The converted value is written into
INT_value.

LD

ST INT_value:=DINT_TO_INT(DINT_value);

Conversion Instructions

FPWIN Pro Programming

128

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

REAL_TO_INT REAL into INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of REAL_TO_INT (see page 934)

Data type I/O Function
REAL input input data type

INT output conversion result

This example uses variables. You may also use a constant for the input variable.

Description REAL_TO_INT converts a value of the data type REAL into a value of the data
type INTEGER.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body REAL_value of the data type REAL is converted into a value of the data type
INTEGER. The converted value is stored in INT_value.

LD

ST INT_value:= REAL_TO_INT(REAL_value);

FPWIN Pro Programming

Conversion Instructions

129

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

TRUNC_TO_INT Truncate (cut off) decimal digits of REAL
input variable, convert to INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of TRUNC_TO_INT (see page 936)

 • Cutting off the decimal digits decreases a positive number towards
zero and increases a negative number towards zero.

• The first 16 bits of the input variable are assigned to the output
variable.

Data type I/O Function
REAL input input data type

INT output conversion result

No. IEC address Set If
R9007 %MX0.900.7 permanently - input variable does not have the data type

REAL
R9008 %MX0.900.8 for an instant - output variable is greater than a 16-bit

INTEGER
R9009 %MX0.900.9 for an instant - output variable is zero

Description TRUNC_TO_INT cuts off the decimal digits of a REAL number and delivers an
output variable of the data type INTEGER.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body The decimal digits of REAL_value are cut off. The result is stored as a 16-bit
INTEGER in INT_value.

LD

Conversion Instructions

FPWIN Pro Programming

130

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ST INT_value:=TRUNC_TO_INT(REAL_value);

FPWIN Pro Programming

Conversion Instructions

131

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

TIME_TO_INT TIME into INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of TIME_TO_INT (see page 935)

Data type I/O Function
TIME input input data type

INT output conversion result

Description TIME_TO_INT converts a value of the data type TIME into a value of the data
type INT.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body Time_value of the data type TIME is converted into a value of the data type
INTEGER. The result will be written into the output variable INT_value.

LD

ST INT_value:=TIME_TO_INT(time_value);

Conversion Instructions

FPWIN Pro Programming

132

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

STRING_TO_INT STRING (decimal format) to INTEGER

Thereby the attached string is first converted to a value of the data type
STRING[32]. Finally this is converted to a value of the data type INT via a sub-
programm of approx. 270 steps that is also used in the functions
STRING_TO_INT, STRING_TO_WORD, STRING_TO_DINT and
STRING_TO_DWORD.

Example with and without EN/ENO:

Permissible format:

'[Space][Sign][Decimal numbers][Space]' e.g. ' 123456 '

Permissible characters:
Space All characters except for "+“ (plus), "-" (minus) and all decimal numbers

Sign "+“ (plus), "-" (minus)

Decimal
numbers

Decimal numbers "0 - 9“

The analysis ends with the first non-decimal number.

PLC types: Availability of STRING_TO_INT (see page 935)

Data type Comment
STRING input variable

INT output variable

Description This function converts a STRING in decimal format to a value of the data type
INT.

Data types

FPWIN Pro Programming

Conversion Instructions

133

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

STRING_TO_INT_
STEPSAVER

STRING (Decimal Format right-justified) to
INTEGER

The basic instruction F76_A2BIN (see page 616) with approx. 7 steps is used.
The PLC delivers an operation error especially when a character appears that is
not a decimal number “0 - 9”, not a “+” or “-“ or not a space.

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Acceptable Format:

'[Space][Sign][Decimal number]' e.g. ' 123456'

Acceptable characters:
Space Space “ “

Signs Plus "+“ and minus "-"

Decimal Number Decimal numbers "0“ - "9“

PLC types: Availability of STRING_TO_INT_STEPSAVER (see page 935)

Data type Comment
STRING Input variable

INT Output variable

Description This function converts a right-justifed decimal number in a string to a value of the
data type INT.

Example

Data types

Conversion Instructions

FPWIN Pro Programming

134

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BOOL_TO_DINT BOOL into DOUBLE INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of BOOL_TO_DINT (see page 923)

Data type I/O Function
BOOL input input data type

DINT output conversion result

In this example the input variable (Boolean_value) has been declared. Instead,
you may enter a constant directly at the input contact of a function.

Description BOOL_TO_DINT converts a value of the data type BOOL into a value of the data
type DINT.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body The Boolean_value of the data type BOOL is converted into a DOUBLE
INTEGER value. The converted value is written into DINT_value.

LD

ST IF Boolean_value THEN
 DINT_value:=BOOL_TO_DINT(Boolean_value);
END_IF;

FPWIN Pro Programming

Conversion Instructions

135

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BOOL32_TO_DINT BOOL32 to DOUBLE INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of BOOL32_TO_DINT (see page 923)

Data type Comment
ARRAY (see page
20) of BOOL

ARRAY with 32 elements

DINT output variable

POU header:

Body with and without EN/ENO:

Description This function copies a variable of the special data type BOOL32 (an array
with 32 elements of the data type BOOL or a DUT of 32 members of the data
type BOOL) at the input to the data type DINT at the output.

Data types

Conversion Instructions

FPWIN Pro Programming

136

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BOOLS_TO_DINT 32 Variables of the data type BOOL to DINT

The inputs Bool0 to Bool31 need not be allocated in LD or FBD, or used explicitly
in the ST editor's formal list of parameters. Such unused inputs are assumed to
be FALSE. No program code is generated for these inputs (or for any input
allocated with the constants TRUE or FALSE). Program code is only generated
for inputs to which a variable is allocated.

PLC types: Availability of BOOLS_TO_DINT (see page 923)

Variable Data type Function
BOOL0 ...
BOOL31

BOOL 32 input variables of the data type BOOL

 DINT output variable

POU header:

etc. to Bool31

Description This function converts 32 values of the data type BOOL bit-wise to a value of the
data type DINT.

Data types

FPWIN Pro Programming

Conversion Instructions

137

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body:

Conversion Instructions

FPWIN Pro Programming

138

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

WORD_TO_DINT WORD in DOUBLE INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of WORD_TO_DINT (see page 936)

Data type I/O Function
WORD input input data type

DINT output conversion result

Description WORD_TO_DINT converts a value of the data type WORD into a value of the
data type DINT.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body WORD_value of the data type WORD is converted into a value of the data type
INTEGER. The result will be written into DINT_value.

LD

ST DINT_value:=WORD_TO_DINT(WORD_value);

FPWIN Pro Programming

Conversion Instructions

139

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BCD_TO_DINT BCD into DOUBLE INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of BCD_TO_DINT (see page 923)

Data type I/O Function
DWORD input input data type

DINT output conversion result

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

This example uses variables. You may also use a constant for the input variable.

BCD constants can be indicated in Panasonic MEW Control as follows:
2#00011001100101010001100110010101 or
16#19951995

Description BCD_TO_DINT converts a BCD value (binary coded decimal integer) of the data
type DOUBLE WORD into a binary value of the data type DOUBLE INTEGER in
order to be able to process a BCD value in the double word format.

Data types

Example

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body BCD_value_32bit of the data type DOUBLE WORD is converted into a DOUBLE
INTEGER value. The converted value is written into DINT_value.

LD

ST DINT_value:=BCD_TO_DINT(BCD_value_32bit);

Conversion Instructions

FPWIN Pro Programming

140

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DWORD_TO_DINT DOUBLE WORD in DOUBLE INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DWORD_TO_DINT (see page 924)

 The bit combination of the input variable is assigned to the output variable.

Data type I/O Function
DWORD input input data type

DINT output conversion result

Description DWORD_TO_DINT converts a value of the data type DOUBLE WORD into a
value of the data type DOUBLE INTEGER.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body DWORD_value of the data type DOUBLE WORD is converted into a DOUBLE
INTEGER value. The converted value is written into DINT_value.

LD

ST DINT_value:=DWORD_TO_DINT(DWORD_value);

FPWIN Pro Programming

Conversion Instructions

141

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

INT_TO_DINT INTEGER into DOUBLE INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of INT_TO_DINT (see page 933)

Data type I/O Function
INT input input data type

DINT output conversion result

Description INT_TO_DINT converts a value of the data type INT into a value of the data type
DINT.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body INT_value of the data type INTEGER is converted into a value of the data type
DOUBLE INTEGER. The result will be written into DINT_value.

LD

ST DINT_value:=INT_TO_DINT(INT_value);

Conversion Instructions

FPWIN Pro Programming

142

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

REAL_TO_DINT REAL into DOUBLE INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of REAL_TO_DINT (see page 934)

Data type I/O Function
REAL input input data type

DINT output conversion result

Description REAL_TO_DINT converts a value of the data type REAL into a value of the data
type DOUBLE INTEGER.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body REAL_value of the data type REAL is converted into a value of the data type
DOUBLE INTEGER. The converted value is stored in DINT_value.

LD

ST DINT_value:= REAL_TO_DINT(REAL_value);

FPWIN Pro Programming

Conversion Instructions

143

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

TRUNC_TO_DINT Truncate (cut off) decimal digits of REAL
input variable, convert to DOUBLE
INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of TRUNC_TO_DINT (see page 936)

 Cutting off the decimal digits decreases a positive number towards zero and
increases a negative number towards zero.

Data type I/O Function
REAL input input data type

DINT output conversion result

No. IEC address Set If
R9007 %MX0.900.7 permanently - input variable does not have the data type

REAL
R9008 %MX0.900.8 for an instant - output variable is greater than a 32-bit

DOUBLE INTEGER
R9009 %MX0.900.9 for an instant - output variable is zero

Description TRUNC_TO_DINT cuts off the decimal digits of a REAL number and delivers an
output variable of the data type DOUBLE INTEGER.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body The decimal digits of REAL_value are cut off. The result is stored as a 32-bit
DOUBLE INTEGER in DINT_value.

LD

ST DINT_value:=TRUNC_TO_DINT(REAL_value);

Conversion Instructions

FPWIN Pro Programming

144

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

TIME_TO_DINT TIME into DOUBLE INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of TIME_TO_DINT (see page 935)

Data type I/O Function
TIME input input data type

DINT output conversion result

Description TIME_TO_DINT converts a value of the data type TIME into a value of the data
type DINT. The time 10ms corresponds to the value 1, e.g. an input value of
T#1m0s is converted to the value 6000.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

This example uses variables. You may also use a constant for the input variable.

Body time_value of the data type TIME is converted to value of the data type
DOUBLE INTEGER. The result is written into the output variable DINT_value.

LD

ST DINT_value:=TIME_TO_DINT(time_value);

FPWIN Pro Programming

Conversion Instructions

145

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

STRING_TO_DINT STRING (Decimal Format) to DOUBLE
INTEGER

At first the string is converted to a value of the data type STRING[32]. Finally this
is converted to a value of the data type DINT in a subprogram of approximately
270 steps, which is also used by the functions STRING_TO_INT,
STRING_TO_WORD, STRING_TO_DINT and STRING_TO_DWORD.

Example with and without EN/ENO:

Acceptable Format:

'[Space][Sign][Decimal number][Space]' e.g. ' 123456 '

Acceptable characters:
Space Space “ “

Signs Plus “+” and minus “-“

Decimal
Numbers

Decimal numbers "0“ - "9“

The analysis ends with the first non-decimal number.

PLC types: Availability of STRING_TO_DINT (see page 935)

Data type Comment
STRING Input variable

DINT Output variable

Description This function converts a string in decimal formal to a value of the data type DINT.

Data types

Conversion Instructions

FPWIN Pro Programming

146

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

STRING_TO_DINT_
STEPSAVER

STRING (Decimal Format right-justified) to
DOUBLE INTEGER

The basic instruction F78_DA2BIN (see page 622) with approx. 11 steps is used.
The PLC delivers an operation error especially when a character appears that is
not a decimal number “0 - 9”, not a “+” or “-“ or not a space.

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Acceptable Format:

'[Space][Sign][Decimal number]' e.g. ' 123456'

Acceptable characters:
Space Space “ “

Signs Plus "+“ and minus "-"

Decimal
Numbers

Decimal numbers "0“ - "9“

PLC types: Availability of STRING_TO_DINT_STEPSAVER (see page 935)

Data type Comment
STRING Input variable

DINT Output variable

Description This function converts a right-justifed decimal number in a string to a value of the
data type DINT.

Example

Data types

FPWIN Pro Programming

Conversion Instructions

147

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

INT_TO_REAL INTEGER into REAL

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of INT_TO_REAL (see page 933)

Data type I/O Function
INT input input data type

REAL output conversion result

Description INT_TO_REAL converts a value of the data type INTEGER into a value of the
data type REAL.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

In this example the input variable (INT_value) has been declared. Instead, you
may enter a constant directly at the input contact of a function.

Body INT_value of the data type INTEGER is converted into a value of the data type
REAL.The converted value is stored in REAL_value.

LD

ST REAL_value:=INT_TO_REAL(INT_value);

Conversion Instructions

FPWIN Pro Programming

148

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DINT_TO_REAL DOUBLE INTEGER into REAL

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DINT_TO_REAL (see page 924)

Data type I/O Function
DINT input input data type

REAL output conversion result

Description DINT_TO_REAL converts a value of the data type DOUBLE INTEGER into a
value of the data type REAL.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable

Body DINT_value of the data type DOUBLE INTEGER is converted into a value of the
data type REAL. The converted value is stored in REAL_value.

LD

ST REAL_value:=DINT_TO_REAL(DINT_value);

FPWIN Pro Programming

Conversion Instructions

149

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

TIME_TO_REAL TIME into REAL

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of TIME_TO_REAL (see page 935)

Data type I/O Function
TIME input input data type

REAL output conversion result

Description TIME_TO_REAL converts a value of the data type TIME to a value of the data
type REAL. 10ms of the data type TIME correspond to 1.0 REAL unit, e.g. when
TIME = 10ms, REAL = 1.0; when TIME = 1s, REAL = 100.0. The resolution
amounts to 10ms.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

LD

ST result_real:=TIME_TO_REAL(input_time);

Conversion Instructions

FPWIN Pro Programming

150

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

STRING_TO_REAL STRING to REAL

Thereby the attached string is first converted to a value of the data type
STRING[32]. Finally this is converted to a value of the data type REAL via a sub-
program that requires approximately 290 steps.

Example with and without EN/ENO:

Permissible format:

'[Space][Sign][Decimal numbers].[Decimal numbers][Space]' e.g. ' -123.456 '

Permissible characters:
Space All characters except for "+“ (plus), "-" (minus) and all decimal numbers

Decimal
numbers

Decimal numbers "0“-"9“

The analysis ends with the first non-decimal number.

PLC types: Availability of STRING_TO_REAL (see page 935)

Data type Comment
STRING input variable

REAL output variable

Description function converts a STRING in floating-point format into a value of the data type
REAL.

Data types

FPWIN Pro Programming

Conversion Instructions

151

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

WORD_TO_TIME WORD in TIME

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of WORD_TO_TIME (see page 936)

Data type I/O Function
WORD input input data type

TIME output conversion result

Examples: Input variable Output variable

 12345 T#123.45s

 16#0012 T#180.00ms

Description WORD_TO_TIME converts a value of the data type WORD into a value of the
data type TIME.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body WORD_value of the data type WORD (16-bit) is converted into a value of the
data type TIME (16-bit). The result will be written into the output variable
time_value.

LD

ST time_value:=WORD_TO_TIME(WORD_value);

Conversion Instructions

FPWIN Pro Programming

152

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DWORD_TO_TIME DOUBLE WORD in TIME

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DWORD_TO_TIME (see page 924)

Data type I/O Function
DWORD input input data type

TIME output conversion result

Description DWORD_TO_TIME converts a value of the data type DWORD into a value of the
data type TIME. A value of 1 corresponds to a time of 10ms, e.g. the input value
12345 (16#3039) is converted to a TIME T#2m3s450.00ms.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

This example uses variables. You may also use a constant for the input variable.

Body DWORD_value of the data type DWORD (32-bit) is converted to value of the
data type TIME (16-bit). The result is written into the output variable time_value.

LD

ST time_value:=DWORD_TO_TIME(DWORD_value);

FPWIN Pro Programming

Conversion Instructions

153

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

INT_TO_TIME INTEGER into TIME

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of INT_TO_TIME (see page 933)

Data type I/O Function
INT input input data type

TIME output conversion result

Description INT_TO_TIME converts a value of the data type INT into a value of the data type
TIME. The resolution is 10ms, e.g. when the INT value = 350, the TIME value =
3s500ms.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body INT_value of the data type INTEGER is converted into a value of the data type
TIME. The result will be written into the output variable time_value.

LD

ST time_value:=INT_TO_TIME(INT_value);

Conversion Instructions

FPWIN Pro Programming

154

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DINT_TO_TIME DOUBLE INTEGER into TIME

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DINT_TO_TIME (see page 924)

Data type I/O Function
DINT input input data type

TIME output conversion result

Description DINT_TO_TIME converts a value of the data type DINT into a value of the data
type TIME. A value of 1 corresponds to a time of 10ms, e.g. an input value of 123
is converted to a TIME T#1s230.00ms.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

This example uses variables. You may also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER is converted to value of the
data type TIME. The result is written into the output variable time_value.

LD

ST time_value:=DINT_TO_TIME(DINT_value);

FPWIN Pro Programming

Conversion Instructions

155

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

REAL_TO_TIME REAL into TIME

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of REAL_TO_TIME (see page 934)

Data type I/O Function
REAL input input data type

TIME output conversion result

Description REAL_TO_TIME converts a value of the data type REAL to a value of the data
time TIME. 10ms of the data type TIME correspond to 1.0 REAL unit, e.g. when
REAL = 1.0, TIME = 10ms; when REAL = 100.0, TIME = 1s. The value of the
data type real is rounded off to the nearest whole number for the conversion.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list). Since
constants are entered directly at the function's input contact pins, only the output
variable need be declared in the header.

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body
By clicking on the monitor icon while in the online mode, you can see the
result 0.00ms immediately. Since the value at the REAL input contact is less than
0.5, it is rounded down to 0.0.

LD

ST result_time:= REAL_TO_TIME(0.499);

Conversion Instructions

FPWIN Pro Programming

156

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

BOOL_TO_STRING BOOL into STRING

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of BOOL_TO_STRING (see page 923)

Data type I/O Function
BOOL input input data type

STRING output conversion result

The input variable input_value of the data type BOOL is intialized by the value
TRUE. The output variable result_string is of the data type STRING[2]. It can
store a maximum of two characters. You can declare a character string that has
more than one character, e.g. STRING[5]. From the 5 characters reserved, only
2 are used.
Instead of using the variable input_value, you can write the constants TRUE or
FALSE directly to the function’s input contact in the body.

Description The function BOOL_TO_STRING converts a value of the data type BOOL to a
value of the data type STRING[2]. The resulting string is represented by ' 0' or '
1'.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, input and output variables are declared that are used in the
function.

Body The input_value of the data type BOOL is converted into STRING[2]. The
converted value is written to result_string. When the variable input_value =
TRUE, result_string shows ' 1'.

LD

FPWIN Pro Programming

Conversion Instructions

157

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

In this example, both an input variable input_value of the data type BOOL and
an output variable result_string of the data type STRING[5] are declared.

ST IF Boolean_value THEN
 output_value:=BOOL_TO_STRING(input_value);

END_IF;

Example 2: If you wish to have the result 'TRUE' or 'FALSE' instead of ' 0' or ' 1', you cannot
use the function BOOL_TO_STRING. This example illustrates how you create a
STRING[5] that contains the characters 'TRUE' or 'FALSE' from an input value of
the data type BOOL.
The example is programmed in LD and IL. The same POU header is used for
both programming languages.

POU
header

Body In order to realize the intended operation, the standard function E_MOVE is
used. It assigns the value of its input to its output unchanged. At the input, the
STRING constant 'TRUE' or 'FALSE' is attached. In essence a "BOOL to
STRING" conversion occurs, since the Boolian variable input_variable at the
enable input (EN) contact decides the output of STRING.

LD

Conversion Instructions

FPWIN Pro Programming

158

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

WORD_TO_STRING WORD into STRING

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Input Output defined as Results in
STRING[1] 'D'

STRING[2] 'CD'

STRING[3] 'BCD'

STRING[4] 'ABCD'

STRING[5] '0ABCD'

STRING[6] '00ABCD'

16#ABCD

and so on...

PLC types: Availability of WORD_TO_STRING (see page 936)

Data type I/O Function
WORD input input data type

STRING output conversion result

Description

The function WORD_TO_STRING converts a value of the data type WORD to a
value of the data type STRING. It generates a result string in hexadecimal
representation that is right aligned. It is filled with leading zeros up to the
maximum number of characters defined for the string.

Explanation

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, input and output variables are declared that are used in the
function.

The input variable input_value of the data type WORD is intialized by the value
16#ABCD. The output variable result_string is of the data type STRING[6]. It
can store a maximum of 6 characters. Instead of using the variable input_value,
you can enter a constant directly at the function’s input contact in the body.

FPWIN Pro Programming

Conversion Instructions

159

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body The input_value of the data type WORD is converted into STRING[6]. The
converted value is written to result_string. When the variable input_value =
16#ABCD, result_string shows '00ABCD'.

LD

ST restult_string:=WORD_TO_STRING(input_value);

Example 2: This example illustrates how you create STRING[4] out of the data type WORD

in which the leading part of the string '16#' is cut out.
The example is programmed in LD and IL. The same POU header is used for
both programming languages.

POU
Header

In this example, both an input variable input_value of the data type WORD and
an output variable result_string of the data type STRING[4] are declared.

Body In carrying out the operation in question, the standard function RIGHT is attached
to the function WORD_TO_STRING. RIGHT creates a right-justified character
string of length L.
In the example, the output string of WORD_TO_STRING function is added at the
input of the RIGHT function. At the L input of RIGHT, the INT constant 4
determines the length of the STRING to be replaced. Out of the variable
input_value = 16#1234, the result_string 1234 results from the data type
conversion and the RIGHT function.

LD

Conversion Instructions

FPWIN Pro Programming

160

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DWORD_TO_STRING DOUBLE WORD into STRING

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Input Output defined as Results in
STRING[2] 'FE'

STRING[4] 'EFFE'

STRING[6] 'CDEFFE'

STRING[8] 'ABCDEFFE'

STRING[10] '00ABCDEFFE'

STRING[12] '0000ABCDEFFE'

16#ABCDEFFE

and so on...

PLC types: Availability of DWORD_TO_STRING (see page 924)

Data type I/O Function
DWORD input input data type

STRING output conversion result

Description The function DWORD_TO_STRING converts a value of the data type DWORD to
a value of the data type STRING. It generates a result string in hexadecimal
representation that is right aligned. It is filled with leading zeros up to the
maximum number of characters defined for the string.

Explanation

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, input and output variables are declared that are used in the
function.

The input variable input_value of the data type DWORD is intialized by the value
16#ABCDEFFE. The output variable result_string is of the data type
STRING[10]. It can store a maximum of 10 characters. Instead of using the
variable input_value, you can
enter a constant directly at the function’s input contact in the body.

FPWIN Pro Programming

Conversion Instructions

161

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body The input_value of the data type DWORD is converted into STRING[10]. The
converted value is written to result_string. When the variable input_value =
16#ABCDEFFE, result_string shows '00ABCDEFFE'.

LD

ST result_string:=DWORD_TO_STRING(input_value);

Example 2: This example illustrates how you create STRING[10] out of the data type
DWORD in which the leading part of the string '16#' is replaced by the string '0x'.
The example is programmed in LD and IL. The same POU header is used for
both programming languages.

POU
Header

In this example the input variables input_value of the data type DWORD and an
output variable result_string of the data type STRING[10] are declared.

Body In carrying out the operation in question, the standard function REPLACE is
attached to the function DWORD_TO_STRING. REPLACE replaces one section
of a character string with another.
In the example, the output string of DWORD_TO_STRING function is added at
input IN1 of the REPLACE function. At input IN2, the STRING constant '0x' is
added as the replacement STRING. At the L input of REPLACE, the INT
constant 3 determines the length of the STRING to be replaced. The P input
determines the position at which the replacement begins. In this case it is the INT
number 1. From the variable input_value = 16#12345678, the result_string =
'0x12345678' results after undergoing the data type conversion and REPLACE
function.

LD

Conversion Instructions

FPWIN Pro Programming

162

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

INT_TO_STRING INTEGER into STRING

Function used String1
defined as

Result

STRING[1] '5'

STRING[2] '45'

STRING[3] '345'

STRING[4] '2345'

STRING[5] '12345'

STRING[6] '-12345'

STRING[7] ' -12345'

STRING[8] ' -12345'

String1:=INT_TO_STRING(-12345)

and so on...

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of INT_TO_STRING (see page 933)

Data type I/O Function
INT input input data type

STRING output conversion result

Description The function INT_TO_STRING converts a value of the data type INT to a value
of the data type STRING. It generates a result string in decimal representation
that is right aligned. It is filled with leading spaces up to the maximum number of
characters defined for the string.

Explanation

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, input and output variables are declared that are used in the
function.

The input variable input_value of the data type INT is intialized by the value -
12345. The output variable result_string is of the data type STRING[8]. It can
store a maximum of 8 characters. Instead of using the variable input_value, you
can enter a constant directly at the function’s input contact in the body.

FPWIN Pro Programming

Conversion Instructions

163

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body The input_value of the data type INT is converted into STRING[8]. The
converted value is written to result_string. When the variable input_value = -
12345, result_string shows ' -12345'.

LD

ST result_string:= INT_TO_STRING(input_value);

Example 2: This example illustrates how you create a STRING[2] that appears right justified
out of the data type INT.
The example is programmed in LD, ST and IL. The same POU header is used for
both programming languages.

POU
Header

In this example, both an input variable input_value of the data type INT and an
output variable result_string of the data type STRING[2] are declared.

Body In carrying out the operation in question, the standard function RIGHT (see page
208) is attached to the function INT_TO_STRING. RIGHT creates a right-justified
character string with the length L.
In the example, the variable input_variable = 12 is converted by
INT_TO_STRING to the dummy string ' 12'. The function RIGHT then creates
the result_string '12'.

LD

ST result_string:=RIGHT(IN:=INT_TO_STRING(input_value), L:=2);

Conversion Instructions

FPWIN Pro Programming

164

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

INT_TO_STRING_
LEADING_ZEROS INTEGER into STRING

Data type I/O Function
INT input input data type

STRING output conversion result

Function used String1
defined as

Result

STRING[1] '5'

STRING[2] '25'

STRING[3] '025'

STRING[4] '0025'

STRING[5] '00025'

STRING[6] '000025'

STRING[7] '0000025'

STRING[8] '00000025'

String1:=INT_TO_STRING(25)

and so on...

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of INT_TO_STRING_LEADING_ZEROS (see page 933)

Description The function INT_TO_STRING_LEADING_ZEROS converts a value of the data
type INT (positive values) to a value of the data type STRING. It generates a
result string in decimal representation that is right aligned. It is filled with leading
zeros up to the maximum number of characters defined for the string.

Example:

Data types

Explanation

FPWIN Pro Programming

Conversion Instructions

165

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DINT_TO_STRING DOUBLE INTEGER into STRING

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Function used String1
defined as

Result

STRING[2] '78'

STRING[4] '5678'

STRING[6] '345678'

STRING[8] '12345678'

STRING[10] ' -12345678'

STRING[12] ' -12345678'

String1:=DINT_TO_STRING(-12345678)

and so on...

PLC types: Availability of DINT_TO_STRING (see page 924)

Data type I/O Function
DINT input input data type

STRING output conversion result

Description The function DINT_TO_STRING converts a value of the data type DINT to a
value of the data type STRING. It generates a result string in decimal
representation that is right aligned. It is filled with leading spaces up to the
maximum number of characters defined for the string.

Explanation

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, input and output variables are declared that are used in the
function.

The input variable input_value of the data type DINT is intialized by the value
12345678. The output variable result_string is of the data type STRING[11]. It
can store a maximum of 11 characters. Instead of using the variable
input_value, you can enter a constant directly at the function’s input contact in
the body.

Conversion Instructions

FPWIN Pro Programming

166

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body The input_value of the data type DINT is converted into STRING[11]. The
converted value is written to result_string. When the variable input_value =
12345678, result_string shows ' 12345678'.

LD

ST result_string:=DINT_TO_STRING(input_value);

Example 2: This example illustrates how you create, from an input value of the data type
DINT, a STRING[14] that contains a DINT number representation with commas
after every three significant figures.
The example is programmed in LD and IL. The same POU header is used for
both programming languages.

POU
Header

In this example, both an input variable input_value of the data type DINT and an
output variable result_string of the data type STRING[14] are declared.

Body In carrying out the operation in question, three standard functions INSERT are
attached successively to the function DINT_TO_STRING. Each INSERT function
inserts the attached character string at input IN2 into the character string at input
IN1. The position at which the character string is to be introduced is determined
by INT value at input P.
In the example all three INSERT functions insert the assigned STRING constant
',' after each three significant figures at input IN2. The correct position of each
comma is determined by an INT constant at each respective P input. Out of the
variable input_value = 1234567890, the result_string 1,234,567,890 results
from the data type conversion and the three INSERT functions.

LD

FPWIN Pro Programming

Conversion Instructions

167

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DINT_TO_STRING_
LEADING_ZEROS DOUBLE INTEGER into STRING

Function used String1
defined as

Result

STRING[2] '78'

STRING[4] '5678'

STRING[6] '345678'

STRING[8] '12345678'

STRING[10] '0012345678'

STRING[12] '000012345678'

String1:=DINT_TO_STRING(12345678)

and so on...

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DINT_TO_STRING_LEADING_ZEROS (see page 924)

Data type I/O Function
DINT input input data type

STRING output conversion result

Description This function converts a value of the data type DINT (positive value) to a value of
the data type STRING. It generates a result string in decimal representation that
is right aligned. It is filled with leading zeros up to the maximum number of
characters defined for the string.

Example

Explanation

Data types

Conversion Instructions

FPWIN Pro Programming

168

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

REAL_TO_STRING REAL into STRING

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

 The function requires approximately 160 steps of program memory. For repeated
use you should integrate it into a user function that is only stored once in the
memory.

PLC types: Availability of REAL_TO_STRING (see page 934)

Data type I/O Function
REAL input input data type

STRING output conversion result

Description The function REAL_TO_STRING converts a value from the data type REAL into
a value of the data type STRING[15], which has 7 spaces both before and after
the decimal point. The resulting string is right justified within the range '-
999999.0000000' to '9999999.0000000'. The plus sign is omitted in the positive
range. Leading zeros are filled with empty spaces (e.g. out of -12.0 the STRING
' -12.0').

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, input and output variables are declared that are used in the
function.

The input variable input_value of the data type REAL is intialized by the value -
123.4560166. The output variable result_string is of the data type STRING[15].
It can store a maximum of 15 characters. Instead of using the variable
input_value, you can enter a constant directly at the function’s input contact in
the body.

Body The input_value of the data type REAL is converted into STRING[15]. The
converted value is written to result_string. When the variable input_value =
123.4560166, result_string shows ' -123.4560165'.

LD

FPWIN Pro Programming

Conversion Instructions

169

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Example 2: This example illustrates how you create a STRING[7] with 4 positions before and
2 positions after the decimal point out of the data type REAL.
The example is programmed in LD and IL. The same POU header is used for
both programming languages.

POU
Header

In this example, both an input variable input_value of the data type REAL and
an output variable result_string of the data type STRING[7] are declared.

 Body In carrying out the operation in question, the standard function MID is attached to
the function REAL_TO_STRING. MID creates a central sector in the character
string from position P (INT value) with L (INT value) characters.
In the example, the INT constant 7 is entered at the L input of MID, which
determines the length of the result string. The INT constant 4 at input P
determines the position at which the central sector begins. Out of the variable
input_value = -123.4560166, the STRING ' -123.4560166' results from the data
type conversion. The MID function cuts off the STRING at position 4 and yields
the result_string '-123.45'.

LD

Conversion Instructions

FPWIN Pro Programming

170

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

TIME_TO_STRING TIME into STRING

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

 When using the data type STRING with small PLCs like FP1 or FP-M, make
sure that the length of the result string is equal to or greater than the length of
the source string.

PLC types: Availability of TIME_TO_STRING (see page 935)

Data type I/O Function
TIME input input data type

STRING output conversion result

Description The function TIME_TO_STRING converts a value of the data type TIME to a
value of the data type STRING[20]. In accordance with IEC-1131, the result
string is displayed with a short time prefix and without underlines. Possible
values for the result string’s range are from 'T#000d00h00m00s000ms' to
'T#248d13h13m56s470ms'.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, input and output variables are declared that are used in the
function.

The input variable input_value of the data type TIME is intialized by the value
T#1h30m45s. The output variable result_string is of the data type STRING[20].
It can store a maximum of 20 characters. Instead of using the variable
input_value, you can enter a constant directly at the function’s input contact in
the body.

Body The input_value of the data type TIME is converted into STRING[20]. The
converted value is written to result_string. When the variable input_value =
T#1h30m45s, result_string shows 'T#000d01h30m45s000ms'.

LD

FPWIN Pro Programming

Conversion Instructions

171

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ST result_string:=TIME_TO_STRING(input_value);

IL

Example 2: This example shows how, from an input value of the data type TIME, a TIME
STRING[9] with the format 'xxhxxmxxs' is created (only hours, minutes and
seconds are output).
The example is programmed in LD and IL. The same POU header is used for
both programming languages.

POU
Header

In this example, both an input variable input_value of the data type TIME and an
output variable result_string of the data type STRING[9] are declared.

Body In carrying out the operation in question, the standard function MID is attached to
the function TIME_TO_STRING. MID creates a central sector in the character
string from position P (INT value) with L (INT value) characters.
In the example, the INT constant 9 is entered at the L input of MID, which
determines the length of the result string. The INT constant 7 at input P
determines the position at which the central sector begins. Out of the variable
input_value = T#1h30m45s, the STRING 'T#000d01h30m45s000ms' results
from the data type conversion. The MID function cuts off the STRING at position
7 and yields the result_string '01h30m45s'.

LD

Conversion Instructions

FPWIN Pro Programming

172

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

IPADDR_TO_STRING IP Address to STRING

Permissible format:

'Octet1.Octet2.Octet3.Octet4', e.g.: '192.168.206.004'

Permissible characters:
Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, without leading zeros in the

range 0-255

The conversion is such that the highest byte of the ET-LAN address represents
the fourth octet and lowest byte of the IP address the first octet. The format of the
IP address corresponds to the standard format as used in "Standard Socket
Application Interfaces", for example.

Description This function converts a binary IP address of the data type DWORD into a
STRING in IP address format.

Example

FPWIN Pro Programming

Conversion Instructions

173

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

IPADDR_TO_STRING_
NO_LEADING_ZEROS IP Address to STRING

Permissible format:

'Octet1.Octet2.Octet3.Octet4', e.g.: '192.168.206.4'

Permissible characters:
Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, without leading zeros in the

range 0-255

The conversion is such that the highest byte of the ET-LAN address represents
the fourth octet and lowest byte of the IP address the first octet. The format of the
IP address corresponds to the standard format as used in "Standard Socket
Application Interfaces", for example.

Description This function converts a binary IP address of the data type DWORD into a
STRING in IP address format.

Example

Conversion Instructions

FPWIN Pro Programming

174

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ETLANADDR_TO_STRING ETLAN Address to STRING

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Permissible format:

'Octet1.Octet2.Octet3.Octet4', e.g.: '192.168.206.004'

Permissible characters:
Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, with leading zeros in the

range 0-255

The conversion is such that the highest byte of the ET-LAN address represents
the first octet and lowest byte of the IP address the fourth octet. This format for
ET-LAN addresses is used, for example, by the FP Serie's ET-LAN modules.

Description This function converts a binary ETLAN address of the data type DWORD into a
STRING in ETLAN address format.

Example

FPWIN Pro Programming

Conversion Instructions

175

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ETLANADDR_TO_STRING_
NO_LEADING_ZEROS ETLAN Address to STRING

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Permissible format:

'Octet1.Octet2.Octet3.Octet4', e.g.: '192.168.206.4'

Permissible characters:
Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, without leading zeros in the

range 0-255

The conversion is such that the highest byte of the ET-LAN address represents
the first octet and lowest byte of the IP address the fourth octet. This format for
ET-LAN addresses is used, for example, by the FP Serie's ET-LAN modules.

Description This function converts a binary ETLAN address of the data type DWORD into a
STRING in ETLAN address format.

Example

Conversion Instructions

FPWIN Pro Programming

176

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

WORD_TO_BOOL16 WORD to BOOL16

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of WORD_TO_BOOL16 (see page 936)

Data type Comment
WORD input variable

ARRAY of BOOL ARRAY with 16 elements

POU header:

Body with and without EN/ENO:

Description This function copies data of the data type WORD at the input to an array with 16
elements of the data type BOOL at the output.

Data types

FPWIN Pro Programming

Conversion Instructions

177

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

INT_TO_BOOL16 INTEGER to BOOL16

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of INT_TO_BOOL16 (see page 932)

Data type Comment
INT input variable

ARRAY of BOOL ARRAY with 16 elements

POU header:

Body with and without EN/ENO:

Description This function copies data of the data type INT at the input to an array with 16
elements of the data type BOOL at the output.

Data types

Conversion Instructions

FPWIN Pro Programming

178

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DWORD_TO_BOOL32 DOUBLE WORD to BOOL32

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DWORD_TO_BOOL32 (see page 924)

Data type Comment
DWORD input variable

ARRAY of BOOL ARRAY with 32 elements

POU header:

Body with and without EN/ENO:

Description This function copies data of the data type DWORD at the input to an array with
32 elements of the data type BOOL at the output.

Data types

FPWIN Pro Programming

Conversion Instructions

179

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DINT_TO_BOOL32 DOUBLE INTEGER to BOOL32

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DINT_TO_BOOL32 (see page 924)

Data type Comment
DINT input variable

ARRAY of BOOL ARRAY with 32 elements

POU header:

Body with and without EN/ENO:

Description This function copies data of the data type DINT at the input to an array with 32
elements of the data type BOOL at the output.

Data types

Conversion Instructions

FPWIN Pro Programming

180

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

WORD_TO_BOOLS WORD to 16 variables of the data type
BOOL

The outputs Bool0 to Bool15 need not be allocated in LD or FBD, or used
explicitly in the ST editor's formal list of parameters. Program code is only
generated for those outputs that are truly used.

PLC types: Availability of WORD_TO_BOOLS (see page 936)

Variable Data type Function
In WORD input variable

BOOL0 ...
BOOL15

BOOL 16 output variables of the data type BOOL

Description This function converts a value of the data type WORD bit-wise to 16 values of the
data type BOOL.

Data types

POU header:

Body:

FPWIN Pro Programming

Conversion Instructions

181

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DWORD_TO_BOOLS DOUBLE WORD to 32 variables of the
data type BOOL

The outputs Bool0 to Bool31 need not be allocated in LD or FBD, or used
explicitly in the ST editor's formal list of parameters. Program code is only
generated for those outputs that are truly used.

PLC types: Availability of DWORD_TO_BOOLS (see page 924)

Variable Data type Function
In DWORD input variable

BOOL0 ...
BOOL31

BOOL 32 output variables of the data type BOOL

POU header:

etc. to Bool31

Description This function converts a values of the data type DWORD bit-wise to 32 values of
the data type BOOL.

Data types

Conversion Instructions

FPWIN Pro Programming

182

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body:

FPWIN Pro Programming

Conversion Instructions

183

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

INT_TO_BOOLS INTEGER to 16 variables of the data type
BOOL

The outputs Bool0 to Bool15 need not be allocated in LD or FBD, or used
explicitly in the ST editor's formal list of parameters. Program code is only
generated for those outputs that are truly used.

PLC types: Availability of INT_TO_BOOLS (see page 932)

Variable Data type Function
In INT input variable

BOOL0 ...
BOOL15

BOOL 16 output variables of the data type BOOL

Description This function converts a value of the data type INT bit-wise to 16 values of the
data type BOOL.

Data types

POU header:

Body:

Conversion Instructions

FPWIN Pro Programming

184

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DINT_TO_BOOLS DOUBLE INTEGER to 32 variables of the
data type BOOL

The outputs Bool0 to Bool31 need not be allocated in LD or FBD, or used
explicitly in the ST editor's formal list of parameters. Program code is only
generated for those outputs that are truly used.

PLC types: Availability of DINT_TO_BOOLS (see page 924)

Variable Data type Function
In DINT input variable

BOOL0 ...
BOOL31

BOOL 32 output variables of the data type BOOL

POU header:

etc. to Bool31

Description This function converts a value of the data type INT bit-wise to 32 values of the
data type BOOL.

Data types

FPWIN Pro Programming

Conversion Instructions

185

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body:

Conversion Instructions

FPWIN Pro Programming

186

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

INT_TO_BCD INTEGER into BCD

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of INT_TO_BCD (see page 932)

 Since the output variable is of the type WORD and 16 bits wide, the value of the
input variable should have a maximum of 4 decimal places and should thus be
located between 0 and 9999.

Data type I/O Function
INT input input data type

WORD output conversion result

Description INT_TO_BCD converts a binary value of the data type INTEGER into a BCD
value (binary coded decimal integer) of the type WORD in order to be able to
output BCD values in word format.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body INT_value of the data type INTEGER is converted into a BCD value of the data
type WORD. The converted value is written into BCD_value_16bit.

LD

ST BCD_value_16bit:=INT_TO_BCD(INT_value);

FPWIN Pro Programming

Conversion Instructions

187

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DINT_TO_BCD DOUBLE INTEGER into BCD

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DINT_TO_BCD (see page 924)

 The value for the input variable should be between 0 and 999 999 99.

Data type I/O Function
DINT input input data type

DWORD output conversion result

Description DINT_TO_BCD converts a value of the data type DINT into a BCD value of the
data type DWORD.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

This example uses variables. You may also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER is converted into a BCD value
of the data type DOUBLE WORD. The converted value is written into
BCD_value_32bit.

LD

ST BCD_value_32bit:=DINT_TO_BCD(DINT_value);

Conversion Instructions

FPWIN Pro Programming

188

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

STRING_TO_IPADDR STRING to IP Address

Thereby the attached string is first converted to a value of the data type
STRING[32]. Finally this is converted to a value of the data type DWORD via a
sub-programm of approx. 330 steps that is also used in the functions
STRING_TO_IPADDR and STRING_TO_ETLANADDR.

See also: STRING_TO_IPADDR_STEPSAVER (see page 189)

Permissible format:

´[Space]Octet1.Octet2.Octet3.Octet4[Space]´, e.g.: ´ [192.168.206.4] ´

Permissible characters:
Space All characters except for decimal numbers

Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, with or without leading zeros
in the range 0-255

PLC types: Availability of STRING_TO_IPADDR (see page 935)

 • The analysis ends with the first non-decimal number after the 4th octet
or in case of a format error.

• If the format is wrong the result is 0.

• The conversion is such that the first octet represents the lowest byte
of the IP address and the fourth octet the highest byte of the ET-LAN
address. The format corresponds to the standard format as used in
"Standard Socket Application Interfaces", for example.

Data type Comment
STRING input variable

DWORD output variable

Description This function converts a STRING in IP address format into a value of the data
type DWORD.

Example:

Data types

FPWIN Pro Programming

Conversion Instructions

189

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

STRING_TO_IPADDR
_STEPSAVER

STRING (IP-Address Format
00a.0bb.0cc.ddd) to DWORD

The function uses for approx. 50 steps of generated code the basic instruction
F76_A2BIN. The instruction expects that each octet consists of three characters
with leading zeros. Otherwise the PLC delivers an operation error.

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Example:

Permissible format:

´Octet1.Octet2.Octet3.Octet4[Space]´, e.g.: ´ [192.168.206.4] ´

Permissible characters:
Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, with or without leading zeros

in the range 0-255

PLC types: Availability of STRING_TO_IPADDR_STEPSAVER (see page 935)

 • If the format is wrong the result is 0.

• The conversion is such that the first octet represents the lowest byte
of the IP address and the fourth octet the highest byte of the ET-LAN
address. The format corresponds to the standard format as used in
"Standard Socket Application Interfaces", for example.

Data type Comment
STRING input variable

DWORD output variable

Description This function converts a STRING in IP address format into a value of the data
type DWORD.

Data types

Conversion Instructions

FPWIN Pro Programming

190

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

STRING_TO_ETLAN
ADDR STRING to ETLAN Address

Thereby the attached string is first converted to a value of the data type
STRING[32]. Finally this is converted to a value of the data type DWORD via a
sub-programm of approx. 330 steps that is also used in the functions
STRING_TO_IPADDR and STRING_TO_ETLANADDR.

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Permissible format:
´[Space]Octet1.Octet2.Octet3.Octet4[Space]´, e.g.: ´ [192.168.206.4] ´

Permissible characters:
Space All characters except for decimal numbers

Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, with or without leading zeros
in the range 0-255

 • The analysis ends with the first non-decimal number after the 4th octet
or in case of a format error.

• If the format is wrong the result is 0.

• The conversion is such that the highest byte of the ET-LAN address
represents the first octet and lowest byte of the IP address the fourth
octet. This format for ET-LAN addresses is used, for example, by the
FP Serie's ET-LAN modules.

Description This function converts a STRING in IP address format into a value of the data
type DWORD.

Example:

FPWIN Pro Programming

Conversion Instructions

191

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

STRING_TO_ETLAN
ADDR_STEPSAVER

STRING (IP-address format
00a.0bb.0cc.ddd) to ETLAN Address

The function uses for approx. 50 steps of generated code the basic instruction
F76_A2BIN. The instruction expects that each octet consists of three characters
with leading zeros. Otherwise the PLC delivers an operation error.

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Example:

Permissible format:

´Octet1.Octet2.Octet3.Octet4[Space]´, e.g.: ´ [192.168.206.4] ´

Permissible characters:
Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, with or without leading zeros

in the range 0-255

 • If the format is wrong the result is 0.

• The conversion is such that the highest byte of the ET-LAN
address represents the first octet and lowest byte of the IP
address the fourth octet. This format for ET-LAN addresses is
used, for example, by the FP Serie's ET-LAN modules.

Description This function converts a STRING in IP address format into a value of the data
type DWORD.

Chapter 8
 Selection Instructions

Selection Instructions

FPWIN Pro Programming

194

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

MAX Maximum value

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of MAX (see page 933)

 The number of input contacts lies in the range of 2 to 28.

Data type I/O Function
all except
STRING

1st input value 1

all except
STRING

2nd input value 2

all except
STRING

output as input result, whichever input variable's value is greater

In this example the input variables (value_1 and value_2) have been declared.
Instead, you may enter a constant directly at the input contact of a function.

Description MAX determines the input variable with the highest value.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body Value_1 and value_2 are compared with each other. The maximum value of all
input variables is written in maximum_value.

LD

ST maximum_value:=MAX(value_1, value_2);

FPWIN Pro Programming

Selection Instructions

195

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

MIN Minimum value

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of MIN (see page 934)

 The number of input contacts lies in the range of 2 to 28.

Data type I/O Function
all except
STRING

1st input value 1

all except
STRING

2nd input value 2

all except
STRING

output as input result, whichever input variable's value is smallest

In this example the input variables (value_1 and value_2) have been declared.
Instead, you may enter a constant directly at the input contact of a function.

Description MIN detects the input variable with the lowest value.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body Value_1 and value_2 are compared with each other. The lower value of the two
is written into minimum_value.

LD

ST minimum_value:=MIN(value_1, value_2);

Selection Instructions

FPWIN Pro Programming

196

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LIMIT Limit value for input variable

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of LIMIT (see page 933)

Data type I/O Function
all data types 1st input upper limit

all data types 2nd input value compared to upper and lower limit

all data types 3rd input lower limit

all data types output as input result, 2nd input value if between upper and lower limit,
otherwise the upper or lower limit

Description In LIMIT the 1st input variable forms the lower and the 3rd input variable the
upper limit value. If the 2nd input variable is within this limit, it will be transferred
to the output variable. If it is above this limit, the upper limit value will be
transferred; if it is below this limit the lower limit value will be transferred.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

In this example the input variables (lower_limit_val, comparison_value and
upper_val) have been declared. Instead, you may enter a constant directly at the
input contact of a function.

Body Lower_limit_val and upper_limit_val form the range where the
comparison_value has to be, if it has to be transferred to result. If the
comparison_value is above the upper_limit_val, the value of upper_limit_val
will be transferred to result. If it is below the lower_limit_val, the value of
lower_limit_val will be transferred to result.

FPWIN Pro Programming

Selection Instructions

197

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LD

ST result:=LIMIT(MN:=lower_limit_val, IN:=comparison_value,
MX:=upper_limit_val);

Selection Instructions

FPWIN Pro Programming

198

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

MUX Select value from multiple channels

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of MUX (see page 934)

Data type I/O Function
INT 1st input selects channel for 2nd or 3rd input value to be written to

all data types 2nd input value 1

all data types 3rd input value 2

all data types output as 2nd and
3rd input

result

The 2nd and 3rd input variables must be of the same data type.

 • The difference between the functions MUX and SEL (see page 200) is
that in MUX with an integer value you can select between plural
channels, and in SEL with a Boolean value only between two channels.

• The number of input contacts lies in the range of 2 to 28.

In this example the input variables (channel_select, channel_0 and channel_1)
have been declared. Instead, you may enter a constant directly at the input
contact of a function.

Description The function Multiplexer selects an input variable and writes its value into the
output variable. The 1st input variable determines which input variable (IN1or IN2
...) is to be written into the output variable. The function MUX can be configured
for any desired number of inputs.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

FPWIN Pro Programming

Selection Instructions

199

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body In channel_select you find the integer value (0, 1...n) for the selection of
channel_0 or channel_1. The result will be written into output.

LD

ST output:=MUX(K:= channel_select , IN0:= channel_0 ,
 IN1:= channel_1);

Selection Instructions

FPWIN Pro Programming

200

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

SEL Select value from one of two channels

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of SEL (see page 934)

Data type I/O Function
BOOL 1st input selects channel for 2nd or 3rd input value to be written to

all data types 2nd input value 1

all data types 3rd input value 2

all data types output as 2nd and
3rd input

result

 The difference between the functions SEL and MUX (see page 198) is that in case
of SEL a Boolean value serves for the channel selection, and in case of MUX an
integral number (INT). Therefore, you can choose between more than two
channels with MUX.

In this example the input variables (channel_select, channel_0 and channel_1)
have been declared. Instead, you may enter a constant directly at the input
contact of a function.

Description With the first input variable (data type BOOL) of SEL you define which input
variable is to be written into the output variable. If the Boolean value = 0
(FALSE), the second input variable will be written into the output variable,
otherwise the third.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body If channel_select has the value 0, channel_0 will be written into output,
otherwise channel_1.

FPWIN Pro Programming

Selection Instructions

201

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LD

Chapter 9
 String Instructions

String Instructions

FPWIN Pro Programming

204

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LEN String Length

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of LEN (see page 933)

 • If the string is longer than the length defined for the input variable
(input_string) in the field "Type", an error occurs (see Special Internal
Relays for Error Handling).

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

Data type I/O Function
STRING input input data type

INT output length of string

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input string is longer than the length defined
for the input variable in the field "Type"

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description LEN calculates the length of the input string and writes the result into the output
variable.

Data types

Error flags

Example

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

In this example the input variable (input_string) has been declared. Instead, you
may enter the string ('Panasonic') directly into the function. The string has to be
put in inverted commas, both in the POU header and in the function.

Body The length (9) of input_string (‘Panasonic’) is written into output_value.

LD

FPWIN Pro Programming

String Instructions

205

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ST output_value:=LEN(input_value);

String Instructions

FPWIN Pro Programming

206

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

LEFT Copy characters from the left Steps: 8

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of LEFT (see page 933)

 • If the number of characters to be delivered is greater than the input
string, the complete string will be copied to the output variable
(output_string).

• If the output string is longer than the length defined for the output
variable in the field "Type", only as many characters are copied from
the left as the output variable can hold. The special internal relay
R9009 (%MX0.900.9) is set.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

Data type I/O Function
STRING 1st input input string

INT 2nd input number of input string's characters that are copied, from the left

STRING output copied string

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input string is longer than the length defined
for the input variable in the field "Type"

R9009 %MX0.900.9 for an instant - output string is longer than the length defined
for the output variable in the field "Type"

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description LEFT copies, starting from the left, n characters of the string of the first input
variable to the output variable. You define the number of characters to be
delivered n by the second input variable.

Data types

Error flags

Example

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

FPWIN Pro Programming

String Instructions

207

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

In this example the input variables (input_string and character_number) have
been declared. Instead, you may enter the string ('Ideas for life') and the
number of characters to be delivered directly into the function. The string has to
be put in inverted commas, both in the POU header and in the function.

Body Starting from the left, character_number (5) of input_string (‘Ideas for life’) is
copied to output_string (‘Ideas’).

LD

ST output_string:=LEFT(IN:=input_string, L:=character_number);

String Instructions

FPWIN Pro Programming

208

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

RIGHT Copy characters from the right Steps: 8

PLC types: Availability of RIGHT (see page 934)

 • If the number of characters to be delivered is greater than the input
string, the complete string will be copied to the output variable
(output_string).

• If the output string is longer than the length defined for the output
variable in the field "Type", only as many characters are copied from
the left as the output variable can hold. The special internal relay
R9009 (%MX0.900.9) is set.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help. (up to 200 steps)

Data type I/O Function
STRING 1st input input string

INT 2nd input number of input string's characters that are copied, from the right

STRING output copied string

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input string is longer than the length defined
for the input variable in the field "Type"

R9009 %MX0.900.9 for an instant - output string is longer than the length defined
for the output variable in the field "Type"

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description RIGHT copies, starting from the right, n characters of the string of the first input
variable to the output variable. You define the number of characters to be
delivered n by the second input variable.

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Data types

Error flags

Example

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

FPWIN Pro Programming

String Instructions

209

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

In this example the input variables (input_string and character_number) have
been declared. Instead, you may enter the string ('Ideas for life') and the
number of characters to be delivered directly into the function. The string has to
be put in inverted commas, both in the POU header and in the function.

Body Starting from the right, character_number (4) of input_string (‘Ideas for life’) is
copied to output_string (‘life’).

LD

String Instructions

FPWIN Pro Programming

210

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

MID Copy characters from a middle position Steps: 10

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of MID (see page 933)

 • The sum of start position and number of characters to be delivered
should not be greater than the input string. If you want to receive for
example 5 characters of a 10-character string, starting from position 7,
only the last 4 characters are delivered.

• If the output string is longer than the length defined for the output
variable (output_string) in the field "Type", only as many characters are
copied from the start position as the output variable can hold. The
special internal relay R9009 (%MX0.900.9) is set.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help. (up to 200 steps)

Data type I/O Function
STRING 1st input input string

INT 2nd input number of input string's characters that are copied

INT 3rd input position where copying begins

STRING output copied string

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input string is longer than the length defined
for the input variable in the field "Type" or
start position is greater than the input string

R9009 %MX0.900.9 for an instant - output string is longer than the length defined
for the output variable in the field "Type"

Description MID copies, starting from the position P, L characters of the string of the first
input variable to the output variable. You define the number of characters to be
delivered L by the second and the start position P by the third input variable.

Data types

Error Flags

FPWIN Pro Programming

String Instructions

211

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Example

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

In this example the input variables (input_string, character_number and
start_position) have been declared. Instead, you may enter the string ('Ideas
for life'), the number of characters to be delivered and the start position directly
into the function. The string has to be put in inverted commas, both in the POU
header and in the function.

Body Starting from start_position (7), character_number (8) of input_string (‘Ideas
for life’) is copied to output_string (‘for life’).

LD

ST output_string:=MID(IN:=input_string, L:=character_number,
P:=start_position);

String Instructions

FPWIN Pro Programming

212

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

CONCAT Concatenate (attach) a string

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of CONCAT (see page 923)

 • If the output string is longer than the length defined for the output
variable (output_string) in the field "Type", only as many characters
are copied, starting from the left, as the output variable can hold. The
special internal relay R9009 (%MX0.900.9) is set.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help.

Data type I/O Function
STRING 1st input beginning input string

STRING 2nd input string that will be attached to the beginning string

STRING output resulting string

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input string is longer than the length defined
for the input variable in the field "Type"

R9009 %MX0.900.9 for an instant - output string is longer than the length defined
for the output variable in the field "Type"

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

In this example the input variables (input_string1, input_string2 and
input_string3) have been declared. However, you may enter the strings ('Ideas',
' for' and ' life') directly into the function. The strings have to be put in inverted

Description CONCAT concatenates (attaches) the second and the following input strings (IN1
+ IN2 + ...) to the first input string and writes the resulting string into the output
variable.

Data types

Error flags

Example

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

FPWIN Pro Programming

String Instructions

213

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

commas, both in the POU header and in the function.

Body Input_string3 (‘ life’) is attached to input_string2 (‘ for’) and this string is
attached to input_string1 ('Ideas'). The resulting string (‘Ideas for life’) is
written into output_string.

LD

ST output_string:=CONCAT(input_string1, input_string2,
input_string3);

String Instructions

FPWIN Pro Programming

214

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DELETE Delete characters from a string Steps: 19

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DELETE (see page 924)

 • If the output string is longer than the length defined for the output
variable (output_string) in the field "Type", only as many characters are
copied, starting from the left, as the output variable can hold. The
special internal relay R9009 (%MX0.900.9) is set.

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help. (up to 200 steps)

Data type I/O Function
STRING 1st input input string

INT 2nd input number of input string's characters that are deleted

INT 3rd input position where deletion begins

STRING output resulting string

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input string is longer than the length defined
for the input variable in the field "Type"

R9009 %MX0.900.9 for an instant - output string is longer than the length defined
for the output variable in the field "Type"

Description DELETE deletes, starting from position P, L characters from the string of the first
input variable. The resulting string is written into the output variable. You define
the number of characters to be deleted L by the second and the start position P
by the third input variable.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

FPWIN Pro Programming

String Instructions

215

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

In this example the input variables (input_string, character_number and
start_position) have been declared. Instead, you may enter the string ('Ideas
for life'), the number of characters to be deleted and the start position directly
into the function. The string has to be put in inverted commas, both in the POU
header and in the function.

Body Starting from start_position (6), character_number (8) is deleted from
input_string (‘Ideas for life’). The resulting string (‘Ideas’) is written into
output_string.

LD

ST output_string:=DELETE(input_string, character_number,
start_position);

String Instructions

FPWIN Pro Programming

216

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

FIND Find string's position

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of FIND (see page 932)

 • If the strings are longer than the length defined for the input variables
(input_string_1 and input_string_2) in the field "Type", an error occurs
(see Special Internal Relays for Error Handling).

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help. (up to 200 steps)

Data type I/O Function
STRING 1st input input string

STRING 2nd input string that is searched for in the input string

INT output position at which the string searched for is found

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input strings are longer than the length
defined for the input variables in the field
"Type"

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description FIND returns the position at which the second input string first occurs in the first
input string. The result is written into the output variable. If the second input string
does not occur in the first input string, the value ZERO is returned.

Data types

Error flags

Example

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

In this example the input variables (input_string_1 and input_string_2) have
been declared. Instead, you may enter the strings ('Ideas for life' and 'for')
directly into the function. The strings have to be put in inverted commas, both in
the POU header and in the function.

FPWIN Pro Programming

String Instructions

217

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body Input_string_2 (‘for’) is searched in input_string_1 (‘Ideas for life’). The
position of the first occurrence (7) is written into output_value.

LD

ST output_value:= FIND(input_string_1, input_string_2);

String Instructions

FPWIN Pro Programming

218

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

INSERT Insert characters Steps: 19

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of INSERT (see page 932)

 • If the strings are longer than the length defined for the input variables
(input_string_1 and input_string_2) in the field "Type", an error occurs
(see Special Internal Relays for Error Handling).

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help. (up to 200 steps)

Data type I/O Function
STRING 1st input input string

STRING 2nd input string to be inserted into input string

INT 3rd input position at which string is inserted

STRING output result string

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input strings are longer than the length
defined for the input variables in the field
"Type"

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description INSERT inserts the STRING specified at IN2 into the STRING specified at IN1
beginning after the character position P. The result is written into the output
variable.

Data types

Error flags

Example

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

FPWIN Pro Programming

String Instructions

219

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body In this example the input variables input_string1, input_string2 and position
have been declared. However, you may enter the values directly at the function's
input contact pins instead. The STRING values have to be put in inverted
commas, both in the POU header and at the contact pins. input_string2 ('for ') is
inserted into input_string1 ('Ideas life') after character position 6. The result

('Ideas for life') is returned at output_value. In the LD example,
(Monitoring) icon was activated while in online mode, hence you can see the
results immediately.

LD

ST output_value:=INSERT(IN1:=input_string1, IN2:=input_string2,
P:=6);

String Instructions

FPWIN Pro Programming

220

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

REPLACE Replaces characters Steps: 26

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of REPLACE (see page 934)

 • If the strings are longer than the length defined for the input variables
(input_string_1 and input_string_2) in the field "Type", an error occurs
(see Special Internal Relays for Error Handling).

• The number of steps may vary depending on the PLC and parameters
used, see also table of steps in the online help. (up to 200 steps)

Data type I/O Function
STRING 1st input input string

STRING 2nd input replacement string

INT 3rd input the number of characters in the input string to be replaced

INT 4th input position at which characters begin to be replaced

STRING output resulting string

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- input strings are longer than the length
defined for the input variables in the field
"Type"

Description The STRING specified at IN2 replaces characters in the STRING specified at
IN1. The number of characters, i.e. the length (L), to be replaced is specified at
L. The position at which the replacement starts is specified at P. The result is
written into the output variable.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

FPWIN Pro Programming

String Instructions

221

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body In this example constant values are entered directly at the function's input contact
pins. However, you may declare variables in the POU header. The STRING
values have to be put in inverted commas, either in the POU header or at the
contact pins. Here the 'c' in the STRING 'MrSpock' has been replaced with an 'o',
yielding 'MrSpook'.

LD

Chapter 10
 Date and Time Instructions

Date and Time Instructions

FPWIN Pro Programming

224

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ADD_TIME Add TIME

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of ADD_TIME (see page 923)

Data type I/O Function
TIME 1st input augend

TIME 2nd input addend

TIME output sum

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

In this example the input variables (time_value_1 and time_value_2) have been
declared. Instead, you may enter constants directly at the input contacts of a
function.

Description ADD_TIME adds the times of the two input variables and writes the sum in the
output variable.

Data types

Example

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body Time_value_1 and time_value_2 are added. The result is written into
time_value_3.

LD

ST time_value_3:=ADD_TIME(time_value_1, time_value_2);

FPWIN Pro Programming

Date and Time Instructions

225

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

SUB_TIME Subtract TIME

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of SUB_TIME (see page 935)

Data type I/O Function
TIME 1st input minuend

TIME 2nd input subtrahend

TIME output result

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description SUB_TIME subtracts the value of the second input variable from the value of the
first input variable and writes the result into the output variable.

Data types

Example

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

In this example the input variables (minuend and subtrahend) have been
declared. Instead, you may enter constants directly at the input contacts of a
function.

Body Subtrahend is subtracted from minuend. The result will be written into result.

LD

ST result:= SUB_TIME(minuend, subtrahend);

Date and Time Instructions

FPWIN Pro Programming

226

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

MUL_TIME_INT Multiply TIME by INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of MUL_TIME_INT (see page 934)

Data type I/O Function
TIME 1st input multiplicand

INT 2nd input multiplicator

TIME output result

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description MUL_TIME_INT multiplies the values of the two input variables with each other
and writes the result into the output variable.

Data types

Example

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

In this example the input variables (time_value_1 and multiplier) have been
declared. Instead, you may enter constants directly at the input contacts of a
function.

Body Time_value_1 is multiplied with multiplier. The result is written into
time_value_2.

LD

ST time_value_2:=MUL_TIME_INT(time_value_1, multiplier);

FPWIN Pro Programming

Date and Time Instructions

227

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

MUL_TIME_DINT Multiply TIME by DOUBLE INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of MUL_TIME_DINT (see page 934)

Data type I/O Function
TIME 1st input multiplicand

DINT 2nd input divisor

TIME output result

Description MUL_TIME_DINT multiplies the values of the input variables and writes the result
to the output variable.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

In this example, the input variables time_value and multiplier have been
declared. However, you can write a constant directly at the input contact of the
function instead.

Body time_value_1 is multiplied by multiplier. The result is written in time_value_2.

LD

ST time_value_2:=MUL_TIME_DINT(time_value_1, multiplier);

Date and Time Instructions

FPWIN Pro Programming

228

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

MUL_TIME_REAL Multiply TIME by REAL

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of MUL_TIME_REAL (see page 934)

Data type I/O Function
TIME 1st input multiplicand

REAL 2nd input multiplicator

TIME output result

Description MUL_TIME_REAL multiplies the value of the first input variable of the data type
TIME by the value of the second input variable of the data type REAL. The REAL
value is rounded off to the nearest whole number. The result is written into the
output variable.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body The constant T#1h30m is multiplied by the value 3.5. The result is written in

mul_result. By clicking on the (Monitoring) icon while in the online mode,
you can see the result T#5h15m0s0.00ms immediately.

LD

ST mul_result:=MUL_TIME_REAL(T#1h30m, 3.5);

FPWIN Pro Programming

Date and Time Instructions

229

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DIV_TIME_INT Divide TIME by INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DIV_TIME_INT (see page 924)

Data type I/O Function
TIME 1st input dividend

INT 2nd input divisor

TIME output result

Description DIV_TIME_INT divides the value of the first input variable by the value of the
second input variable and writes the result into the output variable.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

In this example the input variables (time_value_1 and INT_value) have been
declared. Instead, you may enter constants directly at the input contacts of a
function.

Body time_value_1 is divided by INT_value. The result is written into time_value_2.

LD

ST time_value_2:=DIV_TIME_INT(time_value_1, INT_value);

Date and Time Instructions

FPWIN Pro Programming

230

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DIV_TIME_DINT Divide TIME by DOUBLE INTEGER

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DIV_TIME_DINT (see page 924)

Data type I/O Function
TIME 1st input dividend

DINT 2nd input divisor

TIME output result

Description DIV_TIME_DINT divides the value of the first input variable by the value of the
second and writes the result into the output variable.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

In this example, the input variables (time_value_1, DINT_value) have been
declared. However, you can write a constant directly at the input contact of the
function instead.

Body time_value_1 is divided by DINT_value. The result is written in time_value_2.

LD

ST time_value_2:=DIV_TIME_DINT(time_value_1, INT_value);

FPWIN Pro Programming

Date and Time Instructions

231

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

DIV_TIME_REAL Divide TIME by REAL

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

PLC types: Availability of DIV_TIME_REAL (see page 924)

Data type I/O Function
TIME 1st input dividend

REAL 2nd input divisor

TIME output result

Description DIV_TIME_REAL divides the value of the first input variable of the data type
TIME by the value of the second input variable of the data type REAL. The REAL
value is rounded off to the nearest whole number. The result is written into the
output variable.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are required for programming the function
are declared in the POU header.

Body The value of variable input_time is divided by the value of the variable
input_real. The result is written in div_result. In this example the input variables
have been declared in the POU header. However, you may enter constants
directly at the contact pins of the function.

LD

ST div_result:=DIV_TIME_REAL(input_time, input_real);

Chapter 11
 Bistable Instructions

Bistable Instructions

FPWIN Pro Programming

234

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

SR Set/reset

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

For SR declare the following:
SET (S1) set

The output Q is set for each rising edge at SET
RESET (R) reset

The output Q is reset for each rising edge detected at RESET, except
when SET is set (see time chart)

Q (Q1) signal output
is set if a rising edge is detected at SET; is reset if a rising edge is
detected at RESET if SET is not set.

 • The names in brackets are the valid parameter names of the ST-editor.

• Q is set if a rising edge is detected at both inputs (Set and Reset).

• Upon initialising, Q always has the status zero (reset).

Time Chart:

PLC types: Availability of SR (see page 935)

Data types I/O Function
BOOL 1st input set

BOOL 2nd input reset

BOOL output set or reset depending on inputs

Description The function block SR (set/reset) allows you to both set and reset an output.

Data types

FPWIN Pro Programming

Bistable Instructions

235

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are used for programming the function block
SR are declared in the POU header. This also includes the function block (FB)
itself. By declaring the FB you create a copy of the original FB. This copy is
saved under copy_name, and a separate data area is reserved.

Body If set is set (status = TRUE), signal_output will be set. If only reset is set, the
signal_output will be reset (status = FALSE). If both set and reset are set,
signal_output will be set.

LD

ST copy_name(SET:= set, RESET:= reset);
 signal_output:= signal_output;

Bistable Instructions

FPWIN Pro Programming

236

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

RS Reset/set

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

For RS declare the following:
SET (S1) set

The output Q is set for each rising edge at SET if RESET is not set.
RESET (R) reset

The output Q is reset for each rising edge at RESET.
Q (Q1) signal output

is set if a rising edge is detected at SET and if RESET is not set; is reset if
a rising edge is detected at RESET.

 • The names in brackets are the valid parameter names of the ST-editor.

• Q is reset if a rising edge is detected at both inputs.

Time Chart:

PLC types: Availability of RS (see page 934)

Data types I/O Function
BOOL 1st input set

BOOL 2nd input reset

BOOL output set or reset depending on inputs

Description The function block RS (reset/set) allows you to both reset and set an output.

Data types

FPWIN Pro Programming

Bistable Instructions

237

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are used for programming the function block
RS are declared in the POU header. This also includes the function block (FB)
itself. By declaring the FB you create a copy of the original FB. This copy is
saved under copy_name, and a separate data area is reserved.

Body If set is set (status = TRUE) the signal_output will be set. If only reset is set, the
signal_output will be reset (status = FALSE). If both set and reset are set, the
signal_output will be reset to FALSE.

LD

ST copy_name(SET:= set, RESET:= reset);
 signal_output:= signal_output;

Chapter 12
 Edge Detection Instructions

Edge Detection Instructions

FPWIN Pro Programming

240

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

R_TRIG Rising edge trigger

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

For R_TRIG declare the following:
CLK signal input

the output Q is set for each rising edge at the signal input (clk = clock)
Q signal output

is set when a rising edge is detected at CLK.

PLC types: Availability of R_TRIG (see page 934)

 The output Q of a function block R_TRIG remains set for a complete PLC cycle
after the occurrence of a rising edge (status change FALSE -> TRUE) at the CLK
input and is then reset in the following cycle.

Data types I/O Function
BOOL input CLK detects rising edge for clock

BOOL output Q set when rising edge detected

Description The function block R_TRIG (rising edge trigger) allows you to recognize a rising
edge at an input.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are used for programming the function block
R_TRIG are declared in the POU header. This also includes the function block
(FB) itself. By declaring the FB you create a copy of the original FB. This copy is
saved under copy_name, and a separate data area is reserved.

Body Signal_output will be set, if a rising edge is detected at signal_input.

LD

ST copy_name(CLK:= signal_input ,
 Q=> signal_output);

FPWIN Pro Programming

Edge Detection Instructions

241

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

F_TRIG Falling edge trigger

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

For F_TRIG declare the following:
CLK signal input

the output Q is set for each falling edge at the signal input (clk = clock)
Q signal output

is set if a falling edge is detected at CLK.

PLC types: Availability of F_TRIG (see page 932)

 The output Q of a function block F_TRIG remains set for a complete PLC cycle
after the occurrence of a falling edge (status change TRUE -> FALSE) at the CLK
input and is then reset in the following cycle.

Data types I/O Function
BOOL input CLK detects falling edge at input clock

BOOL output Q is set if falling edge is detected at
input

Description The function block F_TRIG (falling edge trigger) allows you to recognize a falling
edge at an input.

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are used for programming the function block
F_TRIG are declared in the POU header. This also includes the function block
(FB) itself. By declaring the FB you create a copy of the original FB. This copy is
saved under copy_name, and a separate data area is reserved.

Body Signal_output will be set, if a falling edge is detected at signal_input.

LD

Edge Detection Instructions

FPWIN Pro Programming

242

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ST copy_name(CLK:= signal_input ,
 Q=> signal_output);

Chapter 13
 Counter Instructions

Counter Instructions

FPWIN Pro Programming

244

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

CTU Up counter Steps: 31

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

For CTU declare the following:
CU clock generator

the value 1 is added to CV for each rising edge at CU, except when RESET is
set

RESET (R) reset
CV is reset to zero for each rising edge at RESET

PV set value
if PV (preset value) is reached, Q is set

Q signal output
is set if CV is greater than/equal to PV

CV current value
contains the addition result (CV = current value)

 The names in brackets are the valid parameter names of the ST-editor.

PLC types: Availability of CTU (see page 924)

Time
Chart:

Description The function block CTU (count up) allows you to program counting procedures.

FPWIN Pro Programming

Counter Instructions

245

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Data types I/O Function
BOOL input CU detects rising edge, adds 1 to CV

BOOL input RESET resets CV to 0 at rising edge

INT input PV set value

BOOL output Q set if CV >= PV

INT output CV current value

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are used for programming the function block
CTU are declared in the POU header. This also includes the function block (FB)
itself. By declaring the FB you create a copy of the original FB. This copy is
saved under copy_name. A separate data area is reserved for this copy.

Body If reset is set (status = TRUE), current_value (CV) will be reset. If a rising edge
is detected at clock, the value 1 will be added to current_value. If a rising edge
is detected at clock, this procedure will be repeated until current_value is
greater than/equal to set_value. Then, signal_output will be set.

LD

ST copy_name(CU:= clock, RESET:= reset, PV:= set_value, Q:=
signal_output, CV:= current_value);

Counter Instructions

FPWIN Pro Programming

246

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

CTD Down counter Steps: 31

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

For CTD declare the following:
CD clock generator input

the value 1 is subtracted from the current value CV for each rising edge
detected at CD, except when LOAD is set or CV has reached the value zero.

LOAD (LD) set
with LOAD the counter state is reset to PV

PV preset value
is the value subjected to subtraction during the first counting procedure

Q signal output
is set if CV = zero

CV current value
contains the current subtraction result (CV = current value)

 The names in brackets are the valid parameter names of the ST-editor.

PLC types: Availability of CTD (see page 924)

Time
Chart:

Description The function block CTD (count down) allows you to program counting
procedures.

FPWIN Pro Programming

Counter Instructions

247

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Data types I/O Function
BOOL input CD subtracts 1 from CV at rising edge

BOOL input LOAD resets counter to PV

INT input PV preset value

BOOL output Q signal output, set if CV = 0

INT output CV current value

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Data types

Example

POU
Header

All input and output variables which are used for programming the function block
CTD are declared in the POU header. This also includes the function block (FB)
itself. By declaring the FB you create a copy of the original FB. This copy is
saved under copy_name, and a separate data area is reserved.

Body If set is set (status = TRUE), the preset_value (PV) is loaded in the
current_value (CV). The value 1 will be subtracted from the current_value each
time a rising edge is detected at clock. This procedure will be repeated until the
current_value is greater than/equal to zero. Then, signal_output will be set.

LD

Counter Instructions

FPWIN Pro Programming

248

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

ST When programming with structured text,structured text, use CTD as follows:
IF set THEN (* first cycle *)
 load:=TRUE; (* load has to be TRUE,
 to set
current_value to output_value *)
 clock:=FALSE;
END_IF;
copy_name(CD:= clock, LOAD:= set, PV:= output_value, Q:=
signal_output, CV:= current_value);
load:=FALSE; (* now current_value got the right value,
load doesn't need to be *)
 (* TRUE any longer *);

FPWIN Pro Programming

Counter Instructions

249

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

CTUD Up/down counter Steps: 66

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

For CTUD declare the following:
CU count up

the value 1 is added to the current CV for each rising edge detected at CU,
except when RESET and/or LOAD is/are set.

CD count down
the value 1 is subtracted from the current CV for each rising edge detected at
CD, except when RESET and/or LOAD is/are set and if CU and CD are
simultaneously set. In the latter case, counting will be upwards.

RESET (R) reset
if RESET is set, CV will be reset

LOAD (LD) set
if LOAD is set, PV is loaded to CV. This, however, does not apply if RESET is
set simultaneously. In this case, LOAD will be ignored.

PV preset value
defines the preset value which is to be attained with the addition or subtraction
(PV = preset value)

QU signal output - count up
is set if CV is greater than/equal to PV

QD signal output - count down
is set if CV = zero

CV current value
is the addition/subtraction result (CV = current value)

 The names in brackets are the valid parameter names of the ST-editor.

PLC types: Availability of CTUD (see page 924)

Description The function block CTUD (count up/down) allows you to program counting
procedures (up and down).

Counter Instructions

FPWIN Pro Programming

250

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Time Chart:

Data types I/O Function
BOOL input CU count up

BOOL input CD count down

BOOL input RESET resets CV if set

BOOL input LOAD loads PV to CV

INT input PV set value

BOOL output QU signal output count up

BOOL output QD signal output count down

INT output CV current value

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Data types

Example

POU
Header

All input and output variables which are used for programming the function block
CTUD are declared in the POU header. This also includes the function block (FB)
itself. By declaring the FB you create a copy of the original FB. This copy is
saved under copy_name. A separate data area is reserved for this copy.

FPWIN Pro Programming

Counter Instructions

251

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Body Count up:
If reset is set, the current_value (CV) will be reset. If up_clock is set, the value
1 is added to the current_value. This procedure is repeated for each rising edge
detected at up_clock until the current value is greater than/equal to the
set_value. Then output_up is set. The procedure is not conducted, if reset
and/or set is/are set.
Count down:
If set is set (status = TRUE), the set_value (PV = preset value) will be loaded in
the current_value (CV). If down_clock is set, the value 1 is subtracted from
set_value at each clock. This procedure is repeated at each clock until the
current_value is smaller than/equal to zero. Then, signal_output is set. The
procedure will not be conducted, if reset and/or set is/are set or if CU and CV
are set at the same time. In the latter case, counting will be downwards.

LD

ST copy_name(CU:= up_clock, CD:= down_clock, RESET:= reset,
LOAD:= set, PV:= set_value,
 QU:= output_up, QD:= output_down, CV:=
current_value);

Chapter 14
 Timer Instructions

Timer Instructions

FPWIN Pro Programming

254

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

TP Timer with defined period Steps: 14

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

For TP declare the following:
IN clock generator

if a rising edge is detected at IN, a clock is generated having the period
defined in PT

PT clock period
(16-bit value: 0 - 327.27s, 32-bit value: 0 -21,474,836.47s; resolution 10ms
each) a timer having the period PT is caused for each rising edge at IN. A
new rising edge detected at IN within the pulse period does not cause a new
timer (see time chart, section)

Q signal output
is set for the period of PT as soon as a rising edge is detected at IN

ET elapsed time
contains the elapsed period of the timer. If PT = ET, Q will be reset

Time
Chart:

t0 t1 + PT t2 t3 t4 t4 + PT

t0 t1 + PT t2 t2 + PT t4 t4 + PT

t0 t1 t2 t3 t4 t5 t6 t7
IN

Q

ET

PT

1

t

2 3

 + Independent of the turn-on period of the IN signal, a clock is generated at the output
Q having a length defined by PT. The function block TP is triggered if a rising edge
is detected at the input IN.

 A rising edge at the input IN does not have any influence during the processing of
PT.

PLC types: Availability of TP (see page 936)

Description The function block TP allows you to program a pulse timer with a defined clock
period.

FPWIN Pro Programming

Timer Instructions

255

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Data types I/O Function
BOOL input IN clock generated according to clock period at rising edge

TIME input PT clock period

BOOL output Q signal output

TIME output ET elapsed time

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Data types

Example

POU
Header

All input and output variables which are used for programming the function block
TP are declared in the POU header. This also includes the function block (FB)
itself. By declaring the FB you create a copy of the original FB. This copy is
saved under copy_name. A separate data area is reserved for this copy.

Body If start is set (status = TRUE), the clock is emitted at signal_output until the
set_value for the clock period is reached.

LD

ST copy_name(IN:= start, PT:= set_value);
 signal_output := signal_output;
 current_value:= current_value;

Timer Instructions

FPWIN Pro Programming

256

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

TON Timer with switch-on delay Steps: 7

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

For TON declare the following:
IN timer ON

an internal timer is started for each rising edge detected at IN
PT switch-on delay

(16-bit value: 0 - 327.27s, 32-bit value: 0 - 21,474,836.47s; resolution 10ms
each) the switch-on delay is defined here (PT = preset time)

Q signal output
is set if PT = ET

ET elapsed time
indicates the current value of the elapsed time

Time
Chart: NI

Q

ET

PT

t0 t1 t2 t3

t t0 0 + PT t1 t2 t3

t0 t1 t2 t3

t

1 2

 Q is set delayed with the time defined in PT. Resetting is without any delay.

 If the input IN is only set for the period of the delay time PT or even for a shorter period of time
(t3 - t2 < PT), Q will not be set.

PLC types: Availability of TON (see page 936)

Description The function block TON allows you to program a switch-on delay.

FPWIN Pro Programming

Timer Instructions

257

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Data types I/O Function
BOOL (IN) input internal timer starts at rising edge

TIME (PT) input switch on delay

BOOL (Q) output signal output set if PT = ET

TIME (ET) output elapsed time

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Data types

Example

POU
Header

All input and output variables which are used for programming the function block
TON are declared in the POU header. This also includes the function block (FB)
itself. By declaring the FB you create a copy of the original FB. This copy is
saved under copy_name. A separate data area is reserved for this copy.

Body If start is set (status = TRUE), the input signal is transferred to signal_output
with a delay by the time period set_value.

LD

ST copy_name(IN:= start ,
 PT:= set_value ,
 Q=> signal_output ,
 ET=> current_value);

Timer Instructions

FPWIN Pro Programming

258

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

TOF Timer with switch-off delay Steps: 23

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

For TON declare the following:
IN timer ON

an internal timer is started if a falling edge is detected at IN. If a rising edge is
detected at IN before PT has reached its value, Q will not be switched off (see
time chart, section)

PT switch-off delay
(16-bit value: 0 - 327.27s, 32-bit value: 0 - 21,474,836.47s; resolution 10ms
each) the switch-off delay is defined here (PT = preset time)

Q signal output
is reset if PT = ET

ET elapsed time
represents the current value of the elapsed time

Time
Chart:

t0 t1 + PT t2 t5 + PT

t0 t1 t2 t3 t4 t5
IN

Q

ET

PT

t0 t1 t2 t3 t4 t5
1 2

 Q is switched off with a delay corresponding to the time defined in PT. Switching on is
carried out without delay.

 If IN (as in the time chart on top for t3 to t4) is set prior to the lapse of the delay time PT, Q
remains set (time chart for t2 to t3).

PLC types: Availability of TOF (see page 936)

Description The function block TOF allows you to program a switch-off delay, e.g. to switch
off the ventilator of a machine at a later point in time than the machine itself.

FPWIN Pro Programming

Timer Instructions

259

Pa
rt

 II
 I

EC
 In

st
ru

ct
io

ns

Data types I/O Function
BOOL (IN) input internal timer on a falling edge

TIME (PT) input switch off delay

BOOL (Q) output signal output reset if PT = ET

TIME (ET) output elapsed time

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Data types

Example

POU
Header

All input and output variables which are used for programming the function block
TOF are declared in the POU header. This also includes the function block (FB)
itself. By declaring the FB you create a copy of the original FB. This copy is
saved under copy_name. A separate data area is reserved for this copy.

Body If start is reset, this signal is transferred to signal_output with a delay
corresponding to the period of time set_value.

LD

ST copy_name(IN:= start ,
 PT:= set_value ,
 Q=> signal_output ,
 ET=> current_value);

Chapter 15
 Data Transfer Instructions

Data Transfer Instructions

FPWIN Pro Programming

262

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

15.1 Data Transfer Within the PLC

In This Section:
- F0_MV (see page 263)
- F1_DMV (see page 265)
- F2_MVN (see page 267)
- F3_DMVN (see page 269)
- F7_MV2 (see page 271)
- F8_DMV2 (see page 272)
- F190_MV3 (see page 274)
- F191_DMV3 (see page 276)
- F10_BKMV (see page 277)
- F10_BKMV_NUMBER (see page 279)
- F10_BKMV_OFFSET (see page 281)
- F10_BKMV_NUMBER_OFFSET (see page 282)
- F11_COPY (see page 284)
- F15_XCH (see page 286)
- F16_DXCH (see page 287)
- F17_SWAP (see page 288)
- F18_BXCH (see page 290)
- F147_PR (see page 292)

FPWIN Pro Programming

Data Transfer Instructions

263

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F0_MV 16-bit data move Steps: 5

PLC types: Availability of F0_MV (see page 925)

Variable Data type Function
s INT, WORD source 16-bit area

d INT, WORD destination 16-bit area

The variables s and d have to be of the same data type.
For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Explanation with example value 16#0089

Destination value in this example: 16#0089

Description The 16-bit data or 16-bit equivalent constant specified by s is copied to the 16-bit
area specified by d, if the trigger EN is in the ON-state.

Data types

Operands

Data Transfer Instructions

FPWIN Pro Programming

264

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example the function F0_MV is programmed in ladder diagram (LD) and
structured text (ST). The same POU header is used for all programming
languages.

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F0_MV(input_value, output_value);
END_IF;

FPWIN Pro Programming

Data Transfer Instructions

265

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F1_DMV 32-bit data move Steps: 7

PLC types: Availability of F1_DMV (see page 925)

Variable Data type Function
s DINT, DWORD source 32-bit area

d DINT, DWORD destination 32-bit area

The variables s and d have to be of the same data type.
For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Explanation with example value 16#ACAEE486

Destination value in this example: 16#ACAEE486

Description The 32-bit data or 32-bit equivalent constant specified by s is copied to the 32-bit
area specified by d, if the trigger EN is in the ON-state.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

Data Transfer Instructions

FPWIN Pro Programming

266

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F1_DMV(source, destination);
END_IF;

FPWIN Pro Programming

Data Transfer Instructions

267

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F2_MVN 16-bit data inversion and move Steps: 5

PLC types: Availability of F2_MVN (see page 925)

Variable Data type Function
s INT, WORD source 16-bit area to be inverted

d INT, WORD destination 16-bit area

The variables s and d have to be of the same data type.
For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Explanation with example value 16#5555

Each bit is inverted, target value in this example: 16#AAAA

Description The 16-bit data or 16-bit equivalent constant specified by s is inverted and
transferred to the 16-bit area specified by d if the trigger EN is in the ON-state.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

Data Transfer Instructions

FPWIN Pro Programming

268

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F2_MVN(input_value, output_value);
END_IF;

FPWIN Pro Programming

Data Transfer Instructions

269

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F3_DMVN 32-bit data inversion and move Steps: 7

PLC types: Availability of F3_DMVN (see page 925)

Variable Data type Function
s DINT, DWORD source 32-bit area to be inverted

d DINT, DWORD destination 32-bit area

The variables s and d have to be of the same data type.
For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Explanation with example value 16#75BCD15

Each bit is inverted, destination value in this example: 16#F8A432EA

Description The 32-bit data or 32-bit equivalent constant specified by s is inverted and
transferred to the 32-bit area specified by d if the trigger EN is in the ON-state.

Data types

Operands

Example In this example the function F3_DMVN is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Data Transfer Instructions

FPWIN Pro Programming

270

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F3_DMVN(input_value, output_value);
END_IF;

FPWIN Pro Programming

Data Transfer Instructions

271

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F7_MV2 Two 16-bit data move Steps: 7

PLC types: Availability of F7_MV2 (see page 925)

 To transfer three 16-bit data types, use either the F190_MV3 (see page 274) or
P190_MV3 instruction.

Variable Data type Function
s1, s2 INT, WORD source 16-bit area

d DINT, DWORD destination 32-bit area

For Relay T/C Register Constant
s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

In this example the input variables input_value_1 and input_value _2 are
declared. However, you can write constants directly at the input contact of the
function instead.

Description The two 16-bit data or two 16-bit equivalent constants specified by s1 and s2 are
copied to the 32-bit area specified by d when the trigger turns ON.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F7_MV2(input_value1, input_value2, output_value);
END_IF;

Data Transfer Instructions

FPWIN Pro Programming

272

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F8_DMV2 Two 32-bit data move Steps: 11

PLC types: Availability of F8_DMV2 (see page 925)

 To copy three 32-bit data, use either the F191_DMV3 (see page 276) or
P191_DMV3 instruction.

Variable Data type Function
s1, s2 DINT, DWORD source 32-bit area

d ARRAY [0..1] of
DINT or DWORD

destination, lower 32-bit area of 64-bit area

The variables s1, s2 and d have to be of the same data type.
For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

In this example the input variables input_value_1 and input_value _2 are
declared. However, you can write constants directly at the input contact of the
function instead.

Description The function copies two 32-bit data areas specified at inputs s1 and s2 to a 32-
bit ARRAY with two elements at output d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

FPWIN Pro Programming

Data Transfer Instructions

273

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F8_DMV2(input_value_1, input_value_2, output_value);
END_IF;

Data Transfer Instructions

FPWIN Pro Programming

274

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F190_MV3 Three 16-bit data move Steps: 10

PLC types: Availability of F190_MV3 (see page 930)

 To transfer two 16-bit data types, use either the F7_MV2 (see page 271) or
P7_MV2 instruction.

Variable Data type Function
s1, s2, s3 INT, WORD source 16-bit area

d ARRAY [0..2] of
WORD, INT

destination, lower 16-bit area of 48-bit area

The variables s1, s2 and d have to be of the same data type.
For Relay T/C Register Constant

s1,s2,s3 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL dec. or hex.

Description The function copies three 16-bit data values at inputs s1, s2 and s3 to an
ARRAY with three elements that is returned at output d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

FPWIN Pro Programming

Data Transfer Instructions

275

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ST IF start THEN
 F190_MV3(word_1, word_2, word_3, data_field);
END_IF;

Data Transfer Instructions

FPWIN Pro Programming

276

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F191_DMV3 Three 32-bit data move Steps: 16

PLC types: Availability of F191_DMV3 (see page 930)

 To transfer two 32-bit data types, use either the F8_DMV2 (see page 272) or
P8_DMV2 instruction.

Variable Data type Function
s1, s2, s3 DINT, DWORD source 32-bit area

d ARRAY [0..2] of
DINT or DWORD

destination, lower 32-bit area of 96-bit area

The variables s1, s2, s3 and d have to be of the same data type.
For Relay T/C Register Constant

s1,s2,s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description The function copies three 32-bit data values at inputs s1, s2 and s3 to an
ARRAY with three elements that is returned at output d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F191_DMV3(word_1, word_2, word_3, data_field);
END_IF;

FPWIN Pro Programming

Data Transfer Instructions

277

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F10_BKMV Block move Steps: 7

The operands s1 and s2 should be:

Whenever s1, s2 and d are in the same data area:

15 . 12 11 . . 8 7 . 4 3 . . 0

[0] 0 0 0 1

[1] 0 0 1 0

[2] 0 0 1 1

[3] 0 1 0 0

[4] 0 1 0 1

15 . 12 11 . . 8 7 . 4 3 . . 0

[0] 0 0 1 0

[1] 0 0 1 1

[2] 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

dest.

source

PLC types: Availability of F10_BKMV (see page 925)

Variable Data type Function
s1 INT, WORD starting 16-bit area, source

s2 INT, WORD ending 16-bit area, source

d INT, WORD starting 16-bit area, destination

The variables s1, s2 and d have to be of the same data type.
For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL -

d - WY WR WL SV EV DT LD FL -

Description The data block specified by the 16-bit starting area specified by s1 and the 16-bit
ending area specified by s2 are copied to the block starting from the 16-bit area
specified by d if the trigger EN is in the ON-state.

 in the same operand
 s1 ≤ s2

 s1 = d: data will be recopied to the same data area.

Data types

Operands

Data Transfer Instructions

FPWIN Pro Programming

278

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is carried
out. It moves the data block starting at the 16-bit area specified by s1 and ending
at the 16-bit area specified by s2 to the 16-bit area specified by d.

LD

ST IF start THEN
 F10_BKMV(s1_Start:= source_Array[1],
 s2_End:= source_Array[3],
 d_Start=> target_Array[0]);
END_IF;

FPWIN Pro Programming

Data Transfer Instructions

279

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F10_BKMV_NUMBER Block move by number Steps: 7

This instruction is a modification of the F10_BKMV (see page 277) generated by
the compiler.

Whenever s1_Start and d_Start are in the same data area:

PLC types: Availability of F10_BKMV_NUMBER (see page 925)

 The value for 's2_number' has to be greater than 0.

Variable Data type Function
s1_Start INT, WORD starting 16-bit area, source

s2_Number INT, WORD number of words to be copied, source

d_Start INT, WORD starting 16-bit area, destination

The variables s1_Start, s2_Number and d_Start have to be of the same data
type.

For Relay T/C Register Constant
s1_Start WX WY WR WL SV EV DT LD FL -

s2_Number WX WY WR WL SV EV DT LD FL dec. or hex.

d_Start - WY WR WL SV EV DT LD FL -

Description The data block specified by the 16-bit starting area specified by s1_Start and the
number of WORDs specified by s2_Number are copied to the block starting from
the 16-bit area specified by d_Start if the trigger EN is in the ON-state.

 s1_Start = d_Start: data will be recopied to the same data area.

Data types

Operands

Example In this example the function F10_BKMV_NUMBER is programmed in ladder
diagram (LD). The same POU header is used for all programming languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable CopyArray changes from FALSE to TRUE, the function is
carried out. It copies the data block starting at the 16-bit area specified by
s1_Start and the number of WORDs specified by s2_Number to the block
starting from the 16-bit area specified by d_Start.

Data Transfer Instructions

FPWIN Pro Programming

280

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

FPWIN Pro Programming

Data Transfer Instructions

281

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F10_BKMV_OFFSET Block move to an offset from source Steps: 7

This instruction is a modification of the F10_BKMV (see page 277) generated by
the compiler.

Whenever s1_Start and s2_End are in the same data area:

PLC types: Availability of F10_BKMV_OFFSET (see page 925)

Variable Data type Function
s1_Start INT, WORD starting 16-bit area, source

s2_End INT, WORD ending 16-bit area, source

d_Offset INT, WORD offset from s1_Start, destination

The variables s1_Start, s2_End and d_Offset have to be of the same data type.
For Relay T/C Register Constant

s1_Start,
s2_End

WX WY WR WL SV EV DT LD FL -

d_Offset - WY WR WL SV EV DT LD FL dec. or hex.

Description

The data block specified by the 16-bit starting area specified by s1_Start and 16-
bit ending area specified by s2_End are copied to the block starting from the 16-
bit area specified by the offset d_Offset from s1_Start if the trigger EN is in the
ON-state.

 d_Offset = 0: data will be recopied to the same data area.

Data types

Operands

Example In this example the function F10_BKMV_OFFSET is programmed in ladder
diagram (LD). The same POU header is used for all programming languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable CopyArrayInArray changes from FALSE to TRUE, the
function is carried out. It copies the data block starting at the 16-bit area specified
by s1_Start and 16-bit ending area specified by s2_End to the block starting
from the 16-bit area specified by the offset d_Offset from s1_Start.

LD

Data Transfer Instructions

FPWIN Pro Programming

282

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F10_BKMV_NUMBER
_OFFSET

Block move by number to an offset from
source Steps: 7

This instruction is a modification of the F10_BKMV (see page 277) generated by
the compiler.

Whenever d_Offset = 0: data will be recopied to the same data area.

PLC types: Availability of F10_BKMV_NUMBER_OFFSET (see page 925)

 The value for 's2_number' has to be greater than 0.

Variable Data type Function
s1_Start INT, WORD starting 16-bit area, source

s2_Number INT, WORD Number of words to be copied, source

d_Offset INT, WORD starting 16-bit area, destination

The variables s1_Start, s2_Number and d_Offset have to be of the same data
type.

For Relay T/C Register Constant
s1_Start WX WY WR WL SV EV DT LD FL -

s2_Number WX WY WR WL SV EV DT LD FL dec. or hex.

d_Offset - WY WR WL SV EV DT LD FL dec. or hex.

Description

The data block specified by the 16-bit starting area specified by s1_Start and the
number of WORDs specified by s2_Number are copied to the block starting from
the 16-bit area specified by the offset d_Offset from s1_Start if the trigger EN is
in the ON-state.

Data types

Operands

Example In this example the function F10_BKMV_NUMBER_OFFSET is programmed in
ladder diagram (LD). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable CopyArrayInArray changes from FALSE to TRUE, the
function is carried out. It copies the data block starting at the 16-bit area specified
by s1_Start and the number of WORDs specified by s2_Number to the block
starting from the 16-bit area specified by the offset d_Offset from s1_Start.

FPWIN Pro Programming

Data Transfer Instructions

283

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

Data Transfer Instructions

FPWIN Pro Programming

284

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F11_COPY Block copy Steps: 7

The operands d1 and d2 should be:

15 . 12 11 . . 8 7 . . 4 3 . . 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1

15 . 12 11 . . 8 7 . . 4 3 . . 0

[0] 0 0 0 1

[1] 0 0 1 1

[2] 0 1 0 1

[3] 1 0 1 1

[4] 1 0 1 1

[5] 1 0 1 1

source

dest.

PLC types: Availability of F11_COPY (see page 925)

Variable Data type Function
s INT, WORD source 16-bit area

d1 INT, WORD starting 16-bit area, destination

d2 INT, WORD ending 16-bit area, destination

The variables s, d1 and d2 have to be of the same data type.
For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d1, d2 - WY WR WL SV EV DT LD FL -

Description The 16-bit equivalent constant or 16-bit area specified by s is copied to all 16-bit
areas of the block specified by d1 and d2 if the trigger EN is in the ON-state.

 in the same operand
 d1 ≤ d2

Data types

Operands

Example In this example the function F11_COPY is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

FPWIN Pro Programming

Data Transfer Instructions

285

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 (* Copy the value 11 to data_array[3], *)
 (* data_array[4] and data_array[5] *)
 F11_COPY(s:= 11,
 d1_Start=> data_array[3],
 d2_End=> data_array[5]);
END_IF;

Data Transfer Instructions

FPWIN Pro Programming

286

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F15_XCH 16-bit data exchange Steps: 5

15 . . 12 11 . . 8 7 . . 4 . 03 .

d1 0 0 0 1

d2 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1

Bit

PLC types: Availability of F15_XCH (see page 925)

Variable Data type Function
d1 INT, WORD 16-bit area to be exchanged with d2

d2 INT, WORD 16-bit area to be exchanged with d1

The variables d1 and d2 have to be of the same data type.
For Relay T/C Register Constant

d1, d2 - WY WR WL SV EV DT LD FL -

Description The contents in the 16-bit areas specified by d1 and d2 are exchanged if the
trigger EN is in the ON-state.

Data types

Operands

Example In this example the function F15_XCH is programmed in ladder diagram (LD) and
structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F15_XCH(value_1, value_2);
END_IF;

FPWIN Pro Programming

Data Transfer Instructions

287

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F16_DXCH 32-bit data exchange Steps: 5

31 . . 28 27 . . 24 23 . . 20 19 . .16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

d2 0 0 0 0 0 1 1 0 1 1 0 0 0

 32-bit area

BitBit

PLC types: Availability of F16_DXCH (see page 925)

Variable Data type Function
d1 DINT, DWORD 32-bit area to be exchanged with d2

d2 DINT, DWORD 32-bit area to be exchanged with d1

The variables d1 and d2 have to be of the same data type.
For Relay T/C Register Constant

d1, d2 - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Two 32-bit data specified by d1 and d2 are exchanged if the trigger EN is in the
ON-state.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F16_DXCH(value_1, value_2);
END_IF;

Data Transfer Instructions

FPWIN Pro Programming

288

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F17_SWAP Higher/lower byte in 16-bit data exchange Steps: 3

PLC types: Availability of F17_SWAP (see page 925)

Variable Data type Function
d INT, WORD 16-bit area in which the higher and lower bytes are swapped

(exchanged)

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

Description The higher byte (higher 8-bits) and lower bytes (lower 8-bits) of a 16-bit area
specified by d are exchanged if the trigger EN is in the ON-state. 1 byte means 8
bit.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

FPWIN Pro Programming

Data Transfer Instructions

289

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ST IF start THEN
 F17_SWAP(swap_value);
END_IF;

Data Transfer Instructions

FPWIN Pro Programming

290

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F18_BXCH 16-bit blocked data exchange Steps: 7

PLC types: Availability of F18_BXCH (see page 925)

Variable Data type Function
d1 INT, WORD starting 16-bit area of block data 1

d2 INT, WORD ending 16-bit area of block data 1

d3 INT, WORD starting 16-bit area of block data 2

For Relay T/C Register Constant
d1, d2, d3 - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the address of the variables at outputs d1 >
d2

- the data block to be exchanged is larger than
the target area.

Description The function exchanges one 16-bit data block for another. The beginning of the
first data block is specified at output d1 and its end at output d2. Output d3
specifies the beginning of the second data block.

Data types

Operands

Error flags

FPWIN Pro Programming

Data Transfer Instructions

291

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. It exchanges
the data of ARRAY data_field_1 (from the 2nd to the 5th element) with the data of
ARRAY data_field_2 (from the 3rd element on).

LD

ST IF start THEN
 F18_BXCH(
 d1_Start=> d1[2], d2_End=> d1[4], d3_Start=>
d2[1]);
END_IF;

Data Transfer Instructions

FPWIN Pro Programming

292

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F147_PR Parallel printout Steps: 5

Only bit positions 0 to 8 of d are used in the actual printout. ASCII code is output
in sequence starting with the lower byte of the starting area. Three scans are
required for 1 character constant output. Therefore, 37 scans are required until
all characters constants are output.

Since it is not possible to execute multiple F147_PR instructions in one scan, use
print-out flag R9033 to be sure they are not executed simultaneously. If the
character constants convert to ASCII code, use of the F95_ASC (see page 640)
instruction is recommended.

PLC types: Availability of F147_PR (see page 929)

Variable Data type Function
s INT, WORD starting 16-bit area for storing 12 bytes (6 words) of ASCII

codes (source)

d WORD word external output relay used for output of ASCII codes
(destination)

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL -

d - WY - - - - - - - -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the ending area for storing ASCII codes
exceeds the limit

- the trigger of another F147_PR instruction
turns on while one F147_PR instruction is
being executed

R9033 %MX0.903.3 permanently - a F147_PR instruction is being executed

Description Outputs the ASCII codes for 12 characters stored in the 6-word area specified by
s via the word external output relay specified by d if the trigger EN is in the ON-
state. If a printer is connected to the output specified by d, a character
corresponding to the output ASCII code is printed.

Data types

Operands

Error flags

FPWIN Pro Programming

Data Transfer Instructions

293

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

 Connection example

In this example the function F147_PR is programmed in ladder diagram (LD).

The ASCII codes stored in the string PrintOutString are output through word
external output relay WY0 when trigger Start turns on.

Example

GVL In the Global Variable List, you define variables that can be accessed by all
POUs in the project.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Data Transfer Instructions

FPWIN Pro Programming

294

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body
LD

ST IF DF(start) OR PrintOutFlag THEN
 F147_PR(Adr_Of_VarOffs(PrintOutString, 2), Printer);
END_IF;

FPWIN Pro Programming

Data Transfer Instructions

295

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

15.2 Data Transfer Between PLCs and Modules

In This Section:
- F143_IORF (see page 296)
- F12_EPRD (see page 297)
- P13_EPWT (see page 299)
- F150_READ (see page 301)
- F151_WRT (see page 304)

Data Transfer Instructions

FPWIN Pro Programming

296

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F143_IORF Partial I/O update Steps: 5

 • If d1 and d2 are variables and not constants, then the compiler
automatically accesses the variables' values via the index register.

• With input refreshing, WX0 should be specified for d1 and d2.

• With output refreshing, WY0 should be specified for d1 and d2.

PLC types: Availability of F143_IORF (see page 928)

Variable Data type Function
d1 INT, WORD starting word address

d2 INT, WORD ending word address

The same type of operand should be specified for d1 and d2.
For Relay T/C Register Constant
d1 WX WY - WL SV EV DT - FL dec. or hex.

d2 WX WY - WL SV EV DT - FL dec. or hex.

In this example the function F143_IORF is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Description

Data types

Operands

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is carried
out. To update WX10 and WY10 based on the master I/O map configuration, set
d1 = 10 and d2 = 10.

LD

ST

FPWIN Pro Programming

Data Transfer Instructions

297

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F12_EPRD EEPROM read from memory Steps: 11

PLC types: Availability of F12_EPRD

Variable Data type Function
EN BOOL Activation of the function block (when EN has the state

TRUE, the function block will be executed at every PLC
scan)

s1 DINT, DWORD EEPROM start block number

s2 DINT, DWORD Number of blocks to be read (1 block = 64 words/ 2048
words (DTs))

d INT, WORD DT start address for information to be written

ENO BOOL When the function block was executed, ENO is set to
TRUE. Helpful at cascading of function blocks with EN-
functionality

For Relay T/C Register Constant
s1, s2 DWX DWY DWR - DSV DEV DDT - - dec. or hex.

d - - - - - - DT - - -

 PLC specific information

PLC type FP-Sigma FP-X
ROM Flash-ROM

Block size
(1 block)

2048 words

EEPROM start block number 0 to 15

Number of blocks to be read / written each
execution

1 (writing)
1 to 16 (reading)

Write duration
(Additional scan time)

< 100ms each block

Read duration
(Additional scan time)

9.94μs + (1562.6*number of blocks) μs

Max number of writing events

Power down, RUN -> PROG mode
changes are also counted.

10,000

Max read times No limit

Description Using this instruction data will be copied from EEPROM/ Flash-ROM to the
destination area (DT). The copy function is carried out with blocks only. Thus you
can not copy single words. The block size and the number of blocks is shown in
the table "PLC specific information". Also ensure that there at least 64/ 2048 free
data registers (1 block = 64 words/ 2048 words (DTs)) reserved for the
destination area.

Data types

Operands

Data Transfer Instructions

FPWIN Pro Programming

298

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is carried
out. The function reads the first block (= 64 words) after start block number 0
from the EEPROM and writes the information into the data fields from data
field[0] until data field[63].

LD

FPWIN Pro Programming

Data Transfer Instructions

299

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

P13_EPWT EEPROM write to memory Steps: 11

The EEPROM memory is not the same as the hold area. The hold area stores
data in real time. Whenever the power shuts down, the hold data is stored in the
EEPROM memory. The P13_EPWT instruction sends data into the EEPROM
only when the instruction is executed. It also has a limitation of the number of
times you can write to it (see table below). You must make sure that the
P13_EPWT instruction will not be executed more often than the specified number
of writes.

For example, if you execute P13_EPWT with R901A relay (pulse time 0.1s), the
EEPROM will become inoperable after 100,000 * 0.1 sec=10,000 sec (2.8 hours).
However if you want to hold your profile data such as positioning parameters or
any other parameter values that are changed infrequently, you will find this
instruction very useful.

PLC types: Availability of P13_EPWT

 One of the two input variables 's2' or 'd' has to be assigned constant number
value.

Variable Data type Function
EN BOOL Activation of the function block (when EN changes from

FALSE to TRUE, the function block will be executed one
time)

s1 INT, WORD DT start address of the block(s) that you want to save

s2 DINT, DWORD Number of blocks to write (1 block = 64 words/ 2048 words
(DTs))

d DINT, DWORD EEPROM start block number

ENO BOOL When the function block was executed, ENO is set to TRUE.
Helpful at cascading of function blocks with EN-functionality

For Relay T/C Register Constant
s1 - - - - - - DT - - -

s2, d DWX DWY DWR - DSV DEV DDT - - dec. or hex.

 PLC specific information

PLC type FP-Sigma FP-X
ROM Flash-ROM

Block size
(1 block)

2048 words

EEPROM start block number 0 to 15

Number of blocks to be read / written each
execution

1 (writing)
1 to 16 (reading)

Description Using this instruction data will be copied from the data area (DT) to the
EEPROM/ Flash-ROM.

Data types

Operands

Data Transfer Instructions

FPWIN Pro Programming

300

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

PLC type FP-Sigma FP-X
Write duration
(Additional scan time)

< 100ms each block

Read duration
(Additional scan time)

9.94μs + (1562.6*number of blocks) μs

Max number of writing events

Power down, RUN -> PROG mode
changes are also counted.

10,000

Max read times No limit

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is carried
out. The function reads the contents of data field[0] until data field[63] (s2* = 1 =>
1 block = 64 words) and writes the information after start block number 0 into the
EEPROM.

LD

FPWIN Pro Programming

Data Transfer Instructions

301

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F150_READ Data read from intelligent units Steps: 9

The n words of the data stored in the shared memory of the intelligent unit/board
specified by s1 are read from the address specified by s2, and are stored in the
area specified by d of the CPU.

The number of variable arguments at the inputs is limited by the available index
registers of the PLC.

Intelligent unit without bank

Specify the slot number in which the target intelligent unit has been installed.

Intelligent unit with bank

Specify the slot number (hex. constant) in which the target intelligent unit has
been installed, and the bank number (hex. constant).

Reference: Intelligent unit with bank

 Name Order Number

 FP3 expansion data memory
unit

AFP32091
AFP32092

PLC types: Availability of F150_READ (see page 929)

Description Reads data from the shared memory in an intelligent module.

Specifying
s1

Data Transfer Instructions

FPWIN Pro Programming

302

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Variable Data type Function
s1 INT, WORD Specifies the bank/slot number in the shared memory of the

intelligent module

s2 INT, WORD Specifies the starting address in the shared memory of the
intelligent module (source data address)

n INT Specifies the number of words to be read

d INT, WORD Starting address in the CPU for storing data read (destination
address)

For Relay T/C Register Constant
s1 WX WY WR WL SV EV DT LD FL dec. or hex.

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- s1 exceeds the limit of specified range
- the data read exceeds the area of d

Data types

Operands

Error flags

Example In this example the function F150_READ is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body Reads 4 words of data stored in the addresses starting from 19, specified in
AddrDataToRead, of the intelligent unit's shared memory (located in slot 3).
Then it stores them in the array DestAddrCPU, when Start turns on.

FPWIN Pro Programming

Data Transfer Instructions

303

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F150_READ(s1_BankSlot:= SlotNo,
 s2_Start:= AddrDataToRead,
 n_Number:= NoWordsToRead,
 d_Start:= DestAddrCPU[0]);
END_IF;

Data Transfer Instructions

FPWIN Pro Programming

304

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F151_WRT Data read from intelligent units Steps: 9

Writes n words of the initial data from the area specified by s2 of the CPU to the
address specified by d of the shared memory of the intelligent unit specified by
s1.

The number of variable arguments at the inputs is limited by the available index
registers of the PLC.

Intelligent unit without bank

Intelligent unit with bank

Specify the slot number (hex. constant) in which the target intelligent unit has
been installed, and the bank number (hex. constant).

Reference: Intelligent unit with bank

 Name Order Number

 FP3 expansion data memory
unit

AFP32091
AFP32092

PLC types: Availability of F151_WRT (see page 929)

Description Writes data from the shared memory into the memory of an intelligent unit.

Specifying
s1

Specify the slot number in which the target intelligent unit has been installed.

FPWIN Pro Programming

Data Transfer Instructions

305

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Variable Data type Function
s1 INT, WORD Specifies the bank/slot number in the shared memory of the

intelligent module

s2 INT, WORD Starting address for data in the shared memory of the CPU

n INT Specifies the number of words to be written to the shared
memory

d INT, WORD Specifies the starting address in the intelligent unit for storing
data written (destination address)

For Relay T/C Register Constant
s1 WX WY WR WL SV EV DT LD FL dec. or hex.

s2 - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

d WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- s1 exceeds the limit of specified range
- the data read exceeds the area of d

Data types

Operands

Error flags

Example In this example the function F151_WRT is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Data Transfer Instructions

FPWIN Pro Programming

306

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Five words of data defined in CPUDataToWrt are written into the addresses
starting from 0 to 4 of the intelligent unit's shared memory (located in slot 0) when
Start turns on.

Body

LD

ST IF start THEN
 F151_WRT(s1_BankSlot:= SlotNo,
 s2_Start:= CPUDataToWrt[0],
 n_Number:= NoWordsToWrite,
 d_Start:= DestinationAddr);
END_IF;

FPWIN Pro Programming

Data Transfer Instructions

307

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

15.3 Data Transfer Between PLCs and Other Devices (via
COM Port or Network)

15.3.1 Transmission and Reception of Data via COM Ports

For detailed information on installation and wiring, please refer to the hardware
manuals of the corresponding units.

15.3.1.1 Description of the Communication Modes

Data transmission and reception can be carried out using the following modes:

MEWTOCOL-COM Slave (Computer Link)
MEWTOCOL-COM Slave (Computer Link) is used for communication with a computer or
another PLC using the MEWTOCOL protocol. Instructions (command messages) are
transmitted to the PLC, and the PLC responds (sends response messages) based on the
instructions received.

The proprietary MEWNET protocol called MEWTOCOL-COM is used to exchange data
between the computer and the PLC. There are two different communication methods, 1:1 and
1:N communication. A 1:N network is called a C-NET. If the PLC is used as a slave in a 1:N
network (C-NET), the system register entry 'COM port unit number' specifies the PLC's station
number in the network.

The PLC answers automatically to commands received from the computer, so no program is
necessary on the PLC side in order to carry out communication.

Program Controlled Mode
In program controlled serial communication, data is sent and received via the COM ports to
and from an external device, e.g. an imagechecker or bar code reader.

The PLC can act as a master or slave using any protocol. The PLC program handles the
protocol.

Sending the data (see page 321)
For all PLC types The instruction F159_MTRN (see page 324) can be used to send the data.

IsTransmissionDone (see page 311) can be used to detect the end of the transmission.

Receiving the data (see page 327)
For all PLC types The instructions IsReceptionDone (see page 312) or IsReceptionDoneByTimeOut (see

page 314) should be used to detect the end of the data received. Both instructions should
also be used to start the analysis of the data received.

Data Transfer Instructions

FPWIN Pro Programming

308

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

COM Port of the
CPUs

Receiving the data is done automatically in a reception buffer (see page 329), which can
be configured by the system registers 'COM Port data register starting address for receive
buffer' and 'COM Port receive buffer capacity'.

COM Port of the
MCUs

It is possible to copy the data received to a reception area using the instruction
F161_MRCV (see page 330). This should be done only after IsReceptionDone (see page
312) or IsReceptionDoneByTimeOut (see page 314) has evaluated the data. (Polling the
data using F161_MRCV does not work correctly!)

Clear the reception buffer (see page 331) and reset the reception done flags
COM Port of the
CPUs

A subsequent execution of the send instruction F159_MTRN (also with NumberOfBytes
equal to zero) clears the reception buffer and resets the "reception done flag". The COM
port is again ready to receive subsequent data.

COM Port of the
MCUs

The use of F161_MRCV also implicitly clears the reception buffer and resets the
"reception done flag". The COM port is again ready to receive subsequent data.

PLC Link Mode
In a PLC link, data is shared with all PLCs connected via MEWNET using dedicated internal
relays called link relays (L) and data registers called link registers (LD).

If the link relay contact for one PLC goes on, the same link relay also goes on in each of the
other PLCs connected to the network. Likewise, if the contents of a link register are rewritten
in one PLC, the change is made in the same link register of each of the other PLCs connected
to the network.

The status of the link relays and link registers in any one PLC is fed back to all of the other
PLCs connected to the network. Hence control of data that needs to be consistent throughout
the network, e.g. target production values and type codes, can easily be implemented to
coordinate the data, and the data of all units is updated at the same time.

Modbus RTU Master/Slave
The PLC can act as a master or slave using the MODBUS RTU protocol.

It works as a master using the commands F145_MODBUS_WRITE_DATA (see page 333)
and F146_MODBUS_READ_DATA (see page 343).

Otherwise the PLC is configured as a slave for communication with a computer or another
PLC. The PLC answers automatically to commands received from the master, so no program
is necessary on the PLC side in order to carry out communication.

Modbus RTU Slave
MODBUS RTU Slave is used for communication with a computer or another PLC using the
MODBUS RTU protocol. Instructions (command messages) are transmitted to the PLC, and
the PLC responds (sends response messages) based on the instructions received.

The PLC answers automatically to commands received from the master, so no program is
necessary on the PLC side in order to carry out communication.

FPWIN Pro Programming

Data Transfer Instructions

309

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

15.3.1.2 Setting the Communication Parameters

CPU: Setting the communication parameters for the COM ports

 During PROG mode: - via system registers (see page 309)

 During RUN time: - F159 (see page 332) (switch communication mode with 16#8000)
- SYS1 (see page 806) with FP-Sigma and FP-X
- SYS2 (see page 818) with FP-Sigma and FP-X

Setting the CPU's COM Ports in PROG Mode via System Registers
For a general description on setting the system registers, please refer to setting the system
registers.

1. Choose "COM port" under "System Register" from the navigator
The number of the system register for the respective settings may vary according
to the PLC type used. Please refer to the comment under "Additional Information"
for the proper settings.

2. Set the system register "COM port selection" to "Program controlled"
For an example on changing the use of the COM port with the programming
software, refer to switching system registers during RUN mode (see page 332).
Take into account that FP-Sigma has two COM ports.

Possible settings of system register "COM port selection":

- MEWTOCOL-COM Slave
- Program controlled
- PLC Link (MEWNET-W0/W)

3. Set the transmission format
Set the transmission format parameter so that the "Transmission Format Setting"
in the respective system register matches the external device connected to the
COM port.

4. Set the initial baud rate
Set the transmission speed so that the "COM Port Baud Rate Setting" in the
respective system register matches the external device connected to the COM
port.

Setting the CPU's COM Ports in RUN Mode with SYS1 (FP-Sigma, FP-X)
Please refer to the description of SYS1, communication condition setting (see page 806).

Data Transfer Instructions

FPWIN Pro Programming

310

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Setting the CPU's COM Ports in RUN Time with SYS2 (FP-Sigma, FP-X)
Please refer to the description of SYS2 (see page 818).

15.3.1.3 Getting the Communication Parameters and Statuses

In This Section:
- IsTransmissionDone (see page 311)
- IsReceptionDone (see page 312)
- IsReceptionDoneByTimeout (see page 314)
- IsCommunicationError (see page 315)
- PlcLink (see page 316)
- IsProgramControlled (see page 317)
- IsModbusNotActive (see page 318)
- IsModbusError (see page 319)

FPWIN Pro Programming

Data Transfer Instructions

311

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

IsTransmissionDone Returns the value of the "Transmission
Done" flag

This flag varies depending on the PLC type:

PLC Port
number

Port name Flag System variable

0 TOOL port
(not for FP-Sigma 12k)

R903F sys_bIsToolPort
TransmissionDone

1 COM1 port R9039 sys_bIsComPort1
TransmissionDone

FP-Sigma,
FP-X

2 COM2 port R9049 sys_bIsComPort2
TransmissionDone

For detailed information on using system variables, please refer to data transfer
to and from special data registers (see page 4).

Description This function returns the value of the "Transmission Done" flag of the PLC's
serial communication interface.

Example

Data Transfer Instructions

FPWIN Pro Programming

312

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

IsReceptionDone Returns the value of the "Reception Done"
flag

This flag varies depending on the PLC type:

PLC Port
number

Port name Flag System variable

0 TOOL port
(not for FP-Sigma 12k)

R903E sys_bIsToolPort
ReceptionDone

1 COM1 port R9038 sys_bIsComPort1Rec
eptionDone

FP-Sigma,
FP-X

2 COM2 port R9048 sys_bIsComPort2Rec
eptionDone

For detailed information on using system variables, please refer to data transfer
to and from special data (see page 4)registers.

Operation of the IsReceptionDone Flag:

When the "reception done flag" is off and data is sent from an external device,
operation will proceed as follows. (After RUN, "reception done flag" is off during
the first scan.)

The data received is stored in order in the reception data storage area of
reception buffer beginning from the lower byte of the second word of the area.
Start and end codes will not be stored.
With each one byte received, the value in the leading address of the reception
buffer is incremented by 1.

Description This function returns the value of the "Reception done flag" of the PLC's serial
communication interface.

Example

FPWIN Pro Programming

Data Transfer Instructions

313

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

When an end code is received, the "reception done flag" goes on. After this, no
further reception of data is allowed.

To continue receiving data, please refer to clearing the reception buffer (see
page 331).

Data Transfer Instructions

FPWIN Pro Programming

314

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

IsReceptionDoneBy
Timeout Evaluates a "Reception Done" condition

If a CPU's COM port is selected, the first word of the ReceiveBuffer (see page
329), which indicates the number of bytes received, is evaluated. If it does not
increment within the time specified by the input parameter TimeOutForCPU, the
output IsDone is set.

This flag is evaluated depending on the PLC type:

PLC Port
number

Port name Flag/Condition

FP-Sigma - - NoOfBytesReceived after
TimeOutForCPU

Description Depending on the PLC type and the input parameter Port, this function evaluates
a "Reception Done" condition if no end terminator in the received data stream is
expected.

If the MCU's COM port is selected, the MCU's "reception done (see page 312)
flag" is evaluated. The timeout for this COM port must be entered via the MCU
dialog or during RUN mode via F159_MWRT_PARA.

Example

FPWIN Pro Programming

Data Transfer Instructions

315

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

IsCommunication
Error

Returns the value of the "Communication
Error" flag

This flag varies depending on the PLC type:

PLC Port
number

Port name Flag System variable

0 TOOL port
(not for FP-Sigma 12k)

R900E sys_bIsToolPortCommunic
ationError

1 COM1 port R9037 sys_bIsComPort1Commun
icationError

FP-Sigma,
FP-X

2 COM2 port R9047 sys_bIsComPort2Commun
icationError

For detailed information on using system variables, please refer to data transfer
to and from special data (see page 4)registers.

Description This instruction returns the value of the "Communication Error" flag of the PLC's
serial communication interface.

Example

Data Transfer Instructions

FPWIN Pro Programming

316

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

IsPlcLink Returns the value of the "PLC Link" flag

This flag varies depending on the PLC type:

PLC Port
number

Port name Flag System variable

0 TOOL port
(not for FP-Sigma 12k)

FALSE sys_bIsComPort1PlcLink

1 COM1 port R9041 sys_bIsComPort1PlcLink

FP-Sigma,
FP-X

2 COM2 port FALSE (* PLC Link is possible but there is
no IsPlcLink flag which can be evaluated)

For detailed information on using system variables, please refer to data transfer
to and from special data (see page 4)registers.

Description This instruction returns the value of the "PLC Link" flag of the PLC's serial
communication interface.

Example

FPWIN Pro Programming

Data Transfer Instructions

317

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

IsProgramControlled Returns the value of the "Program
Controlled" flag

This flag varies depending on the PLC type:

PLC Port
number

Port name Flag System variable

0 TOOL port
(not for FP-Sigma
12k)

R9040 sys_bIsToolPortProgramContr
olled

1 COM1 port R9032 sys_bIsComPort1ProgramCon
trolled

FP-Sigma,
FP-X

2 COM2 port R9042 sys_bIsComPort2ProgramCon
trolled

For detailed information on using system variables, please refer to data transfer
to and from special data (see page 4)registers.

Description This instruction returns the value of the "Program Controlled" flag of the PLC's
serial communication interface.

Example

Data Transfer Instructions

FPWIN Pro Programming

318

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

IsModbusNotActive Returns the value of the
"IsModbusNotActive" flag

This flag varies depending on the PLC type:

PLC Port
number

Port name Flag System variable

0 TOOL port
(not for FP-Sigma 12k)

TRUE -

1 COM1 port R9044 sys_bIsComPort1ModbusNotA
ctive

FP-Sigma,
FP-X

2 COM2 port R904A sys_bIsComPort2ModbusNotA
ctive

For detailed information on using system variables, please refer to data transfer
to and from special data (see page 4)registers.

Description This instruction returns the value of the "Modbus Not Active" flag of the PLC's
serial communication interface.

Example

FPWIN Pro Programming

Data Transfer Instructions

319

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

IsModbusError Returns the value of the "Modbus Error"
flag

This flag varies depending on the PLC type:

PLC Port
number

Port name Flag System variable

0 TOOL port
(not for FP-Sigma 12k)

FALSE -

1 COM1 port R9045 sys_bIsComPort1Mo
dbusError

FP-Sigma,
FP-X

2 COM2 port R904B sys_bIsComPort2Mo
dbusError

For detailed information on using system variables, please refer to data transfer
to and from special data (see page 4)registers.

Description This instruction returns the value of the "Modbus Error" flag of the PLC's serial
communication interface.

Example

Data Transfer Instructions

FPWIN Pro Programming

320

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

15.3.1.4 Getting the Communication Parameters and Statuses in RUN Mode via
Special Relays and Special Data Registers from the CPU's COM Ports

Address Name Description

COM1 COM2

R9032

R9042

Program controlled
mode flag

Turns on when the program controlled communication function is
being used.
Goes off when the MEWTOCOL-COM Slave or the PLC Link
(MEWNET-W0/W) function is being used.

R9037

R9047

communication error
flag

Goes on if a transmission error occurs during data
communication.
Goes off when a request is made to send data using the
F159_MTRN instruction.

R9038

R9048

reception done flag Turns on when the terminator is received during program
controlled serial communication.

R9039

R9049

transmission done flag Goes on when transmission has been completed in program
controlled serial communication.
Goes off when transmission is requested in program controlled
serial communication.

R9041 - PLC link flag Turns on while the PLC Link (MEWNET-W0/W) is used.

15.3.1.5 Data Transfer in Program Controlled Mode

For all PLC types and all COM ports (including the MCU's COM port) the following instructions
are available:

• Transmission (see page 321) and reception (see page 327) in program controlled
mode using the instructions F159_MTRN (see page 324) and F161_MRCV (see page
330)

• IsReceptionDone (see page 312), IsTransmissionDone (see page 311) and
IsReceptionDoneByTimeOut (see page 314)

F144_TRNS generates different code depending on which PLC type you use. To
get PLC-independent code, do not use F144_TRNS or the explicit reception or
transmission done flags (R9038...). Instead use F159_MTRN, F161_MRCV,
IsReceptionDone, etc.

In program controlled serial communication, data is sent and received via the COM ports to
and from an external device, e.g. an imagechecker or bar code reader.

The PLC can act as a master or slave using any protocol. The PLC program handles the
protocol.

FPWIN Pro Programming

Data Transfer Instructions

321

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Sending the data (see page 321)
For all PLC types The instruction F159_MTRN (see page 324) can be used to send the data.

IsTransmissionDone (see page 311) can be used to detect the end of the transmission.

Receiving the data (see page 327)
For all PLC types The instructions IsReceptionDone (see page 312) or IsReceptionDoneByTimeOut (see

page 314) should be used to detect the end of the data received. Both instructions should
also be used to start the analysis of the data received.

COM Port of the
CPUs

Receiving the data is done automatically in a reception buffer (see page 329), which can
be configured by the system registers 'COM Port data register starting address for receive
buffer' and 'COM Port receive buffer capacity'.

COM Port of the
MCUs

It is possible to copy the data received to a reception area using the instruction
F161_MRCV (see page 330). This should be done only after IsReceptionDone (see page
312) or IsReceptionDoneByTimeOut (see page 314) has evaluated the data. (Polling the
data using F161_MRCV does not work correctly!)

Clear the reception buffer (see page 331) and reset the reception done flags
COM Port of the
CPUs

A subsequent execution of the send instruction F159_MTRN (also with NumberOfBytes
equal to zero) clears the reception buffer and resets the "reception done flag". The COM
port is again ready to receive subsequent data.

COM Port of the
MCUs

The use of F161_MRCV also implicitly clears the reception buffer and resets the
"reception done flag". The COM port is again ready to receive subsequent data.

Transmission
To transmit, write the transmission data to the data table, select it with an F159_MTRN (see
page 324) instruction, and execute.

The n bytes of the data stored in the data table with the starting area specified by s are
transmitted from the COM port or RS232C port to an external device by serial transmission.

A start code and end code can be automatically added before transmission.

Data Transfer Instructions

FPWIN Pro Programming

322

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Data table for transmission
Data register areas beginning with the area selected by s are used as the data table for
transmission.

When the F159_MTRN (see page 324) instruction is executed, the number of data bytes not
yet transmitted is stored in the starting area of the data table.

Operation:
Write the transmission data to the transmission data storage area selected with s (from the
second word on). If the "transmission done (see page 311) flag" is on and the execution
condition (trigger) for the F159_MTRN (see page 324) instruction turns on, operation will be
as follows:

1. n is preset in s (the number of bytes not yet transmitted). Furthermore, the "reception
done (see page 312) flag" is turned off and the number of bytes received is cleared to
zero.

2. The data in the data table is transmitted in order from the lower byte.
- As each byte is transmitted, the value in s (the number of bytes not yet

transmitted) decrements by 1.
- During transmission, the "transmission done flag" flag goes off.
- If the start code has been set to "STX" in the system registers, the start code will

be automatically added to the beginning of the data.
- There is no restriction on the number of bytes n that can be transmitted.

Following the initial area of the data s, transmission is possible up to the data
range that can be used by the data register.

3. The end code selected is automatically added to the end of the data. (Do not include

an end code in the transmission data.)

4. When the specified quantity of data has been transmitted, the value in s (the number
of bytes not yet transmitted) will be zero and the "transmission done flag" will go on.

FPWIN Pro Programming

Data Transfer Instructions

323

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

The F159_MTRN instruction cannot be executed and the "transmission done
flag" is not turned on unless the CS pin of the COM port (RS232C) is on. If the
remote station does not support the CTS signal, be sure to bridge the CS and
and RS pins.

Data Transfer Instructions

FPWIN Pro Programming

324

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F159_MTRN Serial Data Communication to CPU or MCU
Port Steps: 7

Please refer to the general description of transmission and reception of data (see
page 307).

PLC types: Availability of F159_MTRN (see page 929)

Description This instruction is used to send data when an external device (computer,
measuring instrument, bar code reader, etc.) has been connected to the
specified RS232C port. If applied to the CPU's COM port, it also clears the
receive buffer (see page 331), resets the "reception done flag" and allows further
reception of data.

Example

FPWIN Pro Programming

Data Transfer Instructions

325

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Variable Data type Function
s_Start WORD First element of the data table

n_Number INT, WORD Bytes to send:
- Positive value: the terminal code is added in transmission.
- Negative value: the terminal code is not added in transmission.
- In case of 16#8000, the communication mode of the serial

interface specified in transmission is changed.

d_Port constant Specification of the slot number and port number of the MCU unit to
which the data is transmitted.

FP-X:
0: Tool port
1: First port on the CPU
2: Second port on the CPU

FP-Sigma:
1: First port on the CPU
2: Second port on the CPU

Other PLCs:
The command will be compiled to F144_TRNS, which works on the
COM port of the CPU (the parameter d_Port will be ignored)

For Relay T/C Register Constant
s_Start WX WY WR WL SV EV DT LD FL -

n_Number WX WY WR WL SV EV DT LD FL dec. or hex.

d_Port - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the specified address using the index modifier
exceeds a limit.

- the transmitted byte number specified by
'n_Number' is outside of the specified area.

- 16#8000 is designated in the PC (PLC) link
mode.

Flags only for the MCU:
- the MCU unit does not exist at the slot no.

specified by 'd_Port'.

Data types

Operands

Error flags

Data Transfer Instructions

FPWIN Pro Programming

326

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example the characters of the the string SendString are transmitted.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable SendStringData is set to TRUE, the function F10_BKMV
copies the characters from the string SendString to the buffer SendBuffer
beginning at SendBuffer[1]. To get the first characters, an offset of 2 has to be
added to the header of the string. Make sure that the send buffer is big enough
for all the data to be sent. To determine its size you must take into account that
two characters of the string SendString can be copied into each element of the
array SendBuffer. SendBuffer[0] remains reserved to show the number of bytes
not yet transmitted by the instruction F159_MTRN.

LD

ST if (DF(SendStringData)) then
 (* Copy all characters of the SendString to the
SendBuffer from position 1 *)
 F10_BKMV(s1_Start := Adr_Of_VarOffs(Var := SendString,
Offs := 2),
 s2_End := AdrLast_Of_Var(SendString),
 d_Start => SendBuffer[1]);
 (* Send the data of the SendBuffer via the COM Port 2
of the MCU unit in slot 3 *)
 (* In SendBuffer[0] the number of bytes not yet
transmitted is stored *)
 F159_MTRN(s_Start := SendBuffer[0], n_Number :=
LEN(SendString), d_Port := 16#0302);
end_if;

FPWIN Pro Programming

Data Transfer Instructions

327

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Further information:

Reception
Reception is controlled by the "reception done (see page 312) flag". When this flag is off, the
data sent to the COM port or RS232C port is stored in the reception buffer (see page 329)
selected in system registers 417 and 418. When an F159_MTRN (see page 324) instruction is
executed, the "reception done flag" goes off.

The number of the system register for the respective settings may vary
according to the PLC type used.

Data sent from the external device connected to the COM port or RS232C port will be stored
in the data register areas set as the reception buffer in system registers 417 and 418.

Reception buffer

Each time data is received, the amount of data received (number of bytes) is stored as a
count in the leading address of the reception buffer. The initial value is zero.

The data received is stored in order in the reception data storage area beginning from the
lower byte of the second word of the area.

IsTransmissionDone (see page 311)

Data Transfer Instructions

FPWIN Pro Programming

328

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the eight characters A, B, C, D, E, F, G and H (8 bytes of data) are
received from an external device via the COM port of the CPU.

The system register settings for this example are as follows:

- System register 417: 200
- System register 418: 4

When reception of data from an external device has been completed, the "reception
done (see page 312) flag" (in this example R9038) goes on and further reception of
data is not allowed.

To continue receiving data please refer to Clearing the Reception Buffer (see page
331).

 For repeated reception of data, refer to the following procedure.

1. Receive data

2. Reception completed ("reception done flag" is on, Reception: not allowed)

3. Process received data

4. Execute F159_MTRN instruction ("reception done flag" is off, Reception: enable)

5. Receive further data

FPWIN Pro Programming

Data Transfer Instructions

329

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Setting the Reception Buffer for the CPU COM Port

The numbers of the system registers for the respective settings may vary
according to the PLC type used.

1. Setting the reception buffer for the CPU's COM port
All areas of the data register are initially set for use as the reception buffer. To
change the reception buffer, set the starting area number in system register 417
and the size (number of words: max. 1000) in system register 418.

The reception buffer will be as follows:

2. Setting the reception buffer for FP-Sigma's COM ports:
COM1 port: 416, 417

COM2 port: 418, 419

Data Transfer Instructions

FPWIN Pro Programming

330

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F161_MRCV Read Serial Data from the MCU's COM Port Steps: 7

The number of bytes received is stored in the initial address specified by
d1_start of the receive buffer. If the data received exceeds the ending address
specified by d2_end, an operation error is detected. The data which has been
received up to the d2_end will be stored. It (see page 331) also clears the
receive buffer, resets the "reception done flag" and allows further reception of
data.

Data table (receive buffer)

Example:

Description The received data from external equipment is copied to the receive buffer.

FPWIN Pro Programming

Data Transfer Instructions

331

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Variable Data type Function
s_Port Constant Specification of the slot number (high byte) and port number (low

byte) of the MCU unit to which the data is transmitted.
16#xx01: COM1 of the MCU module in slot 16#xx
16#xx02: COM2 of the MCU module in slot 16#xx

d1_Start ARRAY of
INT

Initial address of the receive buffer in which the received data is
stored.

d2_End ARRAY of
INT

Ending address of the receive buffer in which the received data is
stored.

For Relay T/C Register Constant
s_Port WX WY WR WL SV EV DT LD FL dec. or hex.

d1_Start - WY WR WL SV EV DT LD FL -

d2_End - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the specified address using the index
modifier exceeds a limit.

- the MCU unit does not exist at the slot no.
specified by 's_Port'.

- the communication port specified by 's_Port'
does not exist.

Clearing the Reception Buffer

 COM Port of the CPU

When F159_MTRN (see page 324) is executed, the "reception done (see page
312) flag" is turned off, the received byte number is reset to zero and the buffer
can receive new data.

To clear the reception buffer without sending new data, you can execu (see page
324)te F159_MTRN with the number of bytes set to zero.

 You can only execute F159_MTRN with the number of bytes equal to zero for the COM
ports of a CPU; otherwise an operation error will occur.

Data types

Operands

Error flags

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Data Transfer Instructions

FPWIN Pro Programming

332

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

The default vaule of the variable n_Number is set to 16#8000. This value
changes during the execution of F159_MTRN the settings of the COM port from
"Program Controlled [General Purpose]" to "MEWTOCOL-COM Slave [Computer
Link]" and vice versa.

LD
Body

ST
Body

if (DF(ClearTheReceiveBuffer)) then
 (* Clears the receive buffer of the COM1 port of the
FP-SIGMA *)
 F159_MTRN(s_Start := wDummy, n_Number := 0, d_Port := 1);
end_if;

Example In this example the function F159_MWRT is programmed in ladder diagram (LD)
and structured text (ST) to toggle between program controlled and MEWTOCOL-
COM Slave mode.

POU
Header
and LD

Body

In this progam, the communication mode is changed by the program in RUN
mode, depending on whether the communication mode flag R9032 is set or not.

ST IF (DF(bGeneralPurposeMode) AND NOT R9032 OR
 DF(bComputerLinkMode) AND R9032)
THEN
 (* Change the communication mode *)
 F159_MTRN(s_Start:= wdummy, n_Number:= 16#8000,
d_port:= 1);
END_IF;

FPWIN Pro Programming

Data Transfer Instructions

333

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Setting the Parameter 'Port'
Data transmission/reception is possible via the following ports of the PLC:

• COM port(s) of the CPU (the FP-Sigma has two COM ports)

• COM ports of the MCU
For all communication instructions (F159_MTRN (see page 324), F161_MRCV (see page
330), IsTransmissionDone (see page 311), IsReceptionDone (see page 312)) in program
controlled mode, these ports can be specified using the parameter 'Port' with the following
settings:

PLC Type 'Port' Explanation
1 First COM port on the CPU FP-Sigma

 2 Second COM port on the CPU

15.3.1.6 Data Transfer via Modbus RTU Master/Slave Mode (FP-X)

In This Section:
- F145_MODBUS_WRITE_DATA (see page 334)
- F146_MODBUS_READ_DATA (see page 343)

Data Transfer Instructions

FPWIN Pro Programming

334

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F145_MODBUS_
WRITE_DATA

Write Data in MODBUS RTU Master/Slave
Mode Steps:

Use this instruction to write data to a slave from a master via the serial port
(COM1 or COM2). Both master and slave must be configured in Modbus RTU
master/slave mode (see page 308). The slave will automatically be enabled to
handle Modbus commands 05, 06, 15 and 16, i.e. you do not need to configure
the slave.

The data specfied by s2_MasterStartAddr for the master is written to the slave
area specified by d_SlaveStartAddrType and d_SlaveStartAddrOffs. The 2
words in s1_ControlData determine whether words or bits are sent to the slave,
the slave's unit number and the slave's COM port (1 or 2).

PLC types: Availability of F145_MODBUS_WRITE_DATA (see page 928)

Variable Data type Function
s1_ControlData DWORD Stores control data.

s2_MasterStartAddr ANY Starting master address that stores the data to be
written to the slave.

d_SlaveStartAddrType ANY16 Address type in the slave to which data is written, e.g.
DT, Y, R, WY, etc. The address must be fixed at 0.

d_SlaveStartAddrOffs ANY16 The offset for the starting slave address whose type is
defined by d_SlaveStartAddrType and to which the data
is written.

For Relay T/C Register Constant
s1 DWX DWY DWR DWL DSV DEV DDT DLD DFL -

s2 WX WY WR WL - - DT LD FL

d - WY WR - - - DT - - -

d - - - - - - - - - dec or hex

Description

Data types

Operands

FPWIN Pro Programming

Data Transfer Instructions

335

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

The control data is specified by s1_ControlData as follows:

1. Specify the transmission unit and transmission method with the lower
byte of s1_ControlData.
If data is to be sent in word units, specify the data volume; if it is to be
sent in bit units, specify the position of the target bit. (A maximum of
127 (16#7F) word units can be sent because the transmission range
allows up to 254 bytes.)

2. Specify the slave unit with the higher byte of s1_ControlData.
Specify the unit number of the slave unit. 16#00 specifies a global
transmission (no response). Specify either COM1 or COM2. 16#0 is
fixed for the route no.

3. Specify the memory area of the master unit with s2_MasterStartAddr
in which the data to be sent is stored.

4. Specify the memory area of the slave with d_SlaveStartAddrType
and d_SlaveStartAddrOffs in combination. Specify 0 for the device
no. of d_SlaveStartAddrType. For example: when
d_SlaveStartAddrType: DT0 and d_SlaveStartAddrOffs: 100 →
DT100.

Modbus
command

The Modbus command is created according to the operands specified by
s1_ControlData, s2_MasterStartAddr and d_SlaveStartAddrType. The
following Modbus commands are used: 05 (see page 337) (to write one bit to Y,
R), 06 (see page 338) (to write one word to DT), 15 (see page 339) (to write
multiple bits to Y, R) and 16 (see page 341) (to write multiple words to DT).
When the transmission is executed, 2 bytes of CRC are added to the end after
the Modbus command has been created.

Data Transfer Instructions

FPWIN Pro Programming

336

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 permanently

- The control data of s1_ControlData is a value
outside of the specified range.

- The number of words specified by s1_ControlData
causes the area of s2_MasterStartAddr or
d_SlaveStartAddrType to be exceeded when word
unit transmission is being used.

- d_SlaveStartAddrType + d_SlaveStartAddrOffs
exceeds the memory type area available.

- The Modbus mode has not been specified for the
COM port of the control data specified by the higher
byte of s1_ControlData.

- The area of d_SlaveStartAddrType is DT in bit unit
transmission.

- The device no. of d_SlaveStartAddrType is not 0.

R9044: COM1
R904A: COM2

0: Execution inhibited (SEND/RECV instruction being executed)
1: Execution enabled

R9045 (COM1) 0: Completed normally
1: Completed with error (The error code is stored in DT90045.)

DT90124 (COM1) If the transmission has been completed with an error (R9045 is ON),
the contents of the error (error code) are stored.

R904B (COM2) 0: Completed normally
1: Completed with error (The error code is stored in DT90125.)

DT90125 (COM2) If the transmission has been completed with an error (R904B is ON),
the contents of the error (error code) are stored.

Error code Description
16#73 Time-out: waiting for response

Error flags

Precautions
during prog.

 It is not possible to execute multiple F145_MODBUS_WRITE_DATA
and F146_MODBUS_READ_DATA instructions for the same
communication port simultaneously. The program should be set up
so that these instructions are executed when the SEND/RECV
execution enabled flag (R9044: COM1/R904A: COM2) is ON.

 The SEND (i.e. F145_MODBUS_WRITE_DATA) instruction only
requests that data be sent, but the actual processing takes place
when the ED instruction is executed. The SEND/RECV execution
end flag (R9045: COM1/R904B: COM2) can be used to check
whether or not the transmission has been completed.

 For information on the contents of error codes, refer to the FP-X
User's Manual or Control FPWIN Pro documentation. If the error
code is 16#73, a communication time-out error has occurred. The
time-out length can be set from 10.0 ms to 81.9 seconds (in units of
10 ms) using system register 32. The default value is 10 seconds.

 For global transmission (the transmission performed by specifying
16#00 for the unit no.), the program should be set up so that the
transmission is executed after the maximum scan time has elapsed.

 The F145 or F146 instruction cannot be executed if the target
address is a special internal relay (from R9000) or a special data
register (from DT90000).

FPWIN Pro Programming

Data Transfer Instructions

337

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Command for
Function Code 05 Write Single Bit to Y or R

Description For example, this command transmits a single bit to a specified bit of the slave
unit via COM1.

Example In this example the function F145 is programmed in ladder diagram (LD).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The bit b0 of wWordWithSingleBits is written to Y11 (bit no. 1 of word WY1) of
slave unit no. 7 (16#7) via COM1.

LD

Data Transfer Instructions

FPWIN Pro Programming

338

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Command for
Function Code 06 Write Single Word to DT

Description For example, the command writes a single word to the specified data register of
the remote unit via COM1.

Example In this example the function F145 is programmed in ladder diagram (LD).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The value of wWord is written to DT1000 of slave unit no. 7 (16#7) via COM1.

LD

FPWIN Pro Programming

Data Transfer Instructions

339

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Command for
Function Code 15 Write Multiple Bits to Y or R

Description For example, the command writes 64 bit values to the specified data area of the
slave unit no. 7 via COM1.

Example In this example the function F145 is programmed in ladder diagram (LD).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The 64 bit values of g_wWordsWithMultipleBits are written to Y0-Y3F (i.e.
beginning at bit 0 of word WY0) of slave unit no. 7 (16#7) via COM1.

Data Transfer Instructions

FPWIN Pro Programming

340

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

FPWIN Pro Programming

Data Transfer Instructions

341

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Command for
Function Code 16 Write Multiple Words to DT

Description For example, the command transmits 3 words to the specified data area of slave
unit no. 7 via COM1.

Example In this example the function F145 is programmed in ladder diagram (LD).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The 3 values of wWords are written to DT500-DT502 of the slave unit no. 7
(16#7) via COM1.

Data Transfer Instructions

FPWIN Pro Programming

342

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

FPWIN Pro Programming

Data Transfer Instructions

343

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F146_MODBUS_
READ_DATA Read Data in MODBUS RTU Master/Slave Mode Steps:

Use this instruction for a master to request data from a slave via the serial port
(COM1 or COM2). Both master and slave must be configured in Modbus RTU
master/slave mode (see page 308). The slave will automatically be enabled to
handle Modbus commands 01, 02, 03 and 04, i.e. you do not need to configure
the slave.

The data is read from the memory area of the slave specified by
s2_SlaveStartAddrType and s2_SlaveStartAddrOffs. It is stored in the area of
the master specified by d_MasterStartAddr. The 2 words in s1_ControlData
determine whether words or bits are read from the slave, the slave's unit number
and the slave's COM port (1 or 2).

PLC types: Availability of F146_MODBUS_READ_DATA (see page 928)

Variable Data type Function
s1_ControlData DWORD Stores control data.

s2_SlaveStartAddrType ANY16 Address type in the slave from which data is
read, e.g. DT, Y, R, WY, etc. The address must
be fixed at 0.

s2_SlaveStartAddrOffs ANY16 The offset for the starting slave address whose
type is defined by s2_SlaveStartAddrType and
from which the data is read.

d_MasterStartAddr ANY Starting address in the master into which the data
read from the slave is stored.

For Relay T/C Register Constant
s1 DWX DWY DWR DWL DSV DEV DDT DLD DFL -

s2 WX WY WR WL - - DT LD FL -

s2 - - - - - - - - - dec or hex

d - WY WR WL SV EV DT LD FL -

Description

Data types

Operands

Data Transfer Instructions

FPWIN Pro Programming

344

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

The control data is specified by s1_ControlData as follows:

Modbus command

1. Specify the transmission unit and transmission method with the lower
byte of s1_ControlData.
If data is to be sent in word units, specify the data volume, and if it is to
be sent in bit units, specify the position of the target bit. (A maximum of
127 (16#7F) word units can be read because the transmission range
allows up to 254 bytes.)

2. Specify the slave unit with the higher byte of s1_ControlData.
Specify the unit number of the slave unit. 16#00 specifies a global
transmission (no response). Specify either COM1 or COM2. 16#0 is
fixed for the route no.

3. Specify the memory area of the slave unit to be read with
s2_SlaveStartAddrType and s2_SlaveStartAddrOffs in combination.
Specify 0 for the device no. of s2_SlaveStartAddrType. For example,
when s2_SlaveStartAddrType: DT0 and s2_SlaveStartAddrOffs:
100 → DT100.

4. Specify the area of the master unit with d_MasterStartAddr into which
the data read is to be stored.

 The Modbus command is created according to the operands
specified by s1_ControlData, s2_SlaveStartAddrType, and
d_MasterStartAddr. The following Modbus commands are used: 01
(see page 347) (Y, R coil read), 02 (see page 349) (WL, LD read, or
X contact read), 03 (see page 351) (DT read) and 04 (WL (see page
353), LD (see page 352) read). When the transmission is executed,
2 bytes of CRC are added to the end after the Modbus command
has been created.

FPWIN Pro Programming

Data Transfer Instructions

345

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 permanently

- The control data of s1_ControlData is a value
outside of the specified range.

- The number of words specified by s1_ControlData
causes the area of s2_SlaveStartAddrType or
d_MasterStartAddr to be exceeded when word unit
transmission is being used.

- s2_SlaveStartAddrType + s2_SlaveStartAddrOffs
exceeds the memory type area available.

- The Modbus mode has not been specified for the
COM port of the control data specified by the higher
byte of s1_ControlData.

- The area of s2_SlaveStartAddrType is DT, WL and
LD in the bit unit transmission.

- The device no. of s2_SlaveStartAddrType is not 0.

R9044: COM1
R904A: COM2

0: Execution inhibited (SEND/RECV instruction being executed)
1: Execution enabled

R9045 (COM1) 0: Completed normally
1: Completed with error (The error code is stored in DT90045.)

DT90124 (COM1) If the transmission has been completed with an error (R9045 is ON),
the contents of the error (error code) are stored.

R904B (COM2) 0: Completed normally
1: Completed with error (The error code is stored in DT90125.)

DT90125 (COM2) If the transmission has been completed with an error (R904B is ON),
the contents of the error (error code) are stored.

Error code Description
16#73 Time-out: waiting for response

Error flags

Precautions
during prog.

 It is not possible to execute multiple F145_MODBUS_WRITE_DATA
and F146_MODBUS_READ_DATA instructions for the same
communication port simultaneously. The program should be set up
so that these instructions are executed when the SEND/RECV
execution enabled flag (R9044: COM1/R904A: COM2) is ON.

 The SEND (i.e. F145_MODBUS_WRITE_DATA) instruction only
requests that data be sent, but the actual processing takes place
when the ED instruction is executed. The SEND/RECV execution
end flag (R9045: COM1/R904B: COM2) can be used to check
whether or not the transmission has been completed.

 For information on the contents of error codes, FP-X User's Manual
or Control FPWIN Pro documentation. If the error code is 16#73, a
communication time-out error has occurred. The time-out length can
be set from 10.0 ms to 81.9 seconds (in units of 10 ms) using
system register 32. The default value is 10 seconds.

 The F145 or F146 instruction cannot be executed if the target
address is a special internal relay (from R9000) or a special data
register (from DT90000).

Data Transfer Instructions

FPWIN Pro Programming

346

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Command for
Function Code 01 Read Single Bit from R or Y

Description For example, when bit Y17 (bit no. 7 of word WY1) is read from the slave unit no.
17 (16#11) via COM1, the value is transmitted to the 5th bit of the variable at
input d_MasterStartAddr.

Example In this example the function F146 is programmed in ladder diagram (LD).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The bit Y17 (i.e. bit 7 of word WY1) of the slave unit at address 17 (16#11) is
read and then transmitted to bit 5 of wWord of the master via COM1.

LD

FPWIN Pro Programming

Data Transfer Instructions

347

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Command for
Function Code 01_x Read Multiple Bits from R or Y

Description For example, when 64 bits (4 words) from Y10-Y4F of slave unit no.17 are read
via COM1, the value is transmitted to the variable at input d_MasterStartAddr.

Example In this example the function F146 is programmed in ladder diagram (LD).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The 64 bit values of Y10-Y4F (4 words each with 16 bits beginning at WY1) of
the slave unit no. 17 (16#11) are read and transmitted to wWords of the master
unit via COM1.

LD

Data Transfer Instructions

FPWIN Pro Programming

348

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Command for
Function Code 02 Read Single Bit from X

Description For example, when X17 (bit no. 7 of word WX1) is read from slave unit no. 17
(16#11) via COM1, the value is transmitted to the 5th bit of the variable at input
d_MasterStartAddr.

Example In this example the function F146 is programmed in ladder diagram (LD).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The bit X17 (i.e. bit 7 or word WX1) of slave unit no. 17 (16#11) is read, the value
of which is transmitted to bit 5 of wWord of the master unit via COM1.

LD

FPWIN Pro Programming

Data Transfer Instructions

349

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Command for
Function Code 02_x Read Multiple Bits from X

Description For example, when the 64 bits (4 words) from X10 to X4F are read from slave
unit no.17 via COM1, and stored in the variable at input d_MasterStartAddr.

Data Transfer Instructions

FPWIN Pro Programming

350

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example the function F146 is programmed in ladder diagram (LD).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The 64 bit values X10-X4F (4 words each of 16 bits starting at WX1) of slave unit
no. 17 (16#11) are read and stored in wWords of the master unit via COM1.

LD

FPWIN Pro Programming

Data Transfer Instructions

351

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Command for
Function Code 03 Read Multiple Words from DT

Description For example, when 6 words from DT500 to DT505 are read from slave unit no.
17, and then transmitted to the variable at input d_MasterStartAddr via COM1.

Example In this example the function F146 is programmed in ladder diagram (LD).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The 6 word values of DT500-DT505 of the slave unit no. 17 (16#11) are read and
transmitted to wWords of the master unit via COM1.

LD

Data Transfer Instructions

FPWIN Pro Programming

352

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Command for
Function Code 04 Read Multiple Words from LD

Description For example, when 6 words from LD100 to LD105 are read from slave unit no.
17, and then transmitted to the variable at input d_MasterStartAddr via COM1.

Example In this example the function F146 is programmed in ladder diagram (LD).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The 6 words beginning at LD100 in slave unit no. 17 (16#11) are read and
transmitted to wWord of the master unit via COM1.

LD

FPWIN Pro Programming

Data Transfer Instructions

353

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Command for
Function Code 04 Read Multiple Words from WL

Description For example, when 6 words fromWL20 to WL25 are read from slave unit no. 17,
and then transmitted to the variable at input d_MasterStartAddr via COM1.

Example In this example the function F146 is programmed in ladder diagram (LD).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The 6 words beginning at WL20 of slave unit no. 17 (16#11) are read and
transmitted to wWord of the master unit via COM1.

LD

Chapter 16
 Arithmetic Instructions

Arithmetic Instructions

FPWIN Pro Programming

356

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F20_ADD 16-bit addition Steps: 5

 When this instruction is used, the area for the augend d is overwritten by the
added result. If you want to avoid the overwrite, we recommend using the
instruction F22_ADD2 (see page 360).

PLC types: Availability of F20_ADD (see page 925)

Variable Data type Function
s INT, WORD addend

d INT, WORD augend and result

The variables s and d have to be of the same data type.
For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description The 16-bit equivalent constant or 16-bit area specified by s and the 16-bit area
specified by d are added together if the trigger EN is in the ON-state. The result
is stored in d. All 16-bit values are treated as integer values.

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

357

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 16-bit data
(overflow or underflow).

Error flags

Example In this example the function F20_ADD is programmed in ladder diagram (LD) and
structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F20_ADD(value_in, value_in_out);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

358

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F21_DADD 32-bit addition Steps: 7

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

32-bit area

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Example value 1312896

Example value 558144

Result value 1871040 if trigger is ON

 When this instruction is used, the area for the augend d is overwritten by the
added result. If you want to avoid the overwrite, we recommend using the
instruction F23_DADD2 (see page 362).

PLC types: Availability of F21_DADD (see page 925)

Variable Data type Function
s DINT, DWORD addend

d DINT, DWORD augend and result

The variables s and d have to be of the same data type.
For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description The 32-bit equivalent constant or 32-bit area specified by s and the 32-bit data
specified by d are added together if the trigger EN is in the ON-state. The result
is stored in d. All 32-bit values are treated as double integer values.

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

359

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 32-bit data
(overflow or underflow).

Error flags

Example In this example the function F21_DADD is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F21_DADD(value, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

360

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F22_ADD2 16-bit addition, destination can be specified Steps: 7

PLC types: Availability of F22_ADD2 (see page 925)

Variable Data type Function
s1 INT, WORD augend

s2 INT, WORD addend

d INT, WORD result

The variables s1, s2 and d have to be of the same data type.
For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 16-bit data
(overflow or underflow).

Description The 16-bit data or 16-bit equivalent constant specified by s1 and s2 are added
together if the trigger EN is in the ON-state. The result is stored in d. All 16-bit
values are treated as integer values.

Data types

Operands

Error flags

FPWIN Pro Programming

Arithmetic Instructions

361

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example the function F22_ADD2 is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F22_ADD2(value_in1, value_in2, value_out);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

362

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F23_DADD2 32-bit addition, destination can be specified Steps: 11

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

32-bit area

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Example value 1312896

Example value 558144

Result value 1871040 if trigger is ON

PLC types: Availability of F23_DADD2 (see page 925)

Variable Data type Function
s1 DINT, DWORD augend

s2 DINT, DWORD addend

d DINT, DWORD result

The variables s1, s2 and d have to be of the same data type.
For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description The 32-bit data or 32-bit equivalent constant specified by s1 and s2 are added
together if the trigger EN is in the ON-state. The added result is stored in d. All
32-bit values are treated as double integer values.

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

363

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 32-bit data
(overflow or underflow).

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F23_DADD2(value_in1, value_in2, value_out);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

364

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F40_BADD 4-digit BCD addition Steps: 5

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1

2 1 1 1

0 0 1 1

2 1 2 2

16# (BCD)

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
16# (BCD)

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0
16# (BCD)

Example value 16#2111 (BCD)

Example value 16#0011 (BCD)

Result value 16#2122 (BCD) if trigger is ON

 When this instruction is used, the area for the augend d is overwritten by the
added result. If you want to avoid the overwrite, we recommend using the
instruction F41_DBADD (see page 366).

PLC types: Availability of F40_BADD (see page 926)

Variable Data type Function
s WORD addend, 16-bit area for 4-digit BCD data or equivalent

constant

d WORD augend and result, 16-bit area for 4-digit BCD data

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description The 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified
by s and the 16-bit area for 4-digit BCD data specified by d are added together if
the trigger EN is in the ON-state. The result is stored in d.

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

365

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 4-digit BCD
data (overflow).

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF start THEN
 F40_BADD(summand, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

366

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F41_DBADD 8-digit BCD addition Steps: 7

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
16# BCD

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0
16# BCD

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0
16# BCD

1 2 3 4 2 0 0 0

0 0 0 0 3 6 7 8

1 2 3 4 5 6 7 8

Example value 16#12342000 (BCD)

Example value 16#00003678 (BCD)

Result value 16#12345678 (BCD) if trigger is ON

 32-bit area

 When this instruction is used, the area for the augend d is overwritten by the
added result. If you want to avoid the overwrite, we recommend using the
instruction F43_DBADD2 (see page 370).

PLC types: Availability of F41_DBADD (see page 926)

Variable Data type Function
s DWORD addend, 32-bit area for 8-digit BCD data or equivalent

constant

d DWORD augend and result, 32-bit area for 8-digit BCD data

Description The 8-digit BCD equivalent constant or 8-digit BCD data specified by s and the 8-
digit BCD data specified by d are added together if the trigger EN is in the ON-
state. The result is stored in d.

Data types

FPWIN Pro Programming

Arithmetic Instructions

367

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 8-digit BCD
data (overflow).

Operands

Error flags

Example In this example the function F41_DBADD is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F41_DBADD(summand, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

368

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F42_BADD2 4-digit BCD addition, destination can be
specified Steps: 7

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1
16# (BCD)

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s2 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0
16# (BCD)

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
16# (BCD)

4 3 2 1

1 2 3 4

5 5 5 5

Example value 16#4321 (BCD)

Example value 16#1234 (BCD)

Result value 16#5555 (BCD) if trigger is ON

PLC types: Availability of F42_BADD2 (see page 926)

Variable Data type Function
s1 WORD augend, 16-bit area for 4-digit BCD data or equivalent constant

s2 WORD addend, 16-bit area for 4-digit BCD data or equivalent constant

d WORD sum, 16-bit area for 4-digit BCD data

For Relay T/C Register Constant
s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description The 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified
by s1 and s2 are added together if the trigger EN is in the ON-state. The result is
stored in d.

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

369

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 4-digit BCD
data (overflow).

Error flags

Example In this example the function F42_BADD2 is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF start THEN
 F42_BADD2(summand_1, summand_2, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

370

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F43_DBADD2 8-digit BCD addition, destination can be
specified Steps: 11

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s1 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0
16# BCD

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s2 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1
16# BCD

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
16# BCD

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

9 9 9 9 9 9 9 9

Example value 16#12345678 (BCD)

Example value 16#87654321 (BCD)

Result value 16#99999999 (BCD) if trigger is ON

 32-bit area

PLC types: Availability of F43_DBADD2 (see page 926)

Variable Data type Function
s1 DWORD augend, 32-bit area for 8-digit BCD data or equivalent

constant

s2 DWORD addend, 32-bit area for 8-digit BCD data or equivalent
constant

d DWORD sum, 32-bit area for 8-digit BCD data

Description The 8-digit BCD equivalent constant or 32-bit area for 8-digit BCD data specified
by s1 and s2 are added together if the trigger EN is in the ON-state. The result is
stored in d.

Data types

FPWIN Pro Programming

Arithmetic Instructions

371

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 8-digit BCD
data (overflow).

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F43_DBADD2(summand_1, summand_2, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

372

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F35_INC 16-bit increment Steps: 3

PLC types: Availability of F35_INC (see page 926)

Variable Data type Function
d INT, WORD 16-bit area to be increased by 1

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 16-bit data
(overflow).

Description Adds "1" to the 16-bit data specified by d if the trigger EN is in the ON-state. The
result is stored in d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

FPWIN Pro Programming

Arithmetic Instructions

373

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF DF(start) THEN
 F35_INC(increment_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

374

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F36_DINC 32-bit increment Steps: 3

PLC types: Availability of F36_DINC (see page 926)

Variable Data type Function
d DINT, DWORD 32-bit area to be increased by 1

For Relay T/C Register Constant
d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 32-bit data
(overflow).

In this example the function F36_DINC is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Description Adds "1" to the 32-bit data specified by d if the trigger EN is in the ON-state. The
result is stored in d.

Data types

Operands

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

FPWIN Pro Programming

Arithmetic Instructions

375

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF DF(start) THEN
 F36_DINC(increment_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

376

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F55_BINC 4-digit BCD increment Steps: 3

PLC types: Availability of F55_BINC (see page 926)

Variable Data type Function
d WORD 16-bit area for 4-digit BCD data to be increased by 1

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 4-digit BCD
data (overflow).

Description Adds "1" to the 4-digit BCD data specified by d if the trigger EN is in the ON-
state. The result is stored in d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

FPWIN Pro Programming

Arithmetic Instructions

377

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF DF(start) THEN
 F55_BINC(increment_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

378

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F56_DBINC 8-digit BCD increment Steps: 3

PLC types: Availability of F56_DBINC (see page 926)

Variable Data type Function
d DWORD 32-bit area for 8-digit BCD data to be increased by 1

For Relay T/C Register Constant
d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 8-digit BCD
data (overflow).

In this example the function F56_DBINC is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Description Adds "1" to the 8-digit BCD data specified by d if the trigger EN is in the ON-
state. The result is stored in d.

Data types

Operands

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Arithmetic Instructions

379

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F56_DBINC(increment_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

380

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F25_SUB 16-bit subtraction Steps: 5

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1

Example value 16

Example value 27

Result value -11 if trigger is ON

PLC types: Availability of F25_SUB (see page 925)

Variable Data type Function
s INT, WORD subtrahend

d INT, WORD minuend and result

The variables s and d have to be of the same data type.

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 16-bit data
(overflow or underflow).

Description Subtracts the 16-bit equivalent constant or 16-bit area specified by s from the 16-
bit area specified by d if the trigger EN is in the ON-state. The result is stored in
d (minuend area). All 16-bit values are treated as integer values.

Data types

Operands

Error flags

FPWIN Pro Programming

Arithmetic Instructions

381

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F25_SUB(value_in, value_in_out);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

382

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F26_DSUB 32-bit subtraction Steps: 7

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1

Example value 16778109

Example value 524740

Result value 16253369 if trigger is ON

32-bit area

PLC types: Availability of F26_DSUB (see page 926)

Variable Data type Function
s DINT, DWORD subtrahend

d DINT, DWORD minuend and result

The variables s and d have to be of the same data type.
For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 32-bit data
(overflow or underflow).

Description Subtracts the 32-bit equivalent constant or 32-bit data specified by s from the 32-
bit data specified by d if the trigger EN is in the ON-state. The result is stored in d
(minuend area). All 32-bit values are treated as double integer values.

Data types

Operands

Error flags

FPWIN Pro Programming

Arithmetic Instructions

383

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example the function F26_DSUB is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F26_DSUB(value_in, value_in_out);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

384

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F27_SUB2 16-bit subtraction, destination can be
specified Steps: 7

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

Example value 16

Example value 27

Result value 11 if trigger is ON

PLC types: Availability of F27_SUB2 (see page 926)

Variable Data type Function
s1 INT, WORD minuend

s2 INT, WORD subtrahend

d INT, WORD result

The variables s1, s2 and d have to be of the same data type.
For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 16-bit data
(overflow or underflow).

Description Subtracts the 16-bit data or 16-bit equivalent constant specified by s2 from the
16-bit data or 16-bit equivalent constant specified by s1 if the trigger EN is in the
ON-state. The result is stored in d. All 16-bit values are treated as integer values.

Data types

Operands

Error flags

FPWIN Pro Programming

Arithmetic Instructions

385

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F27_SUB2(minuend, subtrahend, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

386

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F28_DSUB2 32-bit subtraction, destination can be
specified Steps: 11

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Example value 16809984

Example value 525312

Result value 16284672 if trigger is ON

32-bit area

PLC types: Availability of F28_DSUB2 (see page 926)

Variable Data type Function
s1 DINT, DWORD minuend

s2 DINT, DWORD subtrahend

d DINT, DWORD result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant
s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Subtracts the 32-bit data or 32-bit equivalent constant specified by s2 from the
32-bit data or 32-bit equivalent constant specified by s1 if the trigger is in the ON-
state. The result is stored in d. All 32-bit values are treated as double integer
values.

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

387

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 32-bit data
(overflow or underflow).

In this example the function F28_DSUB2 is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F28_DSUB2(minuend, subtrahend, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

388

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F45_BSUB 4-digit BCD subtraction Steps: 5

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1
16# (BCD)

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
16# (BCD)

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
16# (BCD)

2 1 1 1

0 0 1 1

2 1 0 0

Example value 16#2111 (BCD)

Example value 16#0011 (BCD)

Result value 16#2100 (BCD)

Trigger: ON

PLC types: Availability of F45_BSUB (see page 926)

Variable Data type Function
s WORD subtrahend, 16-bit area for 4-digit BCD data or equivalent

constant

d WORD minuend and result, 16-bit area for 4-digit BCD data

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Subtracts the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data
specified by s from the 16-bit area for 4-digit BCD data specified by d if the
trigger EN is in the ON-state. The result is stored in d.

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

389

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 4-digit BCD
data (overflow).

In this example the function F45_BSUB is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F45_BSUB(subtrahend, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

390

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F46_DBSUB 8-digit BCD subtraction Steps: 5

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
16# BCD

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
16# BCD

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
16# BCD

2 3 2 1 0 0 4 4

0 0 2 1 0 0 1 1

2 3 0 0 0 0 3 3

Example value 16#23210044 (BCD)

Example value 16#00210011 (BCD)

Result value 16#23000033 (BCD)

Trigger: ON

32-bit area

PLC types: Availability of F46_DBSUB (see page 926)

Variable Data type Function
s DWORD subtrahend, 32-bit area for 8-digit BCD data or equivalent

constant

d DWORD minuend and result, 32-bit area for 8-digit BCD data

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Subtracts the 8-digit BCD equivalent constant or 8-digit BCD data specified by s
from the 8-digit BCD data specified by d if the trigger EN is in the ON-state. The
result is stored in d.

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

391

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 8-digit BCD
data (overflow).

In this example the function F46_DBSUB is programmed is programmed in
ladder diagram (LD) and structured text (ST). The same POU header is used for
all programming languages.

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F46_DBSUB(subtrahend, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

392

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F47_BSUB2 4-digit BCD subtraction, destination can be
specified Steps: 7

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0

0 0 1 6

0 0 0 4

0 0 1 2

s1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1

0 0 0 1

0 1 1 0
16# (BCD)

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s2 0 1 0 0
16# (BCD)

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 1 0
16# (BCD)

Example value 16#16 (BCD)

Example value 16#4 (BCD)

Result value 16#12 (BCD)

Trigger: ON

PLC types: Availability of F47_BSUB2 (see page 926)

Variable Data type Function
s1 WORD minuend, 16-bit area for 4-digit BCD data or equivalent

constant

s2 WORD subtrahend, 16-bit area for 4-digit BCD data or equivalent
constant

d WORD result, 16-bit area for 4-digit BCD data

For Relay T/C Register Constant
s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Subtracts the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data
specified by s2 from the 4-digit BCD equivalent constant or 16-bit area for 4-digit
BCD data specified by s1 if the trigger EN is in the ON-state. The result is stored
in d.

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

393

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 4-digit BCD
data (overflow).

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F47_BSUB2(minuend, subtrahend, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

394

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F48_DBSUB2 8-digit BCD subtraction, destination can be
specified Steps: 11

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0
16# BCD

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
16# BCD

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0
16# BCD

3 3 5 5 5 5 8 8

0 0 1 1 0 0 2 2

3 3 4 4 5 5 6 6

32-bit area

Example value 16#33555588 (BCD)

Example value 16#00110022 (BCD)

Result value 16#33445566 (BCD)

Trigger: ON

PLC types: Availability of F48_DBSUB2 (see page 926)

Variable Data type Function
s1 DWORD minuend, 32-bit area for 8-digit BCD data or equivalent

constant

s2 DWORD subtrahend, 32-bit area for 8-digit BCD data or equivalent
constant

d DWORD result, 32-bit area for 8-digit BCD data

Description Subtracts the 8-digit BCD equivalent constant or 8-digit BCD data specified by s2
from the 8-digit BCD equivalent constant or 8-digit BCD data specified by s1 if
the trigger EN is in the ON-state. The result is stored in d.

Data types

FPWIN Pro Programming

Arithmetic Instructions

395

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 8-digit BCD
data (overflow).

In this example the function F48_DBSUB2 is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Operands

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F48_DBSUB2(minuend, subtrahend, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

396

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F37_DEC 16-bit decrement Steps: 3

PLC types: Availability of F37_DEC (see page 926)

Variable Data type Function
d INT, WORD 16-bit area to be decreased by 1

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 16-bit data
(underflow).

Description Subtracts "1" from the 16-bit data specified by d if the trigger EN is in the ON-
state. The result is stored in d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

FPWIN Pro Programming

Arithmetic Instructions

397

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF DF(start) THEN
 F37_DEC(decrement_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

398

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F38_DDEC 32-bit decrement Steps: 3

PLC types: Availability of F38_DDEC (see page 926)

Variable Data type Function
d DINT, DWORD 32-bit area to be decreased by 1

For Relay T/C Register Constant
d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 32-bit data
(underflow).

In this example the function F38_DDEC is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Description Subtracts "1" to the 32-bit data specified by d if the trigger EN is in the ON-state.
The result is stored in d.

Data types

Operands

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

FPWIN Pro Programming

Arithmetic Instructions

399

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF DF(start) THEN
 F38_DDEC(decrement_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

400

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F57_BDEC 4-digit BCD decrement Steps: 3

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0
16# BCD

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1
16# BCD

4 3 2 2

4 3 2 1

Example value 4322 (BCD)

Result value 4321 (BCD)

Trigger: ON

PLC types: Availability of F57_BDEC (see page 926)

Variable Data type Function
d WORD 16-bit area for BCD data to be decreased by 1

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 4-digit BCD
data (underflow).

Description Subtracts "1" from the 4-digit BCD data specified by d if the trigger EN is in the
ON-state. The result is stored in d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

FPWIN Pro Programming

Arithmetic Instructions

401

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF DF(start) THEN
 F57_BDEC(decrement_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

402

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F58_DBDEC 8-digit BCD decrement Steps: 3

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0
16# BCD

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1
16# BCD

8 7 6 5 4 3 2 2

8 7 6 5 4 3 2 1

Example value 87654322 (BCD)

Result value 87654321 (BCD)

Trigger: ON

32-bit area

PLC types: Availability of F58_DBDEC (see page 926)

Variable Data type Function
d DWORD 32-bit area for BCD data to be decreased by 1

For Relay T/C Register Constant
d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the result exceeds the range of 8-digit BCD
data (underflow).

In this example the function F58_DBDEC is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Description Subtracts "1" from the 8-digit BCD data specified by d if the trigger EN is in the
ON-state. The result is stored in d.

Data types

Operands

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Arithmetic Instructions

403

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F58_DBDEC(decrement_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

404

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F30_MUL 16-bit multiplication, destination can be
specified Steps: 7

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s2 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 1 0 1 0 1 0 1 0

Example value 10

Example value 17

Result value 170 if trigger is ON

32-bit area

PLC types: Availability of F30_MUL (see page 926)

Variable Data type Function
s1 INT, WORD multiplicand

s2 INT, WORD multiplier

d DINT, DWORD result

The variables s1, s2 and d have to be of the same data type (INT/DINT or
WORD/DWORD).

For Relay T/C Register Constant
s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

Description Multiplies the 16-bit data or 16-bit equivalent constant s1 and the 16-bit data or
16-bit equivalent constant specified by s2 if the trigger EN is in the ON-state. The
result is stored in d (32-bit area). All 16-bit values are treated as integer values.

Data types

Operands

Error flags

FPWIN Pro Programming

Arithmetic Instructions

405

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F30_MUL(multiplicand, multiplicator, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

406

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F31_DMUL 32-bit multiplication, destination can be
specified Steps: 11

PLC types: Availability of F31_DMUL (see page 926)

Variable Data type Function
s1 DINT, DWORD multiplicand

s2 DINT, DWORD multiplier

d ARRAY [0..1] of DINT
or DWORD

result

The variables s1, s2 and d have to be of the same data type.
For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Access to the result is possible with output_value[0] and output_value[1].

Description Multiplies the 32-bit data or 32-bit equivalent constant specified by s1 and the
one specified by s2 if the trigger EN is in the ON-state. The result is stored in
d[0], d[1] (64-bit area). All 32-bit values are treated as double integer values.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

FPWIN Pro Programming

Arithmetic Instructions

407

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ST IF start THEN
 F31_DMUL(multiplicand, multiplicator, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

408

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F34_MULW 16-bit data multiply (result in 16 bits) Steps: 7

PLC types: Availability of F34_MULW (see page 926)

Variable Data type Function
s1 INT, WORD multiplicand

s2 INT, WORD multiplier

d INT, WORD result

The variables s1, s2 and d have to be of the same data type.
For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the result calculated exceeds the 16-bit area
specified at output d.

R900B %MX0.900.11 for an instant - the result calculated is 0.

Description The function multiplies the value specified at input s1 by the value specified at
input s2. The result of the function is returned at output d. The result at output d
lies between -32768 and 32767 (i.e. between 16#0 and 16#FFFF). All 16-bit
values are treated as integer values.

Data types

Operands

Error flags

FPWIN Pro Programming

Arithmetic Instructions

409

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F34_MULW(input_value_1, 5, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

410

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F39_DMULD 32-bit data multiply (result in 32 bits) Steps: 11

PLC types: Availability of F39_DMULD (see page 926)

Variable Data type Function
s1 DINT, DWORD multiplicand

s2 DINT, DWORD multiplier

d DINT, DWORD result

For Relay T/C Register Constant
s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the result calculated exceeds the 32-bit area
specified at output d.

R900B %MX0.900.11 for an instant - the result calculated is 0.

Description The function multiplies the value specified at input s1 by the value specified at
input s2. The result of the function is returned at output d. The result at output 'd'
lies between -2147483648 and 2147483647 (i.e. between 16#0 and
16#FFFFFFFF). All 32-bit values are treated as double integer values.

Data types

Operands

Error flags

FPWIN Pro Programming

Arithmetic Instructions

411

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example the input variables input_value_1 and input_value _2 are
declared. However, you can write constants directly at the input contact of the
function instead.

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F39_DMULD(input_value_1, input_value_2, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

412

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F50_BMUL 4-digit BCD multiplication, destination can
be specified Steps: 7

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s1 0 0 2 0

0 0 0 0 0 0 4 0

0 0 0 2
Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s2

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d

Example value 16#20 BCD

Example value 16#2 BCD

Result value 16#40 if trigger is ON

32-bit area

PLC types: Availability of F50_BMUL (see page 926)

Variable Data type Function
s1 WORD multiplicand, 16-bit area for 4-digit BCD data or equivalent

constant

s2 WORD multiplier, 16-bit area for 4-digit BCD data or equivalent
constant

d DWORD result, 32-bit area for 8-digit BCD data

For Relay T/C Register Constant
s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

Description Multiplies the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data
specified by s1 and s2 if the trigger EN is in the ON-state. The result is stored in
d (8-digit area).

Data types

Operands

Error flags

FPWIN Pro Programming

Arithmetic Instructions

413

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F50_BMUL(multiplicand, multiplicator, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

414

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F51_DBMUL 8-digit BCD multiplication, destination can
be 11 specified Steps: 11

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
16# BCD

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
16# BCD

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d array[0] 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
16# BCD

 output_array[0]

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d array[1] 0 1 0 0 1 0 0
16# BCD

 output_array[1]

0 0 0 6 0 0 0 8

0 0 0 4 0 0 0 2

0 0 4 4 0 0 1 6

0 0 0 0 0 0 2 4

32-bit area

Example value 16#60008 (BCD)

Example value 16#40002 (BCD)

Result value 16#2400440016 (BCD) if trigger is ON stored in the ARRAY [0..1] of
DWORD

PLC types: Availability of F51_DBMUL (see page 926)

Variable Data type Function
s1 DWORD multiplicand, 32-bit area for 8-digit BCD data or equivalent

constant

s1 DWORD multiplier, 32-bit area for 8-digit BCD data or equivalent
constant

d ARRAY [0..1] of
DWORD

result

Description Multiplies the 8-digit BCD equivalent constant or 8-digit BCD data specified by s1
and the one specified by s2 if the trigger EN is in the ON-state. The result is
stored in the ARRAY d[0], d[1] (64-digit area).

Data types

FPWIN Pro Programming

Arithmetic Instructions

415

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

Operands

Error flags

Example In this example the function F51_DBMUL is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F51_DBMUL(multiplicand, multiplicator, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

416

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F32_DIV 16-bit division, destination can be specified Steps: 7

The quotient is stored in d and the remainder is stored in the special data register
DT9015. All 16-bit values are treated as integer values.

PLC types: Availability of F32_DIV (see page 926)

Variable Data type Function
s1 INT, WORD dividend

s2 INT, WORD divisor

d INT, WORD quotient

The variables s1, s2 and d have to be of the same data type.
For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description The 16-bit data or 16-bit equivalent constant specified by s1 is divided by the 16-
bit data or 16-bit equivalent constant specified by s2 if the trigger EN is in the
ON-state.

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

417

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculated result is 0.

R9009 %MX0.900.9 for an instant - the negative minimum value -32768
(16#8000) is divided by -1 (16#FFFF)

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F32_DIV(dividend, divisor, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

418

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F33_DDIV 32-bit division, destination can be specified Steps: 11

PLC types: Availability of F33_DDIV (see page 926)

Variable Data type Function
s1 DINT, DWORD dividend

s2 DINT, DWORD divisor

d DINT, DWORD quotient

The variables s1, s2 and d have to be of the same data type.

Description The 32-bit data or 32-bit equivalent constant specified by s1 is divided by the 32-
bit data or 32-bit equivalent constant specified by s2 if the trigger EN is in the
ON-state. The quotient is stored in d and the remainder is stored in the special
data registers DDT9015. All 32-bit values are treated as double integer values.

Data types

FPWIN Pro Programming

Arithmetic Instructions

419

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Operands

Example In this example, the same POU header is used for all programming languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F33_DDIV(dividend, divisor, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

420

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F52_BDIV 4-digit BCD division, destination can be
specified Steps: 7

The quotient is stored in the area specified by d and the remainder is stored in
special data register DT9015.

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
16# (BCD)

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
16# (BCD)

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
16# (BCD)

Bit 15 . . 12 10 . . 8 7 . . 4 3 . . 0
DT9015 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
16# (BCD)

0 0 3 7

0 0 1 5

0 0 0 2

0 0 0 7

Example value 16#0037 (BCD)

Example value 16#0015 (BCD)

Result value 16#0002

Remainder 16#0007

Trigger: ON

PLC types: Availability of F52_BDIV (see page 926)

Variable Data type Function
s1 WORD dividend, 16-bit area for BCD data or 4-digit BCD equivalent

constant

s2 WORD divisor, 16-bit area for BCD data or 4-digit BCD equivalent constant

d WORD quotient, 16-bit area for BCD data (remainder stored in special data
register DT9015/DT90015)

Description The 4-digit BCD equivalent constant or the 16-bit area for 4-digit BCD data
specified by s1 is divided by the 4-digit BCD equivalent constant or the 16-bit
area for 4-digit BCD data specified by s2 if the trigger EN is in the ON-state.

Data types

FPWIN Pro Programming

Arithmetic Instructions

421

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the result calculated is 0.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F52_BDIV(dividend, divisor, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

422

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F53_DBDIV 8-digit BCD division, destination can be
specified Steps: 11

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s1 0 1 0 0 0 1 0 0 0 0
16# BCD

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
s2 0 1 0 0 0 1
16# BCD

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
d 0 1 0 0 0 0 0 0 0 0
16# BCD

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
0 1 0 0 0 0

16# BCD

 DT9016/DDT90016 DT9015/DDT90015

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

Example value 16#00001110 (BCD)

Example value 16#0000011 (BCD)

Result value 16#00000100 (BCD) if trigger is ON

Remainder 16#00000010 (BCD) if trigger is ON stored in DT9015 to DT9016
(DDT90015 to DDT90016)

32-bit area

PLC types: Availability of F53_DBDIV (see page 926)

Variable Data type Function
s1 DWORD dividend, 32-bit area for BCD data or 8-digit BCD equivalent

constant

s2 DWORD divisor, 32-bit area for BCD data or 8-digit BCD equivalent
constant

d DWORD quotient, 32-bit area for BCD data (remainder stored in
special data register DT9016 and DT9015/DT90016 and
DT90015)

Description The result is stored in the area specified by d, and the remainder is stored in the
special data registers DT9016 and DT9015.

Data types

FPWIN Pro Programming

Arithmetic Instructions

423

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the result calculated is 0.

In this example the function F53_DBDIV is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Operands

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F53_DBDIV(dividend, divisor, output_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

424

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F313_FDIV Floating Point Data Divide Steps: 14

PLC types: Availability of F313_FDIV (see page 931)

 • F313_FDIV cannot be programmed in the interrupt program.

• Instead of using F313_FDIV, you can use variables of the type REAL with
the more flexible instruction DIV (see page 35).

Variable Data type Function
s1 REAL Real number data for dividend.

s2 REAL Real number data for divisor.

d REAL 32-bit area for result (destination).

For Relay T/C Register Constant
s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL -

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- data other than real number data is specified
in s1 and s2.

- the real number data (floating point data) for
the divisor specified by s2 is "0.0".

R9009 %MX0.900.9 for an instant - the result is overflowed.

Description The real number data specified by s1 is divided by the real number data
specified by s2 when the trigger turns on. The result is stored in d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable Start is set to TRUE, the real number entered for the variable
RealNumber1 is divided by the real number entered for RealNumber2 and the
result stored at the address assigned by the compiler to the variable Result. The
monitor value icon is activated.

FPWIN Pro Programming

Arithmetic Instructions

425

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

Arithmetic Instructions

FPWIN Pro Programming

426

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F70_BCC Block check code calculation Steps: 9

s1 specifies the Block Check Code (BCC) calculation method using decimal data
as follows:
0: Addition
1: Subtraction
2: Exclusive OR operation
10: Cyclic Redundancy Check (CRC) calculation (only FP10SH

Version 3.02 and up)

PLC types: Availability of F70_BCC (see page 927)

Variable Data type Function
s1 INT specifies BCC calculation method: 0 = addition, 1 =

subtraction, 2 = exclusive OR operation

s2 INT, WORD starting 16-bit area to calculate BCC

s3 INT specifies number of bytes for BCC calculation

d INT, WORD 16-bit area for storing BCC

For Relay T/C Register Constant
s1, s3 WX WY WR WL SV EV DT LD FL dec. or hex.

s2 WX WY WR WL SV EV DT LD FL -

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the number of specified bytes for the target
data exceeds the limit of the specified data
area.

Description Calculates the Block Check Code (BCC), which is used to detect errors in
message transmission, of s3 bytes of ASCII data starting from the 16-bit area
specified by s2 according to the calculation method specified by s1. The Block
Check Code (BCC) is stored in the lower byte of the 16-bit area specified by d.
(BCC is one byte. The higher byte of d does not change.)

Data types

Operands

Error flags

FPWIN Pro Programming

Arithmetic Instructions

427

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

The ASCII BIN code bits of the first two characters are compared with each other
to yield an 8-character exclusive OR operation result:

Example In this example the function F70_BCC is programmed in ladder diagram (LD) and
structured text (ST).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body A block check code is performed on the value entered for the variable
ASCII_String when Start becomes TRUE. The exclusive OR operation, which is
more suitable when large amounts of data are transmitted, has been chosen for
the BCC method.
How the BCC is calculated using the exclusive OR operation:

Arithmetic Instructions

FPWIN Pro Programming

428

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Sign for comparison ASCII BIN code
% 00100101
0 00110000
Exclusive OR result 00010101

This result is then compared to the ASCII BIN code of the next character, i.e. "1".
Sign for comparison ASCII BIN code
Exclusive OR result 00010101
1 00110001
Next exclusive OR 00100100

And so on until the final character is reached.

LD

ST IF start THEN
 F70_BCC(s1_Control:= BCC_Calc_Methode,
 s2_Start:= Adr_Of_VarOffs(Var:= ASCII_String,
 Offs:= 2),
 s3_Number:= LEN(ASCII_String),
 d=> BCC);
END_IF;

FPWIN Pro Programming

Arithmetic Instructions

429

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F160_DSQR 32-bit data square root Steps: 7

The figures of the first decimal place and below are disregarded.

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0
0 1 0 0 0 0 0 0

0 1 0 0

64

8

Bit 31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

Example value 64

Result value 8

Trigger: ON

32-bit area

Binary
Decimal

Binary
Decimal

PLC types: Availability of F160_DSQR (see page 929)

Variable Data type Function
s DINT, DWORD source, 32-bit area to be calculated

d DINT, DWORD square root (decimal places deleted)

The variables s1 and d have to be of the same data type.
For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

In this example the function F160_DSQR is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Description The square root of the 32-bit data or constant value specified by s is calculated if
the trigger EN is in the ON-state. The result (square root) is stored in d.

Data types

Operands

Example

Arithmetic Instructions

FPWIN Pro Programming

430

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F160_DSQR(input_value, output_value);
END_IF;

FPWIN Pro Programming

Arithmetic Instructions

431

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F87_ABS 16-bit data absolute value Steps: 3

The absolute value of the 16-bit data with +/- sign is stored in d. This instruction
is useful for handling data whose sign (+/-) may vary.

PLC types: Availability of F87_ABS (see page 927)

Variable Data type Function
d INT, WORD 16-bit area for storing original data and its absolute value

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the 16-bit data is the negative minimum value
-32768 (16#8000).

R9009 %MX0.900.9 for an instant - the 16-bit data is the negative value in the
range from -1 to -32767 (16#FFFF to
16#8001).

Description Gets the absolute value of 16-bit data with the sign specified by d if the trigger
EN is in the ON-state.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

Arithmetic Instructions

FPWIN Pro Programming

432

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ST IF start THEN
 F87_ABS(abs_value);
END_IF;

FPWIN Pro Programming

Arithmetic Instructions

433

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F88_DABS 32-bit data absolute value Steps: 3

Gets the absolute value of 32-bit data with the sign specified by d if the trigger
EN is in the ON-state. The absolute value of the 32-bit data with sign is stored in
d. This instruction is useful for handling data whose sign (+/-) may vary.

PLC types: Availability of F88_DABS (see page 927)

Variable Data type Function
d DINT, DWORD 32-bit area for storing original data and its absolute value

For Relay T/C Register Constant
d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the 32-bit data is the negative minimum value
-2147483648 (16#80000000).

R9009 %MX0.900.9 for an instant - the 32-bit data is the negative value in the
range from -1 to -2147483647
(16#FFFFFFFF to 16#80000001).

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description

Data types

Operands

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F88_DABS(abs_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

434

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F287_BAND 16-bit data deadband control Steps: 10

PLC types: Availability of F287_BAND (see page 931)

Variable Data type Function
s1 INT, WORD the area where the lower limit is stored or the lower limit data

s2 INT, WORD the area where the upper limit is stored or the upper limit
data

s3 INT, WORD the area where the input value is stored or the input value
data

d INT, WORD the area where the output value data is stored

For Relay T/C Register Constant
s1, s2, s3 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description The function compares the input value at input s3 with a deadband whose lower
limit is specified at input s1 and whose upper limit is specified at s2. The result of
the function is returned at output d as follows:

 If the input value at input s3 < s1, the lower limit at input s1 is
subtracted from the input value at s3, and the result is stored as the
output value at d.

 If the input value at input s3 > s2, the upper limit at input s2 is
subtracted from the input value at s3, and the result is stored as the
output value at d.

 If the input value at s2 ≥ s3 ≥ s1, 0 is returned as the output value at
d.

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

435

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the value at s1 > s2.

R900B %MX0.900.11 TRUE - the input value at s3 is 0.

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. The constant
3 (lower limit of the deadband) and 10 (upper limit of the deadband) are assigned
to inputs s1 and s2. However, you can declare variables in the POU header and
write them in the function in the body at the inputs.

LD

ST IF start THEN
 F287_BAND(3, 10, input_value, output_value);
END_IF; (* 3=lower limit of deadband, 10=upper limit of
deadband *)

Arithmetic Instructions

FPWIN Pro Programming

436

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F288_DBAND 32-bit data deadband control Steps: 10

PLC types: Availability of F288_DBAND (see page 931)

Variable Data type Function
s1 DINT, DWORD the area where the lower limit is stored or the lower limit data

s2 DINT, DWORD the area where the upper limit is stored or the upper limit
data

s3 DINT, DWORD the area where the input value is stored or the input value
data

d DINT, DWORD the area where the output value data is stored

For Relay T/C Register Constant
s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description The function compares the input value at input s3 with a deadband whose lower
limit is specified at input s1 and whose upper limit is specified at s2. The result of
the function is returned at output d as follows:

 If the input value at input s3 < s1, the lower limit at input s1 is
subtracted from the input value at s3, and the result is stored as the
output value at d.

 If the input value at input s3 > s2, the upper limit at input s2 is
subtracted from the input value at s3, and the result is stored as the
output value at d.

 If the input value at s2 ≥ s3 ≥ s1, 0 is returned as the output value at
d.

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

437

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the value at s1 > s2.

R900B %MX0.900.11 to TRUE - the input value at s3 is 0.

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. The constant -
10 (lower limit of the deadband) and 20 (upper limit of the deadband) are
assigned to inputs s1 and s2. However, you can declare variables in the POU
header and write them in the function in the body at the inputs.

LD

ST IF start THEN
 F288_DBAND(-10, 20, input_value, output_value);
END_IF; (* 10=lower limit of deadband, 20=upper limit of
deadband *)

Arithmetic Instructions

FPWIN Pro Programming

438

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F348_FBAND Floating point data deadband control Steps: 17

Comparison
between s1 and s2

Flag

 R900A
(> flag)

R900B
(= flag)

R900C
(< flag)

s1 < s2 off off on

s1 ≤ s3 and s2 ≤ s1 off on off

s3 < s1 on off off

PLC types: Availability of F348_FBAND (see page 932)

Variable Data type Function
s1 REAL the area where the lower limit is stored or the lower limit data

s2 REAL the area where the upper limit is stored or the upper limit
data

s3 REAL the area where the input value is stored or the input value
data

d REAL the area where the output value data is stored

For Relay T/C Register Constant
s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description The function compares the input value at input s3 with a deadband whose lower
limit is specified at input s1 and whose upper limit is specified at s2. The result of
the function is returned at output d as follows:

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

439

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the values at inputs s1, s2, and s3 are not
REAL numbers or the value at s1 > s2.

R900B %MX0.900.11 to TRUE - the result is 0.

R9009 %MX0.900.9 for an instant - the result causes an overflow.

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The constants 3.0 and 10.0 are assigned to the inputs s1 (lower limit of the
deadband) and s3 (upper limit of the deadband). However, you can declare two
variables in the POU header and write them in the function in the body at the
inputs. When the variable start is set to TRUE, the function is carried out. Since
the input_value = 12.0 is larger than the value of the upper limit of the
deadband at s2, the output_value = 12.0 -10.0 = 2.0.

LD

ST IF start THEN
 F348_FBAND(s1_Min:= 3.0 ,
 s2_Max:= 10.0 ,
 s3_In:= input_value ,
 d=> output_value)
END_IF; (* 3.0=lower limit of deadband, 10.0=upper
limit *)

Arithmetic Instructions

FPWIN Pro Programming

440

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F289_ZONE 16-bit data zone control Steps: 10

PLC types: Availability of F289_ZONE (see page 931)

Variable Data type Function
s1 INT, WORD area where negative bias value is stored or negative bias

value data

s2 INT, WORD area where positive bias value is stored or positive bias
value data

s3 INT, WORD area where input value is stored or input value data

d INT, WORD area where output value is stored

For Relay T/C Register Constant
s1, s2, s3 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description The function adds an offset value to the input value at input s3. The offset values
for the negative and positive areas are entered at inputs s1 and s2. The result of
the function is returned at output d as follows:

 If the input value at input s3 < 0, the negative offset value at input s1
is added to the input value at s3, and the result is stored as the
output value at d.

 If the input value at input s3 = 0, 0 is returned at the output value to
output d.

 If the input value at input s3 > 0, the positive offset value at input s2
is added to the input value at s3, and the result is stored as the
output value at d.

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

441

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculation results in an overflow or an

underflow of output d.
R9009 %MX0.900.9 for an instant - the input value s3 is 0.

In this example the input variables input_value and negative_offset are
declared. However, you can write constants directly at the input contact of the
function instead.

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. It adds the
corresponding negative offset value = 10 to the negative input_value = -12.
However, you can declare a variable in the POU header and assign it to the
function’s input in the body.

LD

ST IF start THEN
 F289_ZONE(negative_offset, 20, input_value,
output_value);
END_IF; (*negative_offset=neg. offset, 20=pos. offset
*)

Arithmetic Instructions

FPWIN Pro Programming

442

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F290_DZONE 32-bit data (double word data) zone control Steps: 10

PLC types: Availability of F290_DZONE (see page 931)

Variable Data type Function
s1 DINT, DWORD area where negative bias value is stored or negative bias

value data

s2 DINT, DWORD area where positive bias value is stored or positive bias value
data

s3 DINT, DWORD area where input value is stored or input value data

d DINT, DWORD area where output value is stored

For Relay T/C Register Constant
s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description The function adds an offset value to the input value at input s3. The offset value
for the negative and positive area are entered at inputs s1 and s2. The result of
the function is returned at output d as follows:

 If the input value at input s3 < 0, the negative offset value at input s1
is added to the input value at s3, and the result is stored as the
output value at d.

 If the input value at input s3 = 0, 0 is returned at the output value to
output d.

 If the input value at input s3 > 0, the positive offset value at input s2
is added to the input value at s3, and the result is stored as the
output value at d.

Data types

Operands

FPWIN Pro Programming

Arithmetic Instructions

443

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R900B %MX0.900.11 for an instant - the calculation results in an overflow or an

underflow of output d.
R9009 %MX0.900.9 for an instant - the input value s3 is 0.

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. It adds the
corresponding positive offset value = 2 to the positive input value = 18. The
constants 5 (negative offset) and 2 (positive offset) are assigned to inputs s1 and
s2 respectively. However, you can declare variables in the POU header and write
them in the function in the body at the inputs.

LD

ST IF start THEN
 F290_DZONE(s1_NegBias:= 5,
 s2_PosBias:= 2,
 s3_In:= input_value,
 d=> output_value);
END_IF; (*5=neg. offset, 2=pos. offset *)

Arithmetic Instructions

FPWIN Pro Programming

444

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F349_FZONE Floating point data zone control Steps: 17

PLC types: Availability of F349_FZONE (see page 932)

Variable Data type Function
s1 REAL area where negative bias value is stored or negative bias

value data

s2 REAL area where positive bias value is stored or positive bias value
data

s3 REAL area where input value is stored or input value data

d REAL area where output value is stored

Description The function adds an offset value to the input value at input s3. The offset value
for the negative and positive area are entered at inputs s1 and s2. The result of
the function is returned at output d as follows:

 If the input value at input s3 < 0.0, the negative offset value at input
s1 is added to the input value at s3, and the result is stored as the
output value at d.

 If the input value at input s3 = 0.0, 0.0 is returned as the output
value to output d.

 If the input value at input s3 > 0.0, the positive offset value at input
s2 is added to the input value at s3, and the result is stored as the
output value at d.

Data types

FPWIN Pro Programming

Arithmetic Instructions

445

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the values at inputs s1, s2, and s3 are not
REAL numbers.

R900B %MX0.900.11 to TRUE - the result is 0.

R9009 %MX0.900.9 for an instant - the result causes an overflow.

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The constant -1.23 is assigned to input s1 (negative offset) and the constant 5.55
is assigned to input s2 (positive offset). However, you can declare two variables
in the POU header and write them in the function in the body at the inputs. When
the variable start is set to TRUE, the function is carried out. Since the
input_value is negative (-10.0), the negative offset -1.23 is added to it. The
result here is: output_value = -11.23.

LD

ST IF start THEN
 F349_FZONE(s1_NegBias:= -1.23 ,
 s2_PosBias:= 5.55 ,
 s3_In:= input_value ,
 d=> output_value);
END_IF; (*-1.23=neg. offset, 5.55=pos. offset *)

Arithmetic Instructions

FPWIN Pro Programming

446

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F85_NEG 16-bit data two's complement Steps: 3

Two’s complement is a number system used to express positive and negative
numbers in binary format. In this system, the number becomes negative if the
most significant bit (MSB) of data is 1. Two’s complement is obtained by inverting
all bits and adding 1 to the inverted result.

This instruction is useful for inverting the sign of 16-bit data from positive to
negative or from negative to positive.

PLC types: Availability of F85_NEG (see page 927)

Variable Data type Function
d INT, WORD 16-bit area for storing original data and its two's complement

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description Takes two's complement of 16-bit data specified by d if the trigger EN is in the
ON-state. Two's complement of the original 16-bit data is stored in d.

Data types

Operands

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

FPWIN Pro Programming

Arithmetic Instructions

447

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF DF(start) THEN
 F85_NEG(negotiate_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

448

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F86_DNEG 32-bit data two's complement Steps: 3

Two’s complement is a number system used to express positive and negative
numbers in binary format. In this system, the number becomes negative if the
most significant bit (MSB) of data is 1. Two’s complement is obtained by inverting
all bits and adding 1 to the inverted result.

This instruction is useful for inverting the sign of 16-bit data from positive to
negative or from negative to positive.

· ·· · · · · · ·15

0

1211

0 0

8

0

7

0 0

4

0

3

0

0 · ·· · · · · · ·15

0

12

0

11

0

8

0

7

0

4

0

3

0 1

0

1

DT1 DT0

· ·· · · · · · ·15

1

1211

1 1

8

1

7

1 1

4

1

3

1

0 · ·· · · · · · ·15

1

12

1

11

1

8 7

1

4

1

3

1 0

0

1

DT1 DT0

1111111111111111

-3

000000000000000

3Decimal data

Destination

Bit position

start: ON

Binary data

Decimal data

Binary data

Destination

Bit position

32-bit area

32-bit area

PLC types: Availability of F86_DNEG (see page 927)

Variable Data type Function
d DINT, DWORD 32-bit area for storing original data and its two's complement

For Relay T/C Register Constant
d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Takes two's complement of 32-bit data specified by d if the trigger EN is in the
ON-state. Two's complement of the original 32-bit data is stored in d.

Data types

Operands

Example In this example the function F86_DNEG is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Arithmetic Instructions

449

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F86_DNEG(negotiate_value);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

450

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F270_MAX Maximum value search in 16-bit data table Steps: 8

Input s1 specifies the starting area of the data table, and s2 specifies the end.
The maximum value is returned at output max and its position at output pos.

The position pos is relative to the position at the beginning of the data table to
the first occurrence of the maximum value.

PLC types: Availability of F270_MAX (see page 930)

Variable Data type Function
s1 INT, WORD starting area of data table

s2 INT, WORD ending area of data table

max INT specifies maximum value

pos INT position where maximum value was found

For Relay T/C Register Const.
s1, s2 WX WY WR WL SV EV DT LD FL -

max, pos - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the address of the variable at input s1 > s2.
- the address areas of s1 and s2 are different.

Description The function searches for the maximum value and its position in a 16-bit data
table.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. It searches for
the maximum value and its position in the data_field. The result is here:
maximum_value = 6 and position = 2.

FPWIN Pro Programming

Arithmetic Instructions

451

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F270_MAX(s1_Start:= data_field[0],
 s2_End:= data_field[4],
 Max=> maximum_value,
 Pos=> position);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

452

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F271_DMAX Maximum value search in 32-bit data table Steps: 8

Input s1 specifies the starting area of the data table, and s2 specifies the end.
The maximum value is returned at output max and its position at output pos.

The position pos is relative to the position at the beginning of the data table to
the first occurrence of the maximum value.

PLC types: Availability of F271_DMAX (see page 930)

Variable Data type Function
s1 DINT, DWORD starting area of data table

s2 DINT, DWORD ending area of data table

max DINT specifies maximum value

pos WORD position where maximum value was found

For Relay T/C Register Const.
s1, s2 DWX DWY DWF DWL DSV DEV DDT DLD DFL -

max - DWY DWR DWL DSV DEV DDT DLD DFL -

pos - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the address of the variable at input s1 > s2.
- the address areas of s1 and s2 are different.

Description The function searches for the maximum value and its position in a 32-bit data
table.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. It searches for
the maximum value and its position in the data_field. The result is here:
maximum_value = 222222 and position = 2.

FPWIN Pro Programming

Arithmetic Instructions

453

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F271_DMAX(s1_Start:= data_field[0],
 s2_End:= data_field[4],
 Max=> maximum_value,
 Pos=> position);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

454

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F272_MIN Minimum value search in 16-bit data table Steps: 8

Input s1 specifies the starting area of the data table, and s2 specifies the end.
The minimum value is returned at output min and its position at output pos.

The position pos is relative to the position at the beginning of the data table to
the first occurrence of the minimum value.

PLC types: Availability of F272_MIN (see page 930)

Variable Data type Function
s1 INT, WORD starting area of data table

s2 INT, WORD ending area of data table

min INT specifies minimum value

pos INT position where minimum value was found

For Relay T/C Register Const.
s1, s2 WX WY WR WL SV EV DT LD FL -

min, pos - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the address of the variable at input s1 > s2.
- the address areas of s1 and s2 are different.

Description The function searches for the minimum value and its position in a 16-bit data
table.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. It searches for
the minimum value and its position in the data_field. The result is here:
minimum_value = -3 and position = 3.

FPWIN Pro Programming

Arithmetic Instructions

455

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F272_MIN(s1_Start:= data_field[0],
 s2_End:= data_field[4],
 Min=> minimum_value,
 Pos=> position);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

456

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F273_DMIN Minimum value search in 32-bit data table Steps: 8

Input s1 specifies the starting area of the data table, and s2 specifies the end.
The minimum value is returned at output min and its position at output pos.

The position pos is relative to the position at the beginning of the data table to
the first occurrence of the minimum value.

PLC types: Availability of F273_DMIN (see page 930)

Variable Data type Function
s1 DINT, DWORD starting area of data table

s2 DINT, DWORD ending area of data table

min DINT specifies minimum value

pos INT position where minimum value was found

For Relay T/C Register Const.
s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL -

min - DWY DWR DWL DSV DEV DDT DLD DFL -

pos - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the address of the variable at input s1 > s2.
- the address areas of s1 and s2 are different.

Description The function searches for the minimum value and its position in a 32-bit data
table.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. It searches for
the minimum value and its position in the data_field. The result is here:
minimum_value = -333333 and position = 3.

FPWIN Pro Programming

Arithmetic Instructions

457

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F273_DMIN(s1_Start:= data_field[0],
 s2_End:= data_field[4],
 Min=> minimum_value,
 Pos=> position);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

458

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F275_MEAN Total and mean numbers calculation in 16-
bit data table Steps: 8

Input s1 specifies the starting area of the data table, and s2 specifies the end.
The sum of all elements in the data table is returned at output sum and the
arithmetic mean of all elements in the data table is returned at output mean. The
arithmetic mean is rounded off if it is not a whole number.

PLC types: Availability of F275_MEAN (see page 930)

Variable Data type Function
s1 INT, WORD starting area of data table

s2 INT, WORD ending area of data table

mean INT mean of all elements in data table area specified

sum DINT sum of all elements in data table area specified

For Relay T/C Register Const.
s1, s2 WX WY WR WL SV EV DT LD FL -

mean - WY WR WL SV EV DT LD FL -

sum - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the address of the variable at input s1 > s2.
- the address areas are different.

R9009 %MX0.900.9 for an instant - the total value range overflows or underflows
the 32-bit range.

Description This function calculates the sum and the arithmetic mean of numbers (both with
+/- signs) in the specified 16-bit data table.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Arithmetic Instructions

459

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable output is set to TRUE, the function F275_MEAN is carried
out. The function calculates the sum of all elements of the data table (sum = 4 +
3 + 8 + (-2) + 1 + (-6) = 8) and writes the result (in this case 8) to the variable
sum. Additionally, the function calculates the arithmetic mean of all elements of
the data table (mean = sum/6 = (4 + 3 + 8 + (-2) + 1 + (-6)) / 6 = 1.333) and
writes the roanded-off number (in this case 1) to the variable mean.

LD

ST IF start THEN
 F275_MEAN(s1_Start:= data_field[0],
 s2_End:= data_field[4],
 Sum=> sum,
 Mean=> mean);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

460

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F276_DMEAN Total and mean numbers calculation in 32-
bit data table Steps: 8

Input s1 specifies the starting area of the data table, and s2 specifies the end.
The sum of all elements in the data table are returned at output sum and the
arithmetic mean of all elements in the data table are returned at output mean.
The arithmetic mean is rounded off if it is not already a whole number.

PLC types: Availability of F276_DMEAN (see page 931)

Variable Data type Function
s1 DINT, DWORD starting area of data table

s2 DINT, DWORD ending area of data table

mean DINT mean of all elements in data table area specified

sum ARRAY [0..1] of
DINT

sum of all elements in data table area specified

For Relay T/C Register Constant
s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL -

mean, sum - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the address of the variable at input s1 > s2.
- the address areas are different.

R9009 %MX0.900.9 for an instant - the total value range overflows or underflows
the 32-bit range.

Description This function calculates the sum and the arithmetic mean of numbers (both with
+/- signs) in the specified 32-bit data table.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Arithmetic Instructions

461

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start is set to TRUE, the function is carried out. The function
calculates the sum of all elements of ARRAY data_field (sum = 2 + 3 + 222222
+ (-333333) + 1 = -111105) and transfers the result to the variable sum. In
addition, the function calculates the mean (mean = sum/5 = -111105/5 = -22221)
and transfers the result to the variable mean.

LD

ST IF start THEN
 F276_DMEAN(s1_Start:= data_field[0],
 s2_End:= data_field[4],
 Sum=> sum,
 Mean=> mean);
END_IF;

Arithmetic Instructions

FPWIN Pro Programming

462

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F282_SCAL Linearization of 16-bit data Steps: 8

The function can be used for:

PLC types: Availability of F282_SCAL (see page 931)

Variable Data type Function
x INT Output value x

xy_data DUT The first element of an DUT-type variable that contains the
xy value pairs.

y INT Output value y

EN BOOL Activation of the function (when EN = TRUE, the function is
executed during each PLC cycle)

ENO BOOL ENO is set to TRUE as soon the function is executed.
Helpful when cascading function blocks with EN functions.

For Relay T/C Register Constant
x WX WY WR WL SV EV DT LD FL dec. or hex.

y - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the number of reference points is not
between 2 ... 100, or the x values are not in
ascending order (x1 < x2 < x3 < ...).

 Limitations of the output value y:

If the input value x is smaller than the x-coordinate of the first reference point
(P1: x < x1), the output y is set to the first reference point’s y-coordinate (output y

Description The function renders the value y at position x by performing a linear interpolation
based on the neighboring reference points Pw(xw, yw) and Pw+1(xw+1, yw+1).
In this example, w is the nearest reference point whose x value is smaller than
the input value x, i.e. the function connects the individual reference points in
series and renders the output value y based on the input value s.

 linearizing measured values, e.g. with non-linear sensors
 rendering a heater’s flow temperature y in relation to the outside

temperature x
 etc.

Data types

Operands

Error flags

FPWIN Pro Programming

Arithmetic Instructions

463

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

= y1, horizontal dashed line in the graph’s upper left corner).

If the input value x is greater than the x-coordinate of the last reference point (P8:
x > x8), the output y is set to the last reference point’s y-coordinate (output y =
y8, horizontal dashed line in the graphic’s upper right corner).

 DUT for the xy value pairs (reference points P1, P2, ...):

The reference points (P1, P2, ...) are copied to the function via an DUT-type
variable that contains the number of reference points and the xy value pairs
(number; x1, x2, ...; y1, y2; ...).

Structure of the DUT:

 Important information:

x values

The x values have to be entered in ascending order (x1 < x2 < x3 < ...). If the x
values are the same (e.g. x2 = x3 = x4) the reference points P2(x2,y2) and
P3(x3,y3) are ignored.

Overflow of the function:

In order to avoid an overflow in the calculation, neighboring reference points
must fulfill the following conditions:
|ya - yb| < 32767
|x - xb| < 32767
|(ya - yb)*(x - xb)| < 32767
|xa - xb| < 32767

1. Entry: Variable of the data type INT that contains the number of
reference points.
The number of reference points (xy value pairs) can be set anywhere
between 2 ... 100. In the graph, eight reference points (P1 ... P8) are
used.

2. Entry: Variable of the data type ARRAY (see page 20) [0..z] OF INT
that contains the x values.
Here z represents the place marker for the number of reference points
(see entry 1).

3. Entry: Variable of the data type ARRAY (see page 20) [0..z] OF INT
that contains the y values.
Here z represents the place marker for the number of reference points
(see entry 1).

Arithmetic Instructions

FPWIN Pro Programming

464

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Accuracy of the calculation:

This function can only process whole numbers. Numbers that follow the decimal
point are cut out when calculating the value y. For example, if at the position x, y
= 511,13, the function returns the value 511.

In the POU header, all input and output variables are declared that are used for
programming this function.

Here the input variable measured_value was declared, corresponding to the
type of the DUT defined above. Assigning the x values and y values was done in
the POU header. However, you can change the x values and y values in the
body by assigning a value to the variable, e.g. Measuredvalues.X_Values[1] for
x.

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

DUT In the DUT Pool the number of reference points and the xy value pairs are
declared.

POU
Header

Body When the variable start is set to TRUE, the function is carried out. For the input
value at position x, the output value y is calculated via linear interpolation of the
neighboring reference points stored in the variable measured value.

LD

ST IF start THEN
 F282_SCAL(input_value, measured_value.referencepoints,
output_value);
END_IF;

FPWIN Pro Programming

Arithmetic Instructions

465

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F283_DSCAL Linearization of 32-bit data Steps: 8

The function can be used for:

PLC types: Availability of F283_DSCAL (see page 931)

Variable Data type Function
x INT Input value x

xy_data DUT The first element of a DUT-type variable that contains the xy
value pairs.

y DINT Output value y

EN BOOL Activation of the function (when EN = TRUE, the function is
executed during each PLC cycle)

ENO BOOL ENO is set to TRUE as soon the function is executed.
Helpful when cascading function blocks with EN functions.

For Relay T/C Register Constant
x WX WY WR WL SV EV DT LD FL dec. or hex.

y - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the number of reference points is not
between 2 ... 100, or the x values are not in
ascending order (x1 < x2 < x3 < ...).

Description The function renders the value y at position x by performing a linear interpolation
based on the neighboring reference points Pw(xw, yw) and Pw+1(xw+1, yw+1).
In this example, w is the nearest reference point whose x value is smaller than
the input value x, i.e. the function connects the individual reference points in
series and renders the output value y based on the input value s.

 linearizing measured values, e.g. with non-linear sensors
 rendering a heater’s flow temperature y in relation to the outside

temperature x
 etc.

Data types

Operands

Error flags

Arithmetic Instructions

FPWIN Pro Programming

466

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

 Limitations of the output value y:

If the input value x is smaller than the x-coordinate of the first reference point
(P1: x < x1), the output y is set to the first reference point’s y-coordinate (output y
= y1, horizontal dashed line in the graph’s upper left corner).

If the input value x is greater than the x-coordinate of the last reference point (P8:
x > x8), the output y is set to the last reference point’s y-coordinate (output y =
y8, horizontal dashed line in the graphic’s upper right corner).

 DUT for the xy value pairs (reference points P1, P2, ...):

The reference points (P1, P2, ...) are copied to the function via a DUT-type
variable that contains the number of reference points and the xy value pairs
(number; x1, x2, ...; y1, y2; ...).

Structure of the DUT:

 Important information:

x values

The x values have to be entered in an ascending order (x1 < x2 < x3 < ...). If the
x values are the same (e.g. x2 = x3 = x4) the reference points P2(x2,y2) and
P3(x3,y3) are ignored.

Overflow of the function:

In order to avoid an overflow in the calculation, neighboring reference points
must fulfill the following conditions:

1. Entry: Variable of the data type INT that contains the number of
reference points.
The number of reference points (xy value pairs) can be anywhere
between 2 ... 100. In the graph, eight reference points (P1 ... P8) are
used.

2. Entry: Variable of the data type ARRAY (see page 20) [0..z] OF DINT
that contains the x values.
Here z represents the place marker for the number of reference points
(see entry 1).

3. Entry: Variable of the data type ARRAY (see page 20) [0..z] OF DINT
that contains the x values.
Here z represents the place marker for the number of reference points
(see entry 1).

FPWIN Pro Programming

Arithmetic Instructions

467

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

|ya - yb| < 2147483647
|x - xb| < 2147483647
|(ya - yb)*(x - xb)| < 2147483647
|xa - xb| < 2147483647

Accuracy of the calculation:

This function can only process whole numbers. Numbers that follow the decimal
point are cut out when calculating the value y. For example, if at the position x, y
= 511,13, the function returns the value 511.

Here the input variable measured_value was declared, corresponding to the
type of the DUT defined above. Assigning the x values and y values was done in
the POU header. However, you can change the x values and y values in the
body by assigning a value to the variable, e.g. Measuredvalues.Y_Values[3] for
y3.

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

DUT In the DUT Pool, the number of reference points and the xy value pairs are
declared.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. For the input
value at position x, the output value y is calculated via linear interpolation
between the neighboring reference points stored in the variable measured
value.

Arithmetic Instructions

FPWIN Pro Programming

468

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F283_DSCAL(input_value, measured_value.referencepoints,
output_value);
END_IF;

FPWIN Pro Programming

Arithmetic Instructions

469

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F96_SRC Table data search (16-bit search) Steps: 7

When the search operation is performed, the search results are stored as
follows:

Be sure that s2 ≤ s3.

PLC types: Availability of F96_SRC (see page 927)

Variable Data type Function
s1 INT, WORD 16-bit area or equivalent constant to store the value

searched for

s2 INT, WORD starting 16-bit area of the block

s3 INT, WORD ending 16-bit area of the block

The variables s1, s2 and s3 have to be of the same data type.
For Relay T/C Register Constant
s1 WX WY WR WL SV EV DT LD FL dec. or hex.

s2, s3 - WY WR WL SV EV DT LD FL -

In this example the function F96_SRC is programmed in ladder diagram (LD) and
structured text (ST). The same POU header is used for all programming
languages.

Description Searches for the value that is the same as s1 in the block of 16-bit areas
specified by s2 (starting area) through s3 (ending area) if the trigger EN is in the
ON-state.

 The number of data that is the same as s1 is transferred to special
data register DT9037.

 The position the data is first found in, counting from the starting 16-
bit area, is transferred to special data register DT9038.

Data types

Operands

Example

Arithmetic Instructions

FPWIN Pro Programming

470

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F96_SRC(s1:= search_value ,
 s2_Start:= data_array[0] ,
 s3_End:= data_array[3]);
 number_matches:=DT90037;
 position_1match:=DT90038;
END_IF;

FPWIN Pro Programming

Arithmetic Instructions

471

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F97_DSRC 32-bit table data search Steps: 9

The number of data items that match s1 is stored in special data register
DT90037.

The relative position of the first matching data item, counting from the starting 32-
bit area s2, is stored in special data register DT90038.

PLC types: Availability of F97_DSRC (see page 927)

Variable Data type Function
s1 DINT, DWORD 32-bit area or equivalent constant to store the value searched

for

s2 DINT, DWORD starting 32-bit area of the block

s3 DINT, DWORD ending 32-bit area of the block

The adresses of the variables at inputs s2 and s3 must be of the same adress
type.

For Relay T/C Register Constant
s1 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

s2, s3 - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the address of the variables at outputs s2 >
s3.

Description The function searches for the value specified at input s1 in a block of 32-bit areas
whose beginning is specified at input s2 and whose end is specified at input s3.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Arithmetic Instructions

FPWIN Pro Programming

472

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. Instead of
using an input variable in this example, a constant (-44) is assigned to input s1.
The result is stored in special data registers DT90037 and DT90038. The two
E_MOVE functions copy the results to the two variables number_matches and
position_1match.

LD

ST IF start THEN
 F97_DSRC(s1:= -44 ,
 s2_Start:= data_table[0] ,
 s3_End:= data_table[3]);
 number_matches:=DT90037;
 position1_match:=DT90038;
END_IF;

FPWIN Pro Programming

Arithmetic Instructions

473

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

16.1 Introduction into the FIFO Buffer
The FIFO buffer is a first-in-first-out buffer area realized as a ring buffer. Data is stored in the
order in which it is written to the buffer, and then read out in the order stored, starting from the
first data item stored. It is convenient for buffering objects in sequential order.

Usage procedure
• The area to be used is defined as the FIFO buffer using the F115_FIFT (see page

474) instruction. (This should be done only once, before reading or writing is done.)

• Data should be written to the buffer using the F117_FIFW (see page 480) instruction,
and read out of the buffer using the F116_FIFR (see page 477) instruction.

Writing data
• When data is written, the data items are stored in sequential order, starting from the

first data storage area. The writing pointer indicates the next area to which data is to
be written. The number of words stored increases by 1.

• If the data storage area becomes full, i.e. the number of words stored is equal to n-1,
further data writing is inhibited.

Reading data
• When data is read, data is transferred starting from the first data item stored. The

reading pointer indicates the next area from which data is to be read. The number of
words stored decreases by 1.

• An error occurs if an attempt is made to read data when the data storage area is
empty, the number of words stored is equal to the memory size of the FIFO buffer or is
equal to zero.

Data storage area
If data is written while the FIFO buffer is in the status shown below, the data will be stored in
the area indicated by 3. The writing pointer moves to 4, i.e. the next data item will be written to
4. If data is read, it will be read from the area indicated by 0. The reading pointer then moves
to 1, i.e. the next data item will be read from 1. (For more information on the reading and
writing pointer, see F115_FIFT (see page 474)).

Arithmetic Instructions

FPWIN Pro Programming

474

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F115_FIFT FIFO buffer area definition Steps: 5

n: memory size (number of words (16-bit)) of FIFO buffer,
n = 1 to 256.

d1: the starting 16-bit area of FIFO buffer

How to use the FIFO buffer (see page 473)

Definition of the area using the FIFT instruction should be carried out only once,
before writing to or reading from the FIFO buffer. When the FIFT instruction is
executed, the FIFO buffer area is defined as follows:

When the FIFT instruction is executed, the following are stored as default values:
d1 = n (the value specified by the FIFT instruction), d1 + 1 = 0, and d1 + 2 =
16#0000.

PLC types: Availability of F115_FIFT (see page 928)

Variable Data type Function
n INT specifies the memory size of FIFO buffer

d1 INT, WORD starting 16-bit area of FIFO buffer

Description F/P115 specifies the starting area d1 for the FIFO (First-In-First-Out) buffer and
the memory size n of the FIFO buffer.

Data types

FPWIN Pro Programming

Arithmetic Instructions

475

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
n WX WY WR WL SV EV DT LD FL dec. or hex.

d1 - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- n = 0
- n > 256
- The area specified by n exceeds the limit

Operands

Error flags

Example In this example the function F115_FIFT is activated.

DUT The Data Unit Type is created in the DUT Pool. It can be accessed by the POU
header after being declared there.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the FIFT_Initialize instruction is enabled, the following values are stored
as the default values: FIFO.Size = 13; FIFO.Number = 0;
FIFO.Positions = 16#0000.

Arithmetic Instructions

FPWIN Pro Programming

476

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF DF(FIFO_Initalize) THEN
 (* Create the FIFO buffer *)
 F115_FIFT(n_Number:= Size_Of_Var(FIFO.Data), d1_Start:=
FIFO.Size);
 REPEAT
 (* Initialize FIFO buffer with values *)
 Write_Data:=Write_Data+1;
 F117_FIFW(s:= Write_Data, d1_Start:= FIFO.Size);
 UNTIL(FIFO.Number>=FIFO.Size)
 END_REPEAT;
END_IF;

IF DF(FIFO_Write) THEN
 (* Write value of Write_Data to FIFO buffer *)
 (* at leading edge of FIFO_Write *)
 F117_FIFW(s:= Write_Data, d1_Start:= FIFO.Size);
END_IF;

IF DF(FIFO_Read) THEN
 (* Read value from FIFO buffer *)
 (* at leading edge of FIFO_Read *)
 F116_FIFR(d1_Start:= FIFO.Size, d2:= Read_Data);
END_IF;

FPWIN Pro Programming

Arithmetic Instructions

477

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F116_FIFR Read from FIFO buffer Steps: 5

How to use the FIFO buffer (see page 473)

Reading of data is done starting from the address specified by the reading
pointer when the instruction is executed.

The reading pointer is stored in the upper eight bits of the third word of the FIFO
buffer area. The actual address is the value of the leading address in the FIFO
buffer area specified by d1 plus 3, plus the value of reading pointer (the value of
which only the first byte is a decimal value).

When the reading is executed, 1 is subtracted from the number of stored data
items, and the reading pointer is incremented by 1, or reset to zero if the reading
pointer pointed to the final element.

PLC types: Availability of F116_FIFR (see page 928)

Variable Data type Function
d1 INT, WORD starting 16-bit area of FIFO buffer

d2 INT, WORD 16-bit area for storing data read from FIFO buffer

The variables d1 and d2 have to be of the same data type.

For Relay T/C Register Const.
d1, d2 - WY WR WL SV EV DT LD FL -

Description F/P116 reads the data d1 from the FIFO (First-In-First-Out) buffer and stores the
data in area specified by d2.

 (0), (n–2) and (n–1) are addresses assigned to the data storage
area.

 n is the value specified by the F115_FIFT (see page 474)
instruction.

Data types

Operands

Arithmetic Instructions

FPWIN Pro Programming

478

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

 • An error occurs if this is executed when the number of stored data
items is 0 or when the reading pointer is equal to the writing pointer.

• Reading is only carried out when the reading pointer is not equal to
the writing pointer.

• If this is executed when the reading pointer is indicating the final
address in the FIFO buffer (the n defined by the FIFO instruction
minus 1), the reading pointer is set to 0.

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

-The size (n) of the FIFO specified by d1 is n =
0, or when n > 256.

-The number of stored data items of the FIFO
= 0.

-The number of stored data items of the FIFO
> FIFO size (n).

-The final address of the FIFO based on the
FIFO size (n) exceeds the area.

-The FIFO reading pointer > FIFO size (n).
-The FIFO reading pointer is 256 (16#100) or

higher after the data has been read.

Error flags

Example This example illustrates the FIFO buffer by incorporating the functions
F115_FIFT, F116_FIFR and F117_FIFW.

DUT The Data Unit Type is created in the DUT Pool. It can be accessed by the POU
header after being declared there.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Arithmetic Instructions

479

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body The example below illustrates the status of the buffer after FIFO_Write has been
enabled twice and FIFO_Read once. When FIFO_Write was activated the first
time, the value 1 was written into FIFO.Data[0]. When FIFO_Read was enabled,
Read_Data then read this value. When FIFO_Write was enabled the second
time, the Writing pointer was incremented by one and the value 2 written into
FIFO.Data[1]. see Entry Data Monitor 1

LD

Arithmetic Instructions

FPWIN Pro Programming

480

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F117_FIFW Write to FIFO buffer Steps: 5

How to use the FIFO buffer (see page 473)

The specified data is written to the address indicated by the writing pointer when
the instruction is executed.

The writing pointer is stored in the lower eight bits of the third word of the FIFO
buffer area, and is indicated by a relative position in the data storage area. The
actual address to which data is being written is specified by d1 plus the offset 3
plus the value of the writing pointer (the value of which only the lower byte is a
decimal value).

When the writing is executed, 1 is added to the number of stored data items, and
the writing pointer is incremented by 1, or reset to zero if the writing pointer
pointed to the final element.

PLC types: Availability of F117_FIFW (see page 928)

Variable Data type Function
s INT, WORD 16-bit area or equivalent constant for storing data to write in

the FIFO buffer

d1 INT, WORD starting 16-bit area of FIFO buffer

The variables s and d1 have to be of the same data type.

Description F/P117 writes the data specified by s into the FIFO buffer specified by d1.

 (0), (n-2) and (n-1) are addresses assigned to the data storage area.
 n is the value specified by the F115_FIFT (see page 474)

instruction.

Data types

FPWIN Pro Programming

Arithmetic Instructions

481

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL dec. or hex.

d1 - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

-The size (n) of the FIFO specified by d1 is n =
0, or when n > 256.

-The number of stored data items of the FIFO
= 0.

-The number of stored data items of the FIFO
> FIFO size (n).

-The final address of the FIFO based on the
FIFO size (n) exceeds the area.

-The FIFO writing pointer > FIFO size (n).
-The FIFO writing pointer is 256 (16#100) or

higher after the data has been written.

 • An error occurs if this is executed when the FIFO buffer is full (the
number of stored data items = the size n of the FIFO defined by the
FIFT instruction). Writing is inhibited.

• If this is executed when the writing pointer is indicating the final
address in the FIFO buffer (the "n" value defined by the FIFT
instruction), the writing pointer will be set to 0.

Operands

Error flags

Example This example illustrates the FIFO buffer by incorporating the functions
F115_FIFT, F116_FIFR and F117_FIFW.

DUT The Data Unit Type is created in the DUT Pool. It can be accessed by the POU
header after being declared there.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Arithmetic Instructions

FPWIN Pro Programming

482

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body The example below illustrates the status of the buffer after FIFO_Write has been
enabled twice and FIFO_Read once. When FIFO_Write was activated the first
time, the value 1 was written into FIFO.Data[0]. When FIFO_Read was enabled,
Read_Data then read this value. When FIFO_Write was enabled the second
time, the Writing pointer was incremented by one and the value 2 written into
FIFO.Data[1]. see Entry Data Monitor 1

FPWIN Pro Programming

Arithmetic Instructions

483

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

Arithmetic Instructions

FPWIN Pro Programming

484

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F98_CMPR Data table shift-out and compress Steps: 7

Non-zero data is shifted (compressed) in sequential order, in the direction of the
higher address in the specified range.

PLC types: Availability of F98_CMPR (see page 927)

Variable Data type Function
d1 ARRAY of WORD,

INT
starting (lowest) address of data to be compressed

d2 ARRAY of WORD,
INT

final (highest) address of data to be compressed, data at d2
is shifted out

d3 WORD, INT receives data shifted out from d2

For Relay T/C Register Const.
d1, d2, d3 - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently - d1 > d2

R9008 %MX0.900.8 for an instant - d1 and d2 are not in the same memory area

Description Shifts out non-zero data stored at the highest address of the table to the
specified area and compresses the data in the table to the higher address. The
data in the table specified by d1 and d2 is rearranged as follows:

 Contents of d2 (highest address) are shifted out to the area
specified by d3.

 Starting area d1 and ending area d2 should be the same type of
operand.

 Be sure to specify d1 and d2 with "d1 ≤ d2".

Data types

Operands

Error flags

FPWIN Pro Programming

Arithmetic Instructions

485

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

The rest of the data in the buffer is shifted in the direction of the first address, so
normally, the oldest data at that point is stored in the last address of the buffer.

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable Start is set to TRUE, the function is carried out. The data in
the lower addresses is compressed toward the higher addresses, and the value
defined at the highest address, i.e. 10, is shifted out.

LD

Example 2: In combination with the F99_ CMPW/ P99_CMPW instruction, this can be used
to construct an optional buffer. (Use a FIFO buffer for non-zero values.)
1. Executing the F99_CMPW/ P99_CMPW instruction

When data items are written to the first address of the buffer (the area
of the specified range), they are stored and accumulated in the buffer
in sequential order. The oldest data will be stored in the last address of
the buffer.

2. Executing the F98_CMPR/ P98_CMPR instruction
When the data in the last address of the buffer (the area of the
specified range) has been read, data can be extracted in sequential
order, starting from the oldest data.

Arithmetic Instructions

FPWIN Pro Programming

486

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In Step 2 the F98 function is activated, and the value defined in the variable at
d3, i.e. 11, is shifted out.

POU
Header

LD In Step 1 the F99 function is activated, shifting in the value given in the variable
ShiftinData at s, i.e. 31, and compressing the rest of the data.

FPWIN Pro Programming

Arithmetic Instructions

487

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F99_CMPW Data table shift-in and compress Steps: 7

Non-zero data is shifted (compressed) in sequential order, in the direction of the
higher address in the specified range.

PLC types: Availability of F99_CMPW (see page 927)

 For an example on how to construct a FIFO buffer using F/P99 and F/P98, see
Example 2 from F/P98.

Variable Data type Function
s INT, WORD data to be shifted in

d1 INT, WORD starting address of area that is compressed into which
data from s is shifted

d2 INT, WORD end address of area where data is compressed

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL dec. or hex.

d1, d2 - WY WR WL SV EV DT LD FL -

Description Shifts in data to the smallest address of the specified data table and compresses
the data in the table toward the higher address. The data in the table specified by
d1 and d2 is rearranged as follows:

 Data specified by s is shifted in to the area specified by d1 (starting
address).

 Starting area d1 and ending area d2 should be the same type of
operand.

 Be sure to specify d1 and d2 with "d1 ≤ d2".
 If the content of s is "0", only a compressed shift is carried out.

Data types

Operands

Arithmetic Instructions

FPWIN Pro Programming

488

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R9007 %MX0.900.7 permanently - d1 > d2

R9008 %MX0.900.8 for an instant - d1 and d2 are not in the same memory area

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body After the variable Start is set to TRUE, the value of the variable ShiftinData, i.e.
32, at the contact s is shifted into the specified area of the data table, and the
data is compressed.

LD

FPWIN Pro Programming

Arithmetic Instructions

489

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F277_SORT Sort data in 16-bit data table (in smaller or
larger number order) Steps: 8

Input s1 specifies the starting area of the data table, and s2 specifies the end.
You determine the sorting order at input s3.

At input s3 you can enter the following values:

The data are sorted via bubble sort in the order specified according to the value
entered at input s1. Since the number of word comparisons increases in
proportion to the square of the number of words, the sorting process can take
some time when there are a large number of words. When the address of the
variable at input s1 = s2, no sorting takes place.

PLC types: Availability of F277_SORT (see page 931)

Variable Data type Function
s1 INT starting area of data table to be sorted

s2 INT ending area of data table to be sorted

s3 INT specifies sorting order: 0 = ascending, 1 = descending

For Relay T/C Register Constant
s1, s2 - WY WR WL SV EV DT LD FL -

s3 WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the address of the variable at input s1 > s2
- the address areas of the values at inputs s1

and s2 are different

Description The function sorts values (with +/- sign) in a data table in ascending or
descending order.

0 ascending order, i.e. begin with the smallest value
1 descending order, i.e. begin with the largest value

Data types

Operands

Error flags

Arithmetic Instructions

FPWIN Pro Programming

490

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. The constant
0 is specified at input s3, which means the sorting is carried out in an ascending
order. However, you can declare a variable in the POU header and write it in the
function in the body at input s3.

LD

ST IF start THEN
 F277_SORT(s1_Start:= data_field[0],
 s2_End:= data_field[4],
 s3_Descending:= 0);
END_IF;

FPWIN Pro Programming

Arithmetic Instructions

491

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F278_DSORT Sort data in 32-bit data table (in smaller or
larger number order) Steps: 8

Input s1 specifies the starting area of the data table, and s2 specifies the end.
You determine the sorting order at input s3.

At input s3 you can enter the following values:

The data are sorted via bubble sort in the order specified according to the value
entered at input s1. Since the number of word comparisons increases in
proportion to the square of the number of words, the sorting process can take
some time when there are a large number of words. When the address of the
variables at inputs s1 = s2, no sorting takes place.

PLC types: Availability of F278_DSORT (see page 931)

 Although this is a 32-bit instruction, the number of steps is the same as the 16-
bit instruction.

Variable Data type Function
s1 DINT starting area of data table to be sorted

s2 DINT ending area of data table to be sorted

s3 INT specifies sorting order: 0 = ascending, 1 = descending

For Relay T/C Register Constant
s1, s2 - DWY DWR DWL DSV DEV DDT DLD DFL -

s3 WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the address of the variable at input s1 > s2
- the address areas of the values at inputs s1

and s2 are different

Description The function sorts values (with +/- sign) in a data table in ascending or
descending order.

0 ascending order, i.e. begin with the smallest value
1 descending order, i.e. begin with the largest value

Data types

Operands

Error flags

Arithmetic Instructions

FPWIN Pro Programming

492

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the input variable sort_order is declared. However, you can
write a constant directly at the input contact of the function instead.

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. Since the
variable sort_order is set to 1, the specified data field in sorted in descending
order.

LD

ST IF start THEN
 F278_DSORT(s1_Start:= data_field[0],
 s2_End:= data_field[4],
 s3_Descending:= sort_order);
END_IF;

Chapter 17
 Bitwise Boolean Instructions

Bitwise Boolean Instructions

FPWIN Pro Programming

494

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F5_BTM Bit data move Steps: 7

The operand n specifies the bit number as follows:

For example, reading from the right, n = 16#C01 would move from bit position
one, one bit to bit position 12 (16#C).

PLC types: Availability of F5_BTM (see page 925)

Variable Data type Function
s INT, WORD source 16-bit area

n INT, WORD specifies source and destination bit positions

d INT, WORD destination 16-bit area

The variables s and d have to be of the same data type.
For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Explanation with example value 16#8888 and bit at position 2 moves to
destination value at bit position 15

Description 1 bit of the 16-bit data or constant value specified by s is copied to a bit of the 16-
bit area specified by d according to the content specified by n if the trigger EN is
in the ON-state. When the 16-bit equivalent constant is specified by s, the bit
data move operation is performed internally converting it to 16-bit binary
expression.

 Bit No. 0 to 3: source bit No. (16#0 to 16#F)
 Bit No. 8 to 11: destination bit No. (16#0 to 16#F)
 Bit No. 12 to 15: invalid

Data types

Operands

FPWIN Pro Programming

Bitwise Boolean Instructions

495

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

15 . . 12 11 0
0

15 . . 12 11 . .

8 7 45

1 1 1 1 1

15 . . 12 11 . . 8 7 .
0 1 1 1

1 1 1 1 1 11 1 1 11

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
. .

. . 08 7 45 . .

. 045 . .

. . . .
target

result

bit pos

source

bit pos

bit pos

Bit at position 15 is exchanged, destination value in this example: 16#7FFF

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F5_BTM(s:= input_value,
 n:= copy_operand,
 d=> output_value);
END_IF;

Bitwise Boolean Instructions

FPWIN Pro Programming

496

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F6_DGT Digit data move Steps: 7

Digits are units of 4 bits used when handling data. With this instruction, 16-bit
data is separated into four digits. The digits are called in order hexadecimal digit
0, digit 1, digit 2 and digit 3, beginning from the least significant four bits:

n specifies the source hexadecimal digit position, the number of digits and
the destination hexadecimal digit position to be copied using hexadecimal
data as follows:

Following are some patterns of digit transfer based on the specification of
n.

Description

The hexadecimal digits in the 16-bit data or in the 16-bit equivalent constant
specified by s are copied to the 16-bit area specified by d as specified by n.

FPWIN Pro Programming

Bitwise Boolean Instructions

497

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

digit 3 2 1 0
s

 ↓ Specify n: 16#101

d

digit 3 2 1 0

digit 3 2 1 0

s

 Specify n: 16#003 (short form: 16#3)

d

digit 3 2 1 0

digit 3 2 1 0

s

 ↓ ↓ Specify n: 16#212

d

digit 3 2 1 0

digit 3 2 1 0

 When hexadecimal digit 1 of the source is copied to hexadecimal
digit 1 of the destination:

 When hexadecimal digit 3 of the source is copied to hexadecimal
digit 0 of the destination:

 When multiple hexadecimal digits (hexadecimal digits 2 and 3) of the
source are copied to multiple hexadecimal digits (hexadecimal digits
2 and 3) of the destination:

 When multiple hexadecimal digits (hexadecimal digits 0 and 1) of the
source are copied to multiple hexadecimal digits (hexadecimal digits
2 and 3) of the destination:

Bitwise Boolean Instructions

FPWIN Pro Programming

498

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

s

 Specify n: 16#210

d

digit 3 2 1 0

digit 3 2 1 0

s

 Specify n: 16#130

d

digit 3 2 1 0

PLC types: Availability of F6_DGT (see page 925)

Variable Data type Function
s INT, WORD 16-bit area source

n INT, WORD Specifies source and destination hexadecimal digit position
and number of hexadecimal digits

d INT, WORD 16-bit area destination

For Relay T/C Register Constant
s, n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

 When 4 hexadecimal digits (hexadecimal digits 0 to 3) of the source
are copied to 4 hexadecimal digits (hexadecimal digits 0 to 3) of the
destination:

Data types

Operands

FPWIN Pro Programming

Bitwise Boolean Instructions

499

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed. The values for
source and output in the Monitor Header of the ladder diagram body have been
set to display the hexadecimal value by activating the Hex button in the tool bar.

LD

ST IF start THEN
 F6_DGT(s:= source,
 n:= specify_n,
 d=> output);
END_IF;

Bitwise Boolean Instructions

FPWIN Pro Programming

500

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F65_WAN 16-bit data AND Steps: 7

PLC types: Availability of F65_WAN (see page 926)

Variable Data type Function
s1 INT, WORD 16-bit equivalent constant or 16-bit area

s2 INT, WORD 16-bit equivalent constant or 16-bit area

d INT, WORD 16-bit area for storing AND operation result

The variables s1, s2 and d have to be of the same data type.
For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Executes AND operation of each bit in 16-bit equivalent constant or 16-bit data
specified by s1 and s2 if the trigger EN is in the ON-state. The AND operation
result is stored in the 16-bit area specified by d. When 16-bit equivalent constant
is specified by s1 or s2, the AND operation is performed internally converting it to
16-bit binary expression. You can use this instruction to turn OFF certain bits of
the 16-bit data.

Data types

Operands

Example In this example the function F65_WAN is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Bitwise Boolean Instructions

501

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F65_WAN(value_1, value_2, output_value);
END_IF;

Bitwise Boolean Instructions

FPWIN Pro Programming

502

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F66_WOR 16-bit data OR Steps: 7

PLC types: Availability of F66_WOR (see page 926)

Variable Data type Function
s1 INT, WORD 16-bit equivalent constant or 16-bit area

s2 INT, WORD 16-bit equivalent constant or 16-bit area

d INT, WORD 16-bit area for storing OR operation result

The variables s1, s2 and d have to be of the same data type.
For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description Executes OR operation of each bit in 16-bit equivalent constant or 16-bit data
specified by s1 and s2 if the trigger EN is in the ON-state. The OR operation
result is stored in the 16-bit area specified by d. When 16-bit equivalent constant
is specified by s1 or s2, the OR operation is performed internally converting it to
16-bit binary expression. You can use this instruction to turn ON certain bits of
the 16-bit data.

Data types

Operands

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Bitwise Boolean Instructions

503

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F66_WOR(value_1, value_2, output_value);
END_IF;

Bitwise Boolean Instructions

FPWIN Pro Programming

504

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F67_XOR 16-bit data exclusive OR Steps: 7

PLC types: Availability of F67_XOR (see page 926)

Variable Data type Function
s1 INT, WORD 16-bit equivalent constant or 16-bit area

s2 INT, WORD 16-bit equivalent constant or 16-bit area

d INT, WORD 16-bit area for storing XOR operation result

The variables s1, s2 and d have to be of the same data type.
For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description Executes exclusive OR operation of each bit in 16-bit equivalent constant or 16-
bit data specified by s1 and s2 if the trigger EN is in the ON-state. The exclusive
OR operation result is stored in the 16-bit area specified by d. When 16-bit
equivalent constant is specified by s1 or s2, the exclusive OR operation is
performed internally converting it to 16-bit binary expression. You can use this
instruction to review the number of identical bits in the two 16-bit data.

Data types

Operands

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Bitwise Boolean Instructions

505

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F67_XOR(value_1, value_2, output_value);
END_IF;

Bitwise Boolean Instructions

FPWIN Pro Programming

506

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F68_XNR 16-bit data exclusive NOR Steps: 7

PLC types: Availability of F68_XNR (see page 926)

Variable Data type Function
s1 INT, WORD 16-bit equivalent constant or 16-bit area

s2 INT, WORD 16-bit equivalent constant or 16-bit area

d INT, WORD 16-bit area for storing NOR operation result

The variables s1, s2 and d have to be of the same data type.
For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Executes exclusive NOR operation of each bit in 16-bit equivalent constant or 16-
bit data specified by s1 and s2 if the trigger EN is in the ON-state. The exclusive
NOR operation result is stored in the 16-bit area specified by d. When 16-bit
equivalent constant is specified by s1 or s2, the exclusive NOR operation is
performed internally converting it to 16-bit binary expression. You can use this
instruction to review the number of identical bits in the two 16-bit data.

Data types

Operands

FPWIN Pro Programming

Bitwise Boolean Instructions

507

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example the function F68_XNR is programmed in ladder diagram (LD) and
structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F68_XNR(value_1, value_2, output_value);
END_IF;

Bitwise Boolean Instructions

FPWIN Pro Programming

508

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F69_WUNI 16-bit data unite Steps: 9

[d] = ([s1] AND [s3]) OR ([s2] AND (NOT[s3]))

When the value at input s3 = 16#0, the value at input s2 is returned at output d.

When the value at input s3 = 16#FFFF, the value at input s2 is returned at output
d.

PLC types: Availability of F69_WUNI (see page 927)

Variable Data type Function
s1 INT, WORD 16-bit equivalent constant or 16-bit area

s2 INT, WORD 16-bit equivalent constant or 16-bit area

s3 INT, WORD 16-bit area that stores master data for combination or 16-bit
equivalent constant data

d INT, WORD 16-bit area for storing calculated result

The variables s1, s2, s3 and d have to be of the same data type.

Description The function combines the two values at inputs s1 and s2 with the value at input
s3 by bit-unit processing. The result of the function is returned at output d. The
data-unite is calculated as follows:

Data types

FPWIN Pro Programming

Bitwise Boolean Instructions

509

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s1, s2, s3 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the result calculated is 0.

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Operands

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

In this example the input variables input_value_1, input_value _2 and
selection are declared. However, you can write constants directly at the input
contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F69_WUNI(s1:= input_value1,
 s2:= input_value2,
 s3_Mask:= selection,
 d=> output_value);
END_IF;

Bitwise Boolean Instructions

FPWIN Pro Programming

510

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F215_DAND 32-bit data AND Steps: 12

s1 s2 d

0 0 0

0 1 0

1 0 0

1 1 1

PLC types: Availability of F215_DAND (see page 930)

Variable Data type Function
s1 DINT, DWORD 32-bit equivalent constant or 32-bit area

s2 DINT, DWORD 32-bit equivalent constant or 32-bit area

d DINT, DWORD 32-bit area for storing AND operation result

The variables s1, s2 and d have to be of the same data type.
For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the result calculated (output d) is 0.

In this example the input variables input_value_1 and input_value _2 are
declared. However, you can write constants directly at the input contact of the

Description The function performs a bit-wise AND operation on two 32-bit data items at
inputs s1 and s2. The result of the function is returned at output d.

Truth
Table:

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Bitwise Boolean Instructions

511

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

function instead.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF START THEN
 F215_DAND(dint1, dint2, dint3);
END_IF;

Bitwise Boolean Instructions

FPWIN Pro Programming

512

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F216_DOR 32-bit data OR Steps: 12

s1 s2 d

0 0 0

0 1 1

1 0 1

1 1 1

PLC types: Availability of F216_DOR (see page 930)

Variable Data type Function
s1 DINT, DWORD 32-bit equivalent constant or 32-bit area

s2 DINT, DWORD 32-bit equivalent constant or 32-bit area

d DINT, DWORD 32-bit area for storing OR operation result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant
s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the result calculated (output d) is 0.

In this example the input variables input_value_1 and input_value _2 are
declared. However, you can write constants directly at the input contact of the

Description The function performs a bit-wise OR operation on two 32-bit data items at inputs
s1 and s2. The result of the function is returned at output d.

Truth
Table:

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Bitwise Boolean Instructions

513

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

function instead.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F216_DOR(input_value_1, input_value_2, output_value);
END_IF;

Bitwise Boolean Instructions

FPWIN Pro Programming

514

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F217_DXOR 32-bit data XOR Steps: 12

s1 s2 d

0 0 0

0 1 1

1 0 1

1 1 0

Using this instruction you can check how many bits in the two 32-bit data items
are different, for example. At each position in which the bits at inputs s1 and s2
are different, a 1 is added in the result.

PLC types: Availability of F217_DXOR (see page 930)

Variable Data type Function
s1 DINT, DWORD 32-bit equivalent constant or 32-bit area

s2 DINT, DWORD 32-bit equivalent constant or 32-bit area

d DINT, DWORD 32-bit area for storing XOR operation result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant
s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the result calculated (output d) is 0.

Description The functions a bit-wise exclusive OR operation on two 32-bit data items at
inputs s1 and s2. The result of the function is returned at output d.

Truth
Table:

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Bitwise Boolean Instructions

515

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example the input variables input_value_1 and input_value _2 are
declared. However, you can write constants directly at the input contact of the
function instead.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F217_DXOR(input_value_1, input_value_2, output_value);
END_IF

Bitwise Boolean Instructions

FPWIN Pro Programming

516

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F218_DXNR 32-bit data XNR Steps: 12

s1 s2 d

0 0 1

0 1 0

1 0 0

1 1 1

Using this instruction you can check how many bits in the two 32-bit data items
are the same. At each position in which the bits at inputs s1 and s2 match, a 1 is
produced in the result.

PLC types: Availability of F218_DXNR (see page 930)

Variable Data type Function
s1 DINT, DWORD 32-bit equivalent constant or 32-bit area

s2 DINT, DWORD 32-bit equivalent constant or 32-bit area

d DINT, DWORD 32-bit area for storing XNR operation result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant
s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the result calculated (output d) is 0.

Description The function performs a bit-wise exclusive NOR operation on two 32-bit data
items at inputs s1 and s2. The result of the function is returned at output d.

Truth
Table:

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable output is set to TRUE, the function F218_DXNR is carried
out.

FPWIN Pro Programming

Bitwise Boolean Instructions

517

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F218_DXNR(input_value_1, 2#11110001010100111,
output_value);
END_IF;

Bitwise Boolean Instructions

FPWIN Pro Programming

518

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F219_DUNI 32-bit data unites 12 Steps: 16

[d] = ([s1] AND [s3]) OR ([s2] AND (NOT[s3]))

When the value at input s3 = 16#0, then the value at input s2 is returned at
output d.

When the value at input s3 = 16#FFFFFFFF, then the value at input s1 is
returned at output d.

PLC types: Availability of F219_DUNI (see page 930)

Variable Data type Function
s1 DINT, DWORD 32-bit equivalent constant or 32-bit area

s2 DINT, DWORD 32-bit equivalent constant or 32-bit area

s3 DINT, DWORD 32-bit area that stores master data for combination or 32-bit
equivalent constant

d DINT, DWORD 32-bit area for storing result

The variables s1, s2, s3 and d have to be of the same data type.

Description The function combines the two values at inputs s1 and s2 bit-wise with the value
at input s3. The result of the function is returned at output d. The data-unite is
calculated as follows:

Data types

FPWIN Pro Programming

Bitwise Boolean Instructions

519

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R900B %MX0.900.11 for an instant - the result calculated (output d) is 0.

In this example the input variables input_value_1, input_value _2 and
selection are declared. However, you can write constants directly at the input
contact of the function instead.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F219_DUNI(s1:= input_value1,
 s2:= input_value2,
 s3_Mask:= selection,
 d=> output_value);
END_IF;

Bitwise Boolean Instructions

FPWIN Pro Programming

520

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F130_BTS 16-bit data bit set Steps: 5

PLC types: Availability of F130_BTS (see page 928)

Variable Data type Function
d INT, WORD 16-bit area

n INT specifies bit position to be set

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Turns ON the bit specified by the bit position at n of the 16-bit data specified by d
if the trigger EN is in the ON-state. Bits other than the bit specified do not
change. The range of n is 0 to 15.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F130_BTS(n:= 0,
 d=> output_value);
END_IF;

FPWIN Pro Programming

Bitwise Boolean Instructions

521

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F131_BTR 16-bit data bit reset Steps: 5

PLC types: Availability of F131_BTR (see page 928)

Variable Data type Function
d INT, WORD 16-bit area

n INT specifies bit position to be reset

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

In this example the function F131_BTR is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Description Turns OFF the bit specified by the bit position at n of the 16-bit data specified by
d if the trigger EN is in the ON-state. Bits other than the bit specified do not
change. The range of n is 0 to 15.

Data types

Operands

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F131_BTR(n:= 2,
 d=> output_value);
END_IF;

Bitwise Boolean Instructions

FPWIN Pro Programming

522

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F132_BTI 16-bit data bit invert Steps: 5

PLC types: Availability of F132_BTI (see page 928)

Variable Data type Function
d INT, WORD 16-bit area

n INT specify bit position to be inverted

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Inverts [1 (ON) → 0 (OFF) or 0 (OFF) → 1 (ON)] the bit at bit position n in the 16-
bit data area specified by d if the trigger EN is in the ON-state. Bits other than the
bit specified do not change. The range of n is 0 to 15.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F132_BTI(n:= 1,
 d=> output_value);
END_IF;

FPWIN Pro Programming

Bitwise Boolean Instructions

523

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F133_BTT 16-bit data test Steps: 5

The specified bit is checked by special internal relay R900B.

n specifies the bit position to be checked in decimal data.
Range of n: 0 to 15

PLC types: Availability of F133_BTT (see page 928)

Variable Data type Function
d INT, WORD 16-bit area

n INT specifies bit position to be tested

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

In this example the function F133_BTT is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Description Checks the state [1 (ON) or 0 (OFF)] of bit position n in the 16-bit data specified
by d if the trigger EN is in the ON-state.

 When specified bit is 0 (OFF), special internal relay R900B (=flag)
turns ON.

 When specified bit is 1 (ON), special internal relay R900B (=flag)
turns OFF.

Data types

Operands

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Bitwise Boolean Instructions

FPWIN Pro Programming

524

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F133_BTT(n:= 0,
 d:= value);
 IF R900B THEN
 bit0_is_TRUE := FALSE;
 ELSE
 bit0_is_TRUE := TRUE;
 END_IF;
END_IF;

FPWIN Pro Programming

Bitwise Boolean Instructions

525

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F135_BCU Number of ON bits in 16-bit data Steps: 5

The number of 1 (ON) bits is stored in the 16-bit area specified by d.

PLC types: Availability of F135_BCU (see page 928)

Variable Data type Function
d INT, WORD source

n INT destination area for storing the number of bits in the ON (1)
state

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

In this example the function F135_BCU is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Description Counts the number of bits in the ON state (1) in the 16-bit data specified by s if
the trigger EN is in the ON-state.

Data types

Operands

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F135_BCU(checked_value1, output_value);
END_IF;

Bitwise Boolean Instructions

FPWIN Pro Programming

526

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F136_DBCU Number of ON bits in 32-bit data Steps: 7

The number of 1 (ON) bits is stored in the 16-bit area specified by d.

PLC types: Availability of F136_DBCU (see page 928)

Variable Data type Function
s DINT, DWORD source

d INT destination area for storing the number of bits in the ON (1)
state

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Counts the number of bits in the ON state (1) in the 32-bit data specified by s if
the trigger EN is in the ON-state.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F136_DBCU(checked_value, output_value);
END_IF;

FPWIN Pro Programming

Bitwise Boolean Instructions

527

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F84_INV 16-bit data invert (one's complement) Steps: 5

PLC types: Availability of F84_INV (see page 927)

Variable Data type Function
d INT, WORD 16-bit area to be inverted

For Relay T/C Register Const.
d - WY WR WL SV EV DT LD FL -

Description Inverts each bit (0 or 1) of the 16-bit data specified by d if the trigger EN is in the
ON-state. The inverted result is stored in the 16-bit area specified by d. This
instruction is useful for controlling an external device that uses negative logic
operation.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

Bitwise Boolean Instructions

FPWIN Pro Programming

528

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ST IF DF(start) THEN
 F84_INV(invert_value);
END_IF;

FPWIN Pro Programming

Bitwise Boolean Instructions

529

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F93_UNIT 16-bit data combine Steps: 7

n specifies the number of data to be extracted. The range of n is 0 to 4.

The programming example provided below can be envisioned thus:

PLC types: Availability of F93_UNIT (see page 927)

Variable Data type Function
s WORD starting 16-bit area to be extracted (source)

n INT specifies number of data to be extracted

d WORD 16-bit area for storing combined data (destination)

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the area specified using the index modifier
exceeds the limit

- the value at n ≥ 5

Description Extracts each lower 4 bits (bit position 0 to 3) starting with the 16-bit area
specified by s and combines the extracted data into 1 word if the trigger EN is in
the ON-state. The result is stored in the 16-bit area specified by d.

Data types

Operands

Error flags

Bitwise Boolean Instructions

FPWIN Pro Programming

530

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. The binary
values in the illustration on the main help page serve as the array values in
data_input. In this example, variables are declared in the POU header.
However, you may assign constants directly at the input function’s contact pins
instead.

LD
In this example, (Monitoring) was activated so you can see the results
immediately.

FPWIN Pro Programming

Bitwise Boolean Instructions

531

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F94_DIST 16-bit data distribution Steps: 7

n specifies the number of data to be divided. The range of n is 0 to 4. When 0 is
specified by n, this instruction is not executed.

The programming example provided below can be envisioned thus:

PLC types: Availability of F94_DIST (see page 927)

Variable Data type Function
s WORD 16-bit area or equivalent constant to be divided (source)

n INT specifies number of data to be divided

d WORD starting 16-bit area for storing divided data (destination)

For Relay T/C Register Constant
s, n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Divides the 16-bit data specified by s into 4-bit units and distributes the divided
data into the lower 4 bits (bit position 0 to 3) of 16-bit areas starting with d if the
trigger EN is in the ON-state.

Data types

Operands

Bitwise Boolean Instructions

FPWIN Pro Programming

532

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

-the area specified using the index modifier
exceeds the limit

-the value at n ≥ 5 the last area for the result
exceeds the limit

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. The binary
values in the illustration on main help page serve as the values calculated. In this
example, variables are declared in the POU header. Also, a constant value of 4
is assigned directly at the contact pin for n.

LD
In this example, (Monitoring) was activated so you can see the results
immediately.

Chapter 18
 Bitshift Instructions

Bitshift Instructions

FPWIN Pro Programming

534

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LSR Left shift register Steps: 1

DataInput: specifies the state of new shift-in data:

shiftTrigger: shifts 1 bit to the left when the leading edge of the trigger is
detected

ReSetTrigger: turns all the bits of the data area to 0 if the trigger is in the ON-
state

The area available for this instruction is only the word internal relay (WR).

PLC types: Availability of LSR (see page 933)

 Word internal relay (WR) number range, depends on the free area in the Extras
→ Options → Compile Options → Address Ranges menu.

Variable Data type Function
DataInput BOOL when ON, shift-in data = 1, when OFF, shift-in data = 0

shiftTrigger BOOL shifts one bit to the left when ON

ReSetTrigger BOOL resets data area to 0 when ON

WR INT, WORD specified data area where data shift takes place

For Relay T/C
DataInput,
shiftTrigger,
ReSetTrigger

X Y R L T C

d - - WR - - -

Description Shifts 1 bit of the specified data area (WR) to the left (to the higher bit position).
When programming the LSR instruction, be sure to program the data input
(DataInput), shift (shiftTrigger) and reset triggers (ReSetTrigger).

 new shift-in data 1: when the input is ON
 new shift-in data 0: when the input is OFF

Data types

Operands

Example

FPWIN Pro Programming

Bitshift Instructions

535

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F100_SHR Right shift of 16-bit data in bit units Steps: 5

When n bits are shifted to the right, the data in the nth bit is transferred to
special internal relay R9009 (carry-flag) and the higher n bits of the 16-bit data
area specified by d are filled with 0s.

PLC types: Availability of F100_SHR (see page 927)

Variable Data type Function

d INT, WORD 16-bit area to be shifted to the right

n INT number of bits to be shifted

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

In this example the function F100_SHR is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Description Shifts n bits of 16-bit data area specified by d to the right (to the lower bit
position) if the trigger EN is in the ON-state.

Data types

Operands

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

Bitshift Instructions

FPWIN Pro Programming

536

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF DF(start) THEN
 F100_SHR(n:= 4 ,
 d=> data);
END_IF;

FPWIN Pro Programming

Bitshift Instructions

537

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F101_SHL Left shift of 16-bit data in bit units Steps: 5

When n bits are shifted to the left, the data in the nth bit is transferred to
special internal relay R9009 (carry-flag) and n bits starting with bit position 0
are filled with 0s.

PLC types: Availability of F101_SHL (see page 927)

Variable Data type Function

d INT, WORD 16-bit area to be shifted to the left

n INT number of bits to be shifted

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Shifts n bits of 16-bit data area specified by d to the left (to the higher bit
position) if the trigger EN is in the ON-state.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

Bitshift Instructions

FPWIN Pro Programming

538

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF DF(start) THEN
 F101_SHL(n:= 4,
 d=> data);
END_IF;

FPWIN Pro Programming

Bitshift Instructions

539

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F102_DSHR Right shift of 32-bit data in bit units Steps: 5

31

00000000

0

CY

16 15

The [n bits] are filled with 0s.

 [n bits]

to R9009 (carry flag).
The data in the nth bit is transferred

Data

PLC types: Availability of F102_DSHR

Variable Data type Function
n INT number of bits to be shifted (range: 16#0 to 16#FF)

d DINT, DWORD 32-bit area to be shifted to the right

For Relay T/C Register Constant
n WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9009 %MX0.900.9 for an instant - the bit at position n - 1 has the value 1.

Description The function shifts the value at output d to the right. The number of bits at output
d to be shifted to the right is specified by the value assigned at input n. This shift
can lie between 0 and 255 (only the lower value byte of n is effective). Bits
cleared because of the shift become 0. When input n = 0, no shift takes place. A
shifting distance larger than 32 does not make sense, since when n = 32 the
value at output d is already filled with zeros. The bit at position n - 1 (the last bit
shifted out to the right) is simultaneously stored in special internal relay R9009
(carry flag) so that it can be evaluated accordingly. When n = 0 the content of the
carry flag does not change.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Bitshift Instructions

FPWIN Pro Programming

540

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In the POU header, all input and output variables are declared that are used for
programming this function.

POU
Header

Body When the variable start changes from FALSE to TRUE, the function is carried
out. It shifts out 4 bits (corresponds to one position in a hexadecimal
representation) to the right. The 4 bits in data resulting from the shift are filled
with zeros. At input n the constant 4 is assigned directly to the function. You may,
however, declare an input variable in the POU header instead.

LD

ST IF DF(start) THEN
 F102_DSHR(n:= 4 ,
 d=> data);
END_IF;;

FPWIN Pro Programming

Bitshift Instructions

541

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F103_DSHL Left shift of 32-bit data in bit units Steps: 5

PLC types: Availability of F103_DSHL

Variable Data type Function
n INT number of bits to be shifted (range: 16#0 to 16#FF)

d DINT, DWORD 32-bit area to be shifted to the left

For Relay T/C Register Constant
n WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9009 %MX0.900.9 for an instant - the bit at position 31 - n has the value 1.

Description The function rotates the value at output d to the left. The number of bits at output
d to be shifted to the left is specified by the value assigned at input n. This shift
can lie between 0 and 255 (only the lower value byte of n is effective). Bits
cleared because of the shift become 0. When input n = 0, no shift takes place. A
shifting distance larger than 32 does not make sense, since when n = 32 the
value at output d is already filled with zeros. The bit at position 31 - n (the last bit
shifted out to the left) is simultaneously stored in special internal relay R9009
(carry flag) so that it can be evaluated accordingly. When n = 0 the content of the
carry flag does not change.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Bitshift Instructions

FPWIN Pro Programming

542

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is carried
out. It shifts out 4 bits (corresponds to one position in a hexadecimal
representation) to the left. The 4 bits in data resulting from the shift are filled with
zeros. At input n the constant 4 is assigned directly to the function. You may,
however, declare an input variable in the POU header instead.

LD

ST IF DF(start) THEN
 F103_DSHL(n:= 4,
 d=> data);
END_IF;

FPWIN Pro Programming

Bitshift Instructions

543

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F105_BSR Right shift of one hexadecimal digit (4 bits)
of 16-bit data Steps: 3

When one hexadecimal digit (4 bits) is shifted to the right,

PLC types: Availability of F105_BSR (see page 927)

Variable Data type Function
d INT, WORD 16-bit area to be shifted to the right

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

In this example the function F105_BSR is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Description Shifts one hexadecimal digit (4 bits) of the 16-bit area specified by d to the right
(to the lower digit position) if the trigger EN is in the ON-state.

 hexadecimal digit position 0 (bit position 0 to 3) of the data specified
by d is shifted out and is transferred to the lower digit (bit position 0
to 3) of special data register DT9014.

 hexadecimal digit position 3 (bit position 12 to 15) of the 16-bit area
specified by d becomes 0.

 This instruction is useful when the hexadecimal or BCD data is
handled.

Data types

Operands

Example

Bitshift Instructions

FPWIN Pro Programming

544

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F105_BSR(data);
END_IF;

FPWIN Pro Programming

Bitshift Instructions

545

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F106_BSL Left shift of one hexadecimal digit (4 bits) of
16-bit data Steps: 3

This instruction is useful when the hexadecimal or BCD data is handled.

PLC types: Availability of F106_BSL (see page 927)

Variable Data type Function
d INT, WORD 16-bit area to be shifted to the left

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

Description Shifts one hexadecimal digit (4 bits) of the 16-bit area specified by d to the left (to
the higher digit position) if the trigger EN is in the ON-state.

 When one hexadecimal digit (4 bits) is shifted to the left,
 hexadecimal digit position 3 (bit position 12 to 15) of the data

specified by d is shifted out and is transferred to the lower digit (bit
position 0 to 3) of special data register DT9014.

 hexadecimal digit position 0 (bit position 0 to 3) of the 16-bit area
specified by d becomes 0.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Bitshift Instructions

FPWIN Pro Programming

546

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F106_BSL(data);
END_IF;

FPWIN Pro Programming

Bitshift Instructions

547

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F108_BITR Right shift of multiple bits of 16-bit data
range Steps: 7

PLC types: Availability of F108_BITR (see page 927)

Variable Data type Function
d1 INT, WORD starting 16-bit area

d2 INT, WORD ending 16-bit area

n INT number of bits to be shifted

The addresses of the variables at inputs d1 and d2 have to have the same
address type.

For Relay T/C Register Constant
d1, d2 - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If
R9007 %MX0.900.7 permanently - the address of the variables at the outputs d1

> d2 or the value at input is n ≥ 16.
R9008 %MX0.900.8 for an instant - the address of the variables at the outputs d1

> d2 or the value at input is n ≥ 16.

Description The function shifts the bits of a specified data range, whose beginning and end
are specified by the outputs d1 and d2 to the right. The number of bits by which
the data range is to be shifted to the right is specified by the value assigned at
input n. The value may lie between 0 and 16. Bits cleared because of the shift
become 0. When input n = 0, no shift takes place. When input n = 16, a shift of
one WORD occurs, i.e. the same process takes place as with function
F110_WHSL (see page 551).

Data types

Operands

Error flags

Bitshift Instructions

FPWIN Pro Programming

548

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the input variable number_bits is declared. However, you can
write a constant directly at the input contact of the function instead.

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is carried
out. It shifts out 4 bits (corresponds to one position in a hexadecimal
representation) to the right. The 4 bits in data_field[2] resulting from the shift are
filled with zeros.

LD

ST IF DF(start) THEN
 F108_BITR(n:=number_bits,
 d1_Start=> data_field[0],
 d2_End=> data_field[2]);
END_IF;

FPWIN Pro Programming

Bitshift Instructions

549

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F109_BITL Left shift of multiple bits of 16-bit data range Steps: 7

PLC types: Availability of F109_BITL (see page 927)

Variable Data type Function
d1 INT, WORD starting 16-bit area

d2 INT, WORD ending 16-bit area

n INT number of bits to be shifted

The addresses of the variables at inputs d1 and d2 have to have the same
address type.

For Relay T/C Register Constant
d1, d2 - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If
R9007 %MX0.900.7 permanently - the address of the variables at the outputs d1

> d2 or the value at input is n ≥ 16.
R9008 %MX0.900.8 for an instant - the address of the variables at the outputs d1

> d2 or the value at input is n ≥ 16.

Description The function shifts the bits of a specified data range, whose beginning and end
are specified by the outputs d1 and d2 to the left. The number of bits by which
the data range is to be shifted to the left is specified by the value assigned at
input n. The value may lie between 0 and 16. Bits cleared because of the shift
become 0. When input n = 0, no shift takes place. When input n = 16, a shift of
one WORD occurs, i.e. the same process takes place as with function
F111_WSHL (see page 553).

Data types

Operands

Error flags

Bitshift Instructions

FPWIN Pro Programming

550

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is carried
out. It shifts out 4 bits (corresponds to one position in a hexadecimal
representation) to the left. The 4 bits in data_field[0] resulting from the shift are
filled with zeros. At input n the constant 4 is assigned directly to the function. You
may, however, declare an input variable in the POU header instead.

LD

ST IF DF(start) THEN
 F109_BITL(n:=4,
 d1_Start=> data_field[0],
 d2_End=> data_field[2]);
END_IF;

FPWIN Pro Programming

Bitshift Instructions

551

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F110_WSHR Right shift of one word (16 bits) of 16-bit
data range Steps: 5

When one word (16 bits) is shifted to the right, the starting word is shifted out and
the data in the ending word becomes 0.

d1 and d2 should be:

PLC types: Availability of F110_WSHR (see page 928)

Variable Data type Function
d1 INT, WORD starting 16-bit area

d2 INT, WORD ending 16-bit area

The variables d1 and d2 have to be of the same data type.
For Relay T/C Register Constant

d1, d2 - WY WR WL SV EV DT LD FL -

In this example the function F110_WSHR is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Description Shifts one word (16 bits) of the data range specified by d1 (starting) and d2
(ending) to the right (to the lower word address) if the trigger EN is in the ON-
state.

 the same type of operand
 d1 ≤ d2

Data types

Operands

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Bitshift Instructions

FPWIN Pro Programming

552

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F110_WSHR(d1_Start=> source_array[1],
 d2_End=> source_array[3]);
END_IF;

FPWIN Pro Programming

Bitshift Instructions

553

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F111_WSHL Left shift of one word (16 bits) of 16-bit data
range Steps: 5

When one word (16 bits) is shifted to the left, the ending word is shifted out and
the data in the starting word becomes 0.

d1 and d2 should be:

PLC types: Availability of F111_WSHL (see page 928)

Variable Data type Function
d1 INT, WORD starting 16-bit area

d2 INT, WORD ending 16-bit area

The variables d1 and d2 have to be of the same data type.

For Relay T/C Register Constant
d1, d2 - WY WR WL SV EV DT LD FL -

Description Shifts one word (16 bits) of the data range specified by d1 (starting) and d2
(ending) to the left (to the higher word address) if the trigger EN is in the ON-
state.

 the same type of operand
 d1 ≤ d2

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Bitshift Instructions

FPWIN Pro Programming

554

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F111_WSHL(d1_Start=> source_array[1],
 d2_End=> source_array[3]);
END_IF;

FPWIN Pro Programming

Bitshift Instructions

555

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F112_WBSR Right shift of one hex. digit (4 bits) of 16-bit
5 data range Steps: 5

When one hexadecimal digit (4 bits) is shifted to the right:

· · · · · · · ·15 1211 8 7 4 3 0
d2

· · · · · · · ·15 1211 8 7 4 3 0
d1

0
· · · · · · · ·15 1211 8 7 4 3 0

d2
· · · · · · · ·15 1211 8 7 4 3 0

d1

· ·15

· ·15

· · 0

· · 0

The higher hexadecimal digit

Specified data range

(bit position 12 to 15) becomes 0.

The data in the lower
hexadecimal digit (bit
position 0 to 3) is
shifted out.

d1 and d2 should be:

PLC types: Availability of F112_WBSR (see page 928)

Variable Data type Function
d1 INT, WORD starting 16-bit area

d2 INT, WORD ending 16-bit area

The variables d1 and d2 have to be of the same data type.

For Relay T/C Register Constant
d1, d2 - WY WR WL SV EV DT LD FL -

Description Shifts one hexadecimal digit (4 bits) of the data range specified by d1 (starting)
and d2 (ending) to the right (to the lower digit position) if the trigger EN is in the
ON-state.

 the data in the lower hexadecimal digit (bit position 0 to 3) of the 16-
bit data specified by d1 is shifted out.

 the data in the higher hexadecimal digit (bit position 12 to 15) of the
16-bit data specified by d2 becomes 0.

 the same type of operand
 d1 ≤ d2

Data types

Operands

Bitshift Instructions

FPWIN Pro Programming

556

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example the function F112_WBSR is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F112_WBSR(d1_Start=> source_array[1],
 d2_End=> source_array[3]);
END_IF;

FPWIN Pro Programming

Bitshift Instructions

557

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F113_WBSL Left shift of one hex. digit (4 bits) of 16-bit
data range Steps: 5

When one hexadecimal digit (4 bits) is shifted to the left,

d1 and d2 should be:

PLC types: Availability of F113_WBSL (see page 928)

Variable Data type Function
d1 INT, WORD starting 16-bit area

d2 INT, WORD ending 16-bit area

The variables d1 and d2 have to be of the same data type.

For Relay T/C Register Constant
d1, d2 - WY WR WL SV EV DT LD FL -

Description Shifts one hexadecimal digit (4 bits) of the data range specified by d1 (starting)
and d2 (ending) to the left (to the higher digit position) if the trigger EN is in the
ON-state.

 the data in the higher hexadecimal digit (bit position 12 to 15) of the
16-bit data specified by d2 is shifted out.

 the data in the lower hexadecimal digit (bit position 0 to 3) of the 16-
bit data specified by d1 becomes 0.

 the same type of operand
 d1 ≤ d2

Data types

Operands

Bitshift Instructions

FPWIN Pro Programming

558

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F112_WBSR(d1_Start=> source_array[1],
 d2_End=> source_array[3]);
END_IF;

FPWIN Pro Programming

Bitshift Instructions

559

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F119_LRSR LEFT/RIGHT shift register Steps: 5

Left/right shift is a shift register which shifts 1 bit of the specified data area to the
left (to the higher bit position) or to the right (to the lower bit position).

LeftDirection Left/right trigger; specifies the direction of the shift-out.

LeftDirection = TRUE shifting out to the left.

LeftDirection = FALSE shifting out to the right.

Specifies the new shift-in data.

New shift-in data = TRUE: when the data input is in the TRUE-
state.

DataInput

New shift-in data = FALSE: when the data input is in the FALSE-
state.

ShiftTrigger Shifts 1 bit to the left or right when the leading edge of the trigger is
detected (FALSE → TRUE).

Reset Turns all the bits of the data range specified by d1 and d2 to 0 if this
trigger is in the TRUE-state.

d1 Start of 16-bit area.

d2 End of 16-bit area.

Carry Shifted-out bit.

Description Shifts 1 bit of the 16-bit data range to the left or to the right.

Bitshift Instructions

FPWIN Pro Programming

560

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

PLC types: Availability of F119_LRSR (see page 928)

 • The variables 'd1 and d2' have to be of the same data type.

• This function does not require a variable at the output "Carry".

Variable Data type Function
LeftDirection BOOL specifies direction of shift, TRUE = left, FALSE = right

DataInput BOOL shift-in data, TRUE = 1, FALSE = 0

ShiftTrigger BOOL activates shift

Reset BOOL resets data in area specified by d1 and d2 to 0

Carry BOOL bit shifted out

d1 INT, WORD starting 16-bit area

d2 INT, WORD ending 16-bit area

For Relay T/C Register Constant

LeftDirection,
DataInput,
ShiftTrigger,
Reset

X Y R L T C - - - -

Carry - Y R L T C - - - -

d1, d2 - WY WR WL SV EV DT LD FL -

In this example the function F119_LRSR is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Data types

Operands

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable enable_leftShift is set to TRUE, the function shifts left, else it
shifts right.

FPWIN Pro Programming

Bitshift Instructions

561

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST carry_out_value:=F119_LRSR(LeftDirection:=
enable_leftShift,
 DataInput:= input,
 ShiftTrigger:= shift_trigger,
 Reset:= reset,
 d1_Start:= data_array[0],
 d1_End:= data_array[2]);

Bitshift Instructions

FPWIN Pro Programming

562

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F120_ROR 16-bit data right rotate Steps: 5

The following example rotates one bit to the right:

When n bits are rotated to the right,

PLC types: Availability of F120_ROR (see page 928)

Variable Data type Function
d INT, WORD 16-bit area

n INT number of bits to be rotated

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Rotates n bits of the 16-bit data specified by d to the right if the trigger EN is in
the ON-state.

 the data in bit position n-1 (nth bit starting from bit position 0) is
transferred to the special internal relay R9009 (carry-flag).

 n bits starting from bit position 0 are shifted out to the right and into
the higher bit positions of the 16-bit data specified by d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Bitshift Instructions

563

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F120_ROR(n:= 4,
 d=> rot_value);
END_IF;

Bitshift Instructions

FPWIN Pro Programming

564

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F121_ROL 16-bit data left rotate Steps: 5

The following example rotates one bit to the left:

When n bits are rotated to the left,

• the data in bit position 16-n (nth bit starting from bit position 15) is transferred to
special internal relay R9009 (carry-flag).

• n bits starting from bit position 15 are shifted out to the left and into the lower bit
positions of the 16-bit data specified by d.

PLC types: Availability of F121_ROL (see page 928)

Variable Data type Function
d INT, WORD 16-bit area

n INT number of bits to be rotated

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Rotates n bits of the 16-bit data specified by d to the left if the trigger EN is in the
ON-state.

Data types

Operands

FPWIN Pro Programming

Bitshift Instructions

565

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example the function F121_ROL is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F121_ROL(n:= 4,
 d=> rot_value);
END_IF;

Bitshift Instructions

FPWIN Pro Programming

566

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F122_RCR 16-bit data right rotate with carry-flag data Steps: 5

This example rotates one bit to the right:

When n bits with carry-flag data are rotated to the right,

PLC types: Availability of F122_RCR (see page 928)

Variable Data type Function
d INT, WORD 16-bit area

n INT number of bits to be rotated

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Rotates n bits of the 16-bit data specified by d including the data of carry-flag to
the right if the trigger EN is in the ON-state.

 the data in bit position n-1 (nth bit starting from bit position 0) are
transferred to special internal relay R9009 (carry-flag).

 n bits starting from bit position 0 are shifted out to the right and
carry-flag data and n-1 bits starting from bit position 0 are
subsequently shifted into the higher bit positions of the 16-bit data
specified by d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

FPWIN Pro Programming

Bitshift Instructions

567

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F122_RCR(n:= 4,
 d=> rot_value);
END_IF;

Bitshift Instructions

FPWIN Pro Programming

568

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F123_RCL 16-bit data left rotate with carry-flag data Steps: 5

This example rotates one bit to the left:

When n bits with carry-flag data are rotated to the left,

the data in bit position 16-n (nth bit starting from bit position 15) is transferred to
special internal relay R9009 (carry-flag).

n bits starting from bit position 15 are shifted out to the left and carry-flag data
and n-1 bits starting from bit position 15 are shifted into lower bit positions of the
16-bit data specified by d.

PLC types: Availability of F123_RCL (see page 928)

Variable Data type Function
d INT, WORD 16-bit area

n INT number of bits to be rotated

For Relay T/C Register Constant
d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

In this example the function F125_RCL is programmed is programmed in ladder
diagram (LD) and structured text (ST). The same POU header is used for all
programming languages.

Description Rotates n bits of the 16-bit data specified by d including the data of carry-flag to
the left if the trigger EN is in the ON-state.

Data types

Operands

Example

FPWIN Pro Programming

Bitshift Instructions

569

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

ST IF DF(start) THEN
 F123_RCL(n:= 4,
 d=> rot_value);
END_IF;

Bitshift Instructions

FPWIN Pro Programming

570

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F125_DROR 32-bit data right rotate Steps: 5

PLC types: Availability of F125_DROR (see page 928)

Variable Data type Function
n INT number of bits to be rotated (range: 0 to 255)

d DINT, DWORD 32-bit area

For Relay T/C Register Constant
n WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9009 %MX0.900.9 for an instant - the bit at position n - 1 of d has the value 1.

Description The function rotates the value at output d to the right. The number of bits at
output d to be rotated to the right is specified by the value assigned at input n.
This shift can lie between 0 and 255 (only the lower value byte of n is effective).
Right rotate means that the bits shifted out of bit position 0 (LSB) are shifted via
bit position 31 (MSB) into the value at output d. When input n = 0, no rotation
takes place. When at input n > 32, the same result is achieved as with a number
n < 32: e.g. n = 32 produces the same result as when n = 0; n = 33 the same as
n = 1. The bit at position n - 1 (the last bit shifted out to the right) is
simultaneously stored in special internal relay R9009 (carry flag) so that it can be
evaluated accordingly.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Bitshift Instructions

571

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start changes from FALSE to TRUE, the function is carried
out. It rotates 4 bits (corresponds to one position in a hexadecimal
representation) to the right. At input n the constant 4 is assigned directly to the
function. You may, however, declare an input variable in the POU header
instead.

LD

ST IF DF(start) THEN
 F125_DROR(n:= 4,
 d=> data);
END_IF;

Bitshift Instructions

FPWIN Pro Programming

572

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F126_DROL 32-bit data left rotate Steps: 5

When input n = 0, no rotation takes place.

When at input n > 32, the same result is achieved as with a number n < 32: e.g. n
= 33 produces the same result as when n = 0; n = 34 the same as n = 1.

The bit at position 32 - n (the last bit shifted out to the right) is simultaneously
stored in special internal relay R9009 (carry flag) so that it can be evaluated
accordingly.

PLC types: Availability of F126_DROL (see page 928)

Variable Data type Function
n INT number of bits to be rotated (range: 0 to 255)

d DINT, DWORD 32-bit area

For Relay T/C Register Constant
n WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9009 %MX0.900.9 for an instant - the bit at position 32 - n of d has the value 1.

Description The function rotates the value at output d to the left. The number of bits at output
d to be rotated to the left is specified by the value assigned at input n. This shift
can lie between 0 and 255 (only the lower value byte of n is effective).Left rotate
means that the bits shifted out of bit position 31 (MSB) are shifted via bit position
0 (LSB) into the value at output d.

Data types

Operands

Error flags

FPWIN Pro Programming

Bitshift Instructions

573

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is carried
out. It rotates 4 bits (corresponds to one position in a hexadecimal
representation) to the left. At input n the constant 4 is assigned directly to the
function. You may, however, declare an input variable in the POU header
instead.

LD

ST IF DF(start) THEN
 F126_DROL(n:= 4,
 d=> data);
END_IF;

Bitshift Instructions

FPWIN Pro Programming

574

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F127_DRCR 32-bit data right rotate with carry flag data Steps: 5

The bit value at bit position n - 1 is stored in the carry flag. The function shifts out
n bits from bit 0 to the right, and then along with the inverted carry flag first,
continues via bit 31 into the higher bit positions. Position 32 - n now has the
inverted value of the carry flag.

When input n = 0, no rotation occurs and the carry flag remains unchanged.

When at input n > 32, the same result is achieved as with a number n < 32: e.g.
n = 33 produces the same result as when n = 0; n = 34 the same as n = 1.

PLC types: Availability of F127_DRCR (see page 928)

Variable Data type Function
d DINT, DWORD 32-bit data area

n INT number of bits to be rotated (range: 0 to 255)

For Relay T/C Register Constant
d - DWY DWR DWL DSV DEV DDT DLD DFL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If
R9009 %MX0.900.9 for an instant - the bit at position n - 1 has the value 1.

Description The function rotates the value at output d via the carry flag to the right. The
number of bits at output d to be rotated to the right is specified by the value
assigned at input n. This shift can lie between 0 and 255 (only the lower value
byte of n is effective).

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

FPWIN Pro Programming

Bitshift Instructions

575

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is carried
out. In this example the constant (4) is assigned to the function at input n. You
may, however, declare a variable in the POU header instead.

LD

ST IF DF(start) THEN
 F127_DRCR(n:= 4,
 d=> data);
END_IF;

Bitshift Instructions

FPWIN Pro Programming

576

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F128_DRCL 32-bit data right rotate with carry flag data Steps: 5

The bit value at bit position 32 - n is stored in the carry flag. The function shifts
out n bits to the left via bit 31 (MSB), and then along with the inverted carry flag
first, continues via bit 0 (LSB) into the storage range. Position n - 1 now has the
inverted value of the carry flag.

When input n = 0, no rotation occurs and the carry flag remains unchanged.

When at input n > 32, the same result is achieved as with a number n < 32: e.g.
n = 33 produces the same result as when n = 0; n = 34 the same as n = 1.

PLC types: Availability of F128_DRCL (see page 928)

Variable Data type Function
d DINT, DWORD 32-bit area

n INT number of bits to be rotated (range: 0 to 255)

For Relay T/C Register Constant
d - DWY DWR DWL DSV DEV DDT DLD DFL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If
R9009 %MX0.900.9 for an instant - the bit at position 32 - n has the value 1.

Description The function rotates the value at output d via the carry flag to the left. The
number of bits at output d to be rotated to the left is specified by the value
assigned at input n. This shift can lie between 0 and 255 (only the lower value
byte of n is effective).

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

FPWIN Pro Programming

Bitshift Instructions

577

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start changes from FALSE to TRUE, the function is carried
out. In this example the constant (4) is assigned to the function at input n. You
may, however, declare a variable in the POU header instead.

LD

ST IF DF(start) THEN
 F128_DRCL(n:= 4,
 d=> data);
END_IF;

Chapter 19
 Comparison Instructions

Comparison Instructions

FPWIN Pro Programming

580

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F60_CMP 16-bit data compare Steps: 5

Flags Data Comparison

between s1 and s2 R900A
(>flag)

R900B
(=flag)

R900C
(<flag)

R9009
(carry-flag)

s1<s2 OFF OFF ON #

s1=s2 OFF ON OFF OFF

16-bit data
with sign

s1>s2 ON OFF OFF #

s1<s2 # OFF # ON

s1=s2 OFF ON OFF OFF

16-bit data
without sign

s1>s2 # OFF # OFF

turns ON or OFF depending on the conditions

PLC types: Availability of F60_CMP (see page 926)

Variable Data type Function
s1 INT, WORD 16-bit area or 16-bit equivalent constant to be compared

s2 INT, WORD 16-bit area or 16-bit equivalent constant to be compared

The variables s1 and s2 have to be of the same data type.
For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

Description Compares the 16-bit data specified by s1 with one specified by s2 if the trigger
EN is in the ON-state. The compare operation result is stored in special internal
relays R9009, R900A to R900C.

Data types

Operands

FPWIN Pro Programming

Comparison Instructions

581

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example the function F60_CMP is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST equal:= FALSE;
greater_or_equal:= FALSE;
IF start THEN
 F60_CMP(value, 2);
 IF R900B THEN
 equal := TRUE;
 END_IF;
 IF NOT(R9009) THEN
 greater_or_equal:= TRUE;
 END_IF;
END_IF;

Comparison Instructions

FPWIN Pro Programming

582

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F61_DCMP 32-bit data compare Steps: 9

Flags Data Comparison

between s1 and s2 R900A
(>flag)

R900B
(=flag)

R900C
(<flag)

R9009
(carry-flag)

s1<s2 OFF OFF ON #

s1=s2 OFF ON OFF OFF

16-bit data
with sign

s1>s2 ON OFF OFF #

s1<s2 # OFF # ON

s1=s2 OFF ON OFF OFF

16-bit data
without sign

s1>s2 # OFF # OFF

turns ON or OFF depending on the conditions

PLC types: Availability of F61_DCMP (see page 926)

Variable Data type Function
s1 DINT, DWORD 32-bit area or 32-bit equivalent constant to be compared

s2 DINT, DWORD 32-bit area or 32-bit equivalent constant to be compared

The variables s1 and s2 have to be of the same data type.
For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

Description Compares the 32-bit data or 32-bit equivalent constant specified by s1 with one
specified by s2 if the trigger EN is in the ON-state. The compare operation result
is stored in special internal relays R9009, R900A to R900C.

Data types

Operands

FPWIN Pro Programming

Comparison Instructions

583

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example the function F61_DCMP is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST equal:= FALSE;
greater_or_equal:= FALSE;
IF start THEN
 F61_DCMP(value, 2);
 IF R900B THEN
 equal:= TRUE;
 END_IF;
 IF NOT(R9009) THEN
 greater_or_equal:= TRUE;
 END_IF;
END_IF;

Comparison Instructions

FPWIN Pro Programming

584

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F62_WIN 16-bit data band compare Steps: 7

Flags Comparison

between s1, s2 and
s3

R900A
(>flag)

R900B
(=flag)

R900C
(<flag)

s1 < s2 OFF OFF ON

s2 ≤ s1 ≤ s3 OFF ON OFF

s1 > s3 ON OFF OFF

PLC types: Availability of F62_WIN (see page 926)

Variable Data type Function
s1 INT, WORD 16-bit area or 16-bit equivalent constant to be compared

s2 INT, WORD lower limit, 16-bit area or 16-bit equivalent constant

s3 INT, WORD upper limit, 16-bit area or 16-bit equivalent constant

The variables s1, s2 and s3 have to be of the same data type.
For Relay T/C Register Constant

s1, s2, s3 WX WY WR WL SV EV DT LD FL dec. or hex.

Description Compares the 16-bit equivalent constant or 16-bit data specified by s1 with the
data band specified by s2 and s3 if the trigger EN is in the ON-state. This
instruction checks that s1 is in the data band between s2 (lower limit) and s3
(higher limit), larger than s3, or smaller than s2. The compare operation
considers +/- sign. Since the BCD data is also treated as 16-bit data with sign,
we recommend using BCD data within the range of 0 to 7999 to avoid confusion.
The compare operation result is stored in special relays R900A, R900B, and
R900C.

Data types

Operands

FPWIN Pro Programming

Comparison Instructions

585

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F62_WIN(s1_In:= test_value,
 s2_Min:= lower_limit,
 s3_Max:= higher_limit);
END_IF;

Comparison Instructions

FPWIN Pro Programming

586

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F63_DWIN 32-bit data band compare Steps: 13

Flags Comparison

between s1, s2 and
s3

R900A
(>flag)

R900B
(=flag)

R900C
(<flag)

s1 < s2 OFF OFF ON

s2 ≤ s1 ≤ s3 OFF ON OFF

s1 > s3 ON OFF OFF

PLC types: Availability of F63_DWIN (see page 926)

Variable Data type Function
s1 DINT, DWORD 32-bit area or 32-bit equivalent constant to be compared

s2 DINT, DWORD lower limit, 32-bit area or 32-bit equivalent constant

s3 DINT, DWORD upper limit, 32-bit area or 32-bit equivalent constant

The variables s1, s2 and s3 have to be of the same data type.
For Relay T/C Register Constant

s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

Description Compares the 32-bit equivalent constant or 32-bit data specified by s1 with the
data band specified by s2 and s3 if the trigger EN is in the ON-state. This
instruction checks that s1 is in the data band between s2 (lower limit) and s3
(higher limit), larger than s3, or smaller than s2. The compare operation
considers +/- sign. Since the BCD data is also treated as 32-bit data with sign,
we recommend using BCD data within the range of 0 to 79999999 to avoid
confusion. The compare operation result is stored in special relays R900A,
R900B, and R900C.

Data types

Operands

Example In this example the function F63_DWIN is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Comparison Instructions

587

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start is set to TRUE, the function is executed.

LD

ST inside_the_range:= FALSE;
IF start THEN
 F63_DWIN(s1_In:= test_value,
 s2_Min:= lower_limit,
 s3_Max:= higher_limit);
 IF R900B THEN
 inside_the_range:= TRUE;
 END_IF;
END_IF;

Comparison Instructions

FPWIN Pro Programming

588

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F64_BCMP Block data compare Steps: 7

s1 specifications
16# 1 0 0 4 A = Starting byte position of data block specified by s3

 ⇑ ⇑ ⇑ 1: Starting from higher byte

 A B C 0: Starting from lower byte

 B = Starting byte position of data block specified by s2
 1: Starting from higher byte
 0: Starting from lower byte

 C = Number of bytes to be compared
 range: 16#01 to 16#99 (BCD)

The compare operation result is stored in the special internal relay R900B. When
s2 = s3, the special internal relay is in the ON-state.

PLC types: Availability of F64_BCMP (see page 926)

 The flag R900B used for the compare instruction is renewed each time a
compare instruction is executed. Therefore the program that uses R900B should
be just after F64_BCMP.

Variable Data type Function
s1 WORD control code specifying byte positions and number of bytes to

be compared

s2 INT, WORD starting 16-bit area to be compared to s3

s3 INT, WORD starting 16-bit area to be compared to s2

The variables s2 and s3 have to be of the same data type.
For Relay T/C Register Constant
s1 WX WY WR WL SV EV DT LD FL dec. or hex.

s2, s3 WX WY WR WL SV EV DT LD FL -

Description Compares the contents of data block specified by s2 with the contents of data
block specified by s3 according to the contents specified by s1 if the trigger EN is
in the ON-state.

Data types

Operands

FPWIN Pro Programming

Comparison Instructions

589

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F64_BCMP(s1_Control:= ControlCode,
 s2_Start:= DataBlock1[0],
 s3_Start:= DataBlock2[0]);
END_IF;

Comparison Instructions

FPWIN Pro Programming

590

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F346_FWIN Floating point data band compare Steps: 14

PLC types: Availability of F346_FWIN (see page 932)

Variable Data type Function
s1 REAL REAL number data to be compared to s2 and s3

s2 REAL lower limit

s3 REAL upper limit

For Relay T/C Register Constant
s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the values at inputs s1, s2, and s3 are not
REAL numbers or if the value at s2 > s3.

In this example, the input variable input_value is declared. However, you can

Description The function compares a data band whose upper and lower limits are specified at
inputs s2 and s3 with a value that is entered at input s1. The result is returned as
follows:

 If the value at s1 is smaller than the value at s2 (lower limit of the
data band), the < special internal relay (R900C) is set to TRUE.

 If the value at s1 is larger than the value at s3 (upper limit of the
data band), the > special internal relay (R900A) is set to TRUE. The
< flag (R900C) and the = flag (R900B) are set to FALSE.

 If the value at s1 is within the data band values set at s2 and s3, the
= special internal relay (R900B) is set for an instant. The < flag
(R900C) and the > flag (R900A) are set to FALSE.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Comparison Instructions

591

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

write a constant directly at the input contact of the function instead.

Body The constants -10.0 and 10.0 are assigned to the inputs s2 (upper limit) and s3
(lower limit). You may, however, declare two variables in the POU header
instead. When the variable start is set to TRUE, the function is carried out. The
values of special internal relays R900A (> flag), R900B (= flag) and R900C (<
flag) are transferred to the variables larger_area, middle_area and
smaller_area. Since the output_value = 3.111 is within the range of the limits
set (-10.0 to 10.0), the = relay and hence the variable middle_area are set to
TRUE.

LD

ST input_value:=3.111;
IF start THEN
 F346_FWIN(s1_In:= input_value , s2_Min:= -10.0 ,
s3_Max:= 10.0);
END_IF;(* -10.0 =lower limit, 10.0 upper limit *)

IF R900A THEN
 larger_area:=TRUE;
END_IF;
IF R900B THEN
 middle_area:=TRUE;
END_IF;
IF R900C THEN
 smaller_area:=TRUE;
END_IF;

Comparison Instructions

FPWIN Pro Programming

592

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F373_DTR 16-bit data revision detection Steps: 6

PLC types: Availability of F373_DTR (see page 932)

 The status of the carry flag is updated at each execution of the instruction.
Therefore, programs that use the carry flag should utilize it immediately after
F373_DTR is executed.

Variable Data type Function
s INT, WORD 16-bit area for detecting data changes

d INT, WORD area where data of previous execution is stored.

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL -

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9009 %MX0.900.9 to TRUE - the input value at s has changed in

comparison to the former value.

Description The function detects changes in a value at input s by comparing it with its former
value that is stored at output d. If the new input value at s does not coincide with
the old value, the function assigns the new value to output d. To signal the
change, the carry flag R9009 is set simultaneously.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. If the input
value present_value has changed in comparison to the output value old_value
the carry flag R9009 is set. The status of the carry flag is then assigned to the
variable changed_value.

FPWIN Pro Programming

Comparison Instructions

593

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F373_DTR(present_value, old_value);
 IF R9009 THEN
 changed_value:=TRUE;
 END_IF;
END_IF;

Comparison Instructions

FPWIN Pro Programming

594

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F374_DDTR 32-bit data revision detection Steps: 6

PLC types: Availability of F374_DDTR (see page 932)

 The status of the carry flag is updated at each execution of the instruction.
Therefore, programs that use the carry flag should utilize it immediately after
F374_DDTR is executed.

Variable Data type Function
s DINT, DWORD 32-bit area for detecting data changes

d DINT, DWORD 32-bit area where data of previous execution is stored

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL -

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9009 %MX0.900.9 to TRUE - the input value at s has changed in

comparison to the former value.

Description The function detects changes in a value at input s by comparing it with its former
value that is stored at output d. If the new input value at s does not coincide with
the old value, the function assigns the new value to output d. To signal the
change, the carry flag R9009 is set simultaneously.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. If the input
value present_value has changed in comparison to the output value old_value
the carry flag R9009 is set. The status of the carry flag is then assigned to the
variable changed_value.

FPWIN Pro Programming

Comparison Instructions

595

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F374_DDTR(present_value, old_value);
 IF R9009 THEN
 changed_value:=TRUE;
 END_IF;
END_IF;

Comparison Instructions

FPWIN Pro Programming

596

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

19.1 Further Comparison Instructions
If you need information on one of the following comparison instructions, please refer to the
corresponding standard operators in the online help:

ST= AN= OR= STD= AND= ORD=

ST<> AN<> OR<> STD<> AND<> ORD<>

ST> AN> OR> STD> AND> ORD>

ST>= AN>= OR>= STD>= AND>= ORD>=

ST< AN< OR< STD< AND< ORD<

ST<= AN<= OR<= STD<= AND<= ORD<=

Chapter 20
 Conversion Instructions

Conversion Instructions

FPWIN Pro Programming

598

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F71_HEX2A HEX -> ASCII conversion Steps: 7

The two characters that make up one byte are interchanged when stored. Two
bytes are converted as one segment of data.

ASCII HEX codes to express hexadecimal characters:

Hexadecimal
number

ASCII HEX
code

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

16#30
16#31
16#32
16#33
16#34
16#35
16#36
16#37
16#38
16#39
16#41
16#42
16#43
16#44
16#45
16#46

PLC types: Availability of F71_HEX2A (see page 927)

Description Converts the data of s2 bytes starting from the 16-bit area specified by s1 to
ASCII codes that express the equivalent hexadecimals if the trigger EN is in the
ON-state. The number of bytes to be converted is specified by s2. The converted
result is stored in the area starting with the 16-bit area specified by d. ASCII code
requires 8 bits (one byte) to express one hexadecimal character. Upon
conversion to ASCII, the data length will thus be twice the length of the source
data.

FPWIN Pro Programming

Conversion Instructions

599

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Variable Data type Function
s1 INT, WORD starting 16-bit area for hexadecimal number (source)

s2 INT specifies number of source data bytes to be converted

d WORD starting 16-bit area for storing ASCII code (destination)

For Relay T/C Register Constant
s1 WX WY WR WL SV EV DT LD FL -

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the byte number specified by s2 exceeds the
area specified by s1

- the calculated result exceeds the area
specified by d.

- the data specified by s2 is recognized as "0".

Data types

Operands

Error flags

Conversion Instructions

FPWIN Pro Programming

600

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable Start is set to true, the number of data bytes given in
BytesToConvert in HexInput is converted to ASCII code and stored in
ASCOutput. Note that two characters that make up one byte are interchanged
when stored. One Monitor Header shows the Hex values, and the other the
ASCII values.

LD

FPWIN Pro Programming

Conversion Instructions

601

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ST IF start THEN
 F71_HEX2A(s1_Start:= HexInput[0],
 s2_Number:= BytesToConvert,
 d_Start=> ASCOutput[0]);
END_IF;

Conversion Instructions

FPWIN Pro Programming

602

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F72_A2HEX ASCII -> HEX conversion Steps: 7

The data for two ASCII code characters is converted to two numeric digits for one
word. When this takes place, the characters of the upper and lower bytes are
interchanged. Four characters are converted as one segment of data.

Converted results are stored in byte units. If an odd number of characters is
being converted, "0" will be entered for bits 0 to 3 of the final data (byte) of the
converted results. Conversion of odd number of source data bytes:

Hexadecimal characters and ASCII codes:

Description Converts the ASCII codes that express the hexadecimal characters starting from
the 16-bit area specified by s1 to hexadecimal numbers if the trigger EN is in the
ON-state. s2 specifies the number of ASCII (number of characters) to be
converted. The converted result is stored in the area starting from the 16-bit area
specified by d. ASCII code requires 8 bits (one byte) to express one hexadecimal
character. Upon conversion to a hexadecimal number, the data length will thus
be half the length of the ASCII code source data.

FPWIN Pro Programming

Conversion Instructions

603

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ASCII HEX code Hexadecimal
number

16#30
16#31
16#32
16#33
16#34
16#35
16#36
16#37
16#38
16#39
16#41
16#42
16#43
16#44
16#45
16#46

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

PLC types: Availability of F72_A2HEX (see page 927)

Variable Data type Function
s1 WORD starting 16-bit area for ASCII code (source)

s2 INT specifies number of source data bytes to be converted

d INT, WORD starting 16-bit area for storing converted data (destination)

For Relay T/C Register Constant
s1 WX WY WR WL SV EV DT LD FL -

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the number of bytes specified by s2 exceeds
the area specified by s1.

- the converted result exceeds the area
specified by d.

- the data specified by s2 is recognized as "0".
- ASCII code, not a hexadecimal number (0 to

F), is specified.

Data types

Operands

Error flags

Conversion Instructions

FPWIN Pro Programming

604

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable Start is set to TRUE, the function is executed. In this example,
the value for s2, i.e. the number of bytes to be converted from ASCII code to
hexadecimal code, is entered directly at the contact pin.

LD

ST IF start THEN
 F72_A2HEX(s1_Start:= AscInput[0],
 s2_Number:= 4,
 d_Start=> HexOutput);

FPWIN Pro Programming

Conversion Instructions

605

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F73_BCD2A BCD -> ASCII conversion Steps: 7

The two characters that make up one byte are interchanged when stored. Two
bytes are converted as one segment of data:

The converted result is stored in the area specified by d. ASCII code requires 8
bits (one byte) to express one BCD character. Upon conversion to ASCII, the
data length will thus be twice the length of the BCD source data.

ASCII HEX code to express BCD character:

BCD character ASCII HEX
code

0
1
2
3
4
5
6
7
8
9

H30
H31
H32
H33
H34
H35
H36
H37
H38
H39

Description Converts the BCD code starting from the 16-bit area specified by s1 to the ASCII
code that expresses the equivalent decimals according to the contents specified
by s2 if the trigger EN is in the ON-state. s2 specifies the number of source data
bytes and the direction of converted data (normal/reverse).

Conversion Instructions

FPWIN Pro Programming

606

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

PLC types: Availability of F73_BCD2A (see page 927)

Variable Data type Function
s1 WORD starting 16-bit area for BCD data (source)

s2 INT, WORD specifies number of source data bytes to be converted, and
how it is arranged

d WORD starting 16-bit area for storing converted result (destination)

For Relay T/C Register Constant
s1 WX WY WR WL SV EV DT LD FL -

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the data specified by s1 is not BCD data.
- the number of bytes specified by s2 exceeds

the area specified by s1.
- the converted result exceeds the area

specified by d.
- the data specified by s2 is recognized as "0".
- the number of bytes specified by s2 is more

than 16#4.

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Data types

Operands

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable Enable is set to TRUE, the function is executed. In this
example, the variable direction_number specifies that from the input variable
BCDCodeInput, 2 bytes will be converted in the reverse direction and stored in
ASCOutput.

LD

FPWIN Pro Programming

Conversion Instructions

607

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ST IF start THEN
 F73_BCD2A(s1_Start:= BCDCodeInput ,
 s2_Number:= direction_number ,
 d_Start=> ASCOutput[0]);
END_IF;

Conversion Instructions

FPWIN Pro Programming

608

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F74_A2BCD ASCII -> BCD conversion Steps: 9

Four characters are converted as one segment of data:

The converted result is stored in byte units in the area starting from the 16-bit
area specified by d. ASCII code requires 8 bits (1 byte) to express 1 BCD
character. Upon conversion to a BCD number, the data length will thus be half
the length of the ASCII code source data.

Description Converts the ASCII codes that express the decimal characters starting from the
16-bit area specified by s1 to BCD if the trigger EN is in the ON-state. s2
specifies the number of source data bytes and the direction of converted code
source data.

FPWIN Pro Programming

Conversion Instructions

609

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

If an odd number of characters is being converted, "0" will be entered for bit
position 0 to 3 of the final data (byte) of the converted results if data is
sequenced in the normal direction, and "0" will be entered for bit position 4 to 7 if
data is being sequenced in the reverse direction:

ASCII HEX code to express BCD character:

BCD character ASCII HEX
code

0
1
2
3
4
5
6
7
8
9

H30
H31
H32
H33
H34
H35
H36
H37
H38
H39

PLC types: Availability of F74_A2BCD (see page 927)

Variable Data type Function
s1 WORD starting 16-bit area for storing ASCII code (source)s

s2 INT, WORD specifies number of source data bytes to be converted, and
how it is arranged

d WORD starting 16-bit area for storing converted result (destination)

For Relay T/C Register Constant
s1 WX WY WR WL SV EV DT LD FL -

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Data types

Operands

Conversion Instructions

FPWIN Pro Programming

610

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- ASCII code not corresponding to decimal
numbers (0 to 9) is specified.

- the number of bytes specified by s2 exceeds
the area specified by s1.

- the converted result exceeds the area
specified by d.

- the data specified by s2 is recognized as "0".
- the number of bytes for ASCII characters in

s2 is more than 16#8.

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed. For the variable
at s1, you never need define an ARRAY with more than four elements because 8
ASCII characters require 8 bytes of memory and the function cannot convert
more than 8 bytes. In this example, the value for s2 is entered directly at the
contact pin.

FPWIN Pro Programming

Conversion Instructions

611

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F74_A2BCD(s1_Start:= ASCInput[0] ,
 s2_Number:= 16#8 ,
 d_Start=> BCDOutput[0]);
END_IF;

Conversion Instructions

FPWIN Pro Programming

612

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F75_BIN2A 16-bit BIN -> ASCII conversion Steps: 7

The following illustrations show conversions from 16-bit decimal data to ASCII
codes.

Description Converts the 16-bit data specified by s1 to ASCII codes that express the
equivalent decimal value. The converted result is stored in the area starting from
the 16-bit area specified by d as specified by s2. Specify the number of bytes in
decimal number in s2. (This specification cannot be made with BCD data.)

 If a positive number is converted, the "+" sign is not converted.
 When a negative number is converted, the "-" sign is also converted

to ASCII code (ASCII HEX code: 16#2D).
 If the area specified by s2 is more than that required by the

converted data, the ASCII code for "SPACE" (ASCII HEX code:
16#20) is stored in the extra area.

 Data is stored in the direction towards the final address, so the
position of the ASCII code may change, depending on the size of the
data storage area.

 If the number of bytes of ASCII codes following conversion

(including the minus sign) is larger than the number of bytes
specified by the s2, an operation error occurs. Make sure the sign is
taken into consideration when specifying the object of conversion for
the s2.

FPWIN Pro Programming

Conversion Instructions

613

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

When a negative number is converted:

When a positive number is converted

Decimal characters to express ASCII HEX code:

Decimal
characters

ASCII HEX
code

SPACE
-
0
1
2
3
4
5
6
7
8
9

16#20
16#2D
16#30
16#31
16#32
16#33
16#34
16#35
16#36
16#37
16#38
16#39

PLC types: Availability of F75_BIN2A (see page 927)

Conversion Instructions

FPWIN Pro Programming

614

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Variable Data type Function
s1 INT, WORD 16-bit area to be converted (source)

s2 INT specifies number of bytes used to express destination data
(ASCII codes)

d WORD 16-bit area for storing ASCII codes (destination)

For Relay T/C Register Constant
s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the number of bytes specified by s2 exceeds
the area specified by d.

- the data specified by s2 is recognized as "0".
- the converted result exceeds the area

specified by d.
- the number of bytes of converted result

exceeds the number of bytes specified by s2.

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Data types

Operands

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable Start is set to TRUE, the function is executed. This
programming example is based on the example for the conversion of a negative
number outlined above. The monitor value icon is activated for both the LD and
IL bodies; the monitor header icon is activated for the LD body.

FPWIN Pro Programming

Conversion Instructions

615

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F75_BIN2A(s1:= DataInput ,
 s2_Number:= 6 ,
 d_Start=> ASCOutput[0]);
END_IF;

Conversion Instructions

FPWIN Pro Programming

616

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F76_A2BIN ASCII -> 16-bit BIN conversion Steps: 7

Example of converting an ASCII code indicating a negative number

Example of converting an ASCII code indicating a positive number

Description Converts the ASCII codes that express the decimal digits, starting from the 16-bit
area specified by s1 to 16-bit data as specified by s2. The converted result is
stored in the area specified by d. s2 specifies the number of source data bytes to
be converted using decimal number. (This specification cannot be made with
BCD data.)

 The ASCII codes being converted should be stored in the direction
of the last address in the specified area.

 If the area specified by s1 and s2 is more than that required for the
data you want to convert, place "0" (ASCII HEX code: 16#30) or
"SPACE" (ASCII HEX code: 16#20) into the extra bytes.

 ASCII codes with signs (such as +: 16#2B and -: 16#2D) are also
converted. The + codes can be omitted.

FPWIN Pro Programming

Conversion Instructions

617

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ASCII HEX code to express decimal characters:

ASCII HEX code Decimal
characters

16#20
16#2B
16#2D
16#30
16#31
16#32
16#33
16#34
16#35
16#36
16#37
16#38
16#39

SPACE
+
-
0
1
2
3
4
5
6
7
8
9

PLC types: Availability of F76_A2BIN (see page 927)

Variable Data type Function
s1 WORD 16-bit area for ASCII code (source)

s2 INT specifies number of source data bytes to be converted

d INT, WORD 16-bit area for storing converted data (destination)

Data types

Conversion Instructions

FPWIN Pro Programming

618

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s1 WX WY WR WL SV EV DT LD FL -

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the number of bytes specified by s2 exceeds
the area specified by s1.

- the data specified by s2 is recognized as "0".
- the converted result exceeds the 16-bit area

specified by d.
- ASCII code not corresponding to decimal

numbers (0 to 9) or ASCII characters (+, -,
and SPACE) is specified.

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Operands

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable Start is set the TRUE, the function is executed. The number
of bytes to be converted is entered directly at the contact pin for s2. This
programming example is based on the example for the conversion of a negative
number on the main page of F76_A2BIN.

LD

ST IF start THEN
 F76_A2BIN(s1_Start:= ASCInput[0] ,
 s2_Number:= 6 ,
 d=> DataOutput);
END_IF;

FPWIN Pro Programming

Conversion Instructions

619

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F77_DBIN2A 32-bit BIN -> ASCII conversion Steps: 11

Example of converting a negative number from 32–bit decimal format to ASCII
codes

Decimal characters to express ASCII HEX code:

Description Converts the 32-bit data specified by s1 to ASCII code that expresses the
equivalent decimals. The converted result is stored in the area starting from the
16-bit area specified by d as specified by s2. s2 specifies the number of bytes
used to express the destination data using decimal.

 When a positive number is converted, the "+" sign is not converted.
 When a negative number is converted, the "-" sign is also converted

to ASCII code (ASCII HEX code: 16#2D).
 If the area specified by s2 is more than that required by the

converted data, the ASCII code for "SPACE" (ASCII HEX code:
16#20) is stored in the extra area.

 Data is stored in the direction of the last address, so the position of
the ASCII code may change depending on the size of the data
storage area.

 If the number of bytes of ASCII codes following conversion
(including the minus sign) is larger than the number of bytes
specified by the s2, an operation error occurs. Make sure the sign is
taken into consideration when specifying the object of conversion for
the s2.

Conversion Instructions

FPWIN Pro Programming

620

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Decimal
characters

ASCII HEX
code

SPACE
+
-
0
1
2
3
4
5
6
7
8
9

16#20
16#2B
16#2D
16#30
16#31
16#32
16#33
16#34
16#35
16#36
16#37
16#38
16#39

PLC types: Availability of F77_DBIN2A (see page 927)

Variable Data type Function
s1 DINT, DWORD 32-bit data area to be converted (source)

s2 INT specifies number of bytes to express destination data (ASCII
codes)

d WORD 16-bit area for storing ASCII codes (destination)

For Relay T/C Register Constant
s1 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

- the number of bytes specified by s2 exceeds the
area specified by d.

- the data specified by s2 is recognized as "0".
- the converted result exceeds the area specified

by d.
- the number of bytes of converted result exceeds

the number of bytes specified by s2.

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Data types

Operands

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Conversion Instructions

621

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable Start is set to TRUE, the function is executed. The number of
bytes to be converted is entered directly at the contact pin for s2.

LD

ST IF start THEN
 F77_DBIN2A(s1:= DINT_input ,
 s2_Number:= 10 ,
 d_Start=> ASCII_output[0]);
END_IF;

Conversion Instructions

FPWIN Pro Programming

622

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F78_DA2BIN ASCII -> 32 bit BIN conversion Steps: 11

Example of converting an ASCII code indicating a negative number

ASCII HEX code to express decimal characters:

ASCII HEX code Decimal
characters

16#20
16#2B
16#2D
16#30
16#31
16#32
16#33
16#34
16#35
16#36
16#37
16#38
16#39

SPACE
+
-
0
1
2
3
4
5
6
7
8
9

Description Converts ASCII code that expresses the decimal digits, starting from the 16-bit
area specified by s1 to 32-bit data as specified by s2. The converted result is
stored in the area starting from the 16-bit area specified by d. s2 specifies the
number of bytes used to express the destination data using decimals.

 The ASCII codes being converted should be stored in the direction
of the last address in the specified area.

 If the area specified by s1 and s2 is more than that required by the
data you want to convert, place "0" (ASCII HEX code: 16#30) or
"SPACE" (ASCII HEX code: 16#20) in the extra bytes.

 ASCII codes with signs (such as +: 16#2B and -: 16#2D) are also
converted. The + codes can be omitted.

FPWIN Pro Programming

Conversion Instructions

623

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

PLC types: Availability of F78_DA2BIN (see page 927)

Variable Data type Function
s1 WORD starting 16-bit area for ASCII code (source)

s2 INT specifies number of source data bytes to be converted

d DINT, DWORD area for 32-bit data storage (destination)

For Relay T/C Register Constant
s1 WX WY WR WL SV EV DT LD FL -

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the number of bytes specified by s2 exceeds
the area specified by s1.

- the data specified by s2 is recognized as "0".
- the converted result exceeds the area

specified by d.
- the converted result exceeds the 32-bit area.
- ASCII code not corresponding to decimal

numbers (0 to 9) or ASCII characters (+, -,
and SPACE) is specified.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Conversion Instructions

FPWIN Pro Programming

624

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable Enable is set to TRUE, the function is executed. The number
of bytes to be converted is entered directly at the contact pin for s2. This
programming example is based on the example for the conversion of a negative
number outlined above.

LD

ST IF start THEN
 F78_DA2BIN(s1_Start:= ASCII_input[0] ,
 s2_Number:= 10 ,
 d=> DINT_output);
END_IF;

FPWIN Pro Programming

Conversion Instructions

625

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F80_BCD 16-bit BIN -> 4-digit BCD conversion Steps: 5

PLC types: Availability of F80_BCD (see page 927)

Variable Data type Function
s INT, WORD binary data (source), range: 0 to 9999

d WORD 16-bit area for 4-digit BCD code (destination)

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- 16-bit binary data outside the range of 0
(16#0) to 9999 (16#270F) is converted

Description Converts the 16-bit binary data specified by s to the BCD code that expresses 4-
digit decimals if the trigger EN is in the ON-state. The converted data is stored in
d. The binary data that can be converted to BCD code are in the range of 0 (0
hex) to 9999 (270F hex).

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Conversion Instructions

FPWIN Pro Programming

626

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable Enable is set to TRUE, the function is executed. The decimal
value in DecimalInput is converted to a BCD hexadecimal value and stored in
the variable BCD_output.

LD

ST IF Enable THEN
 F80_BCD(DecimalInput, BCD_output);
END_IF;

FPWIN Pro Programming

Conversion Instructions

627

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F81_BIN 4-digit BCD -> 16-bit BIN conversion Steps: 5

PLC types: Availability of F81_BIN (see page 927)

Variable Data type Function
s WORD 16-bit area for 4-digit BCD data (source)

d INT, WORD 16-bit area for storing 16-bit binary data (destination)

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the data specified by s is not BCD data.

Description Converts the BCD code that expresses 4-digit decimals specified by s to 16-bit
binary data if the trigger EN is in the ON-state. The converted result is stored in
the area specified by d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Conversion Instructions

FPWIN Pro Programming

628

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable Enable is set to TRUE, the function is executed. The BCD
value assigned to the variable BCD_input is converted to a decimal value and
stored in the variable DecimalOutput. The monitor value icon is activated for
both the LD and IL bodies.

LD

ST IF Enable THEN
 F81_BIN(BCD_Input, DecimalOutput);
END_IF;

FPWIN Pro Programming

Conversion Instructions

629

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F82_DBCD 32-bit BIN -> 8-digit BCD conversion Steps: 7

· ·· · · · · · ·15

0 0 0

12

0

11

0 1 0

8

0

7

0 1 0

4

1

3

0 1 1

0

1

· ·· · · · · · ·15

0 1 1

12

1

11

0 0 1

8

0

7

1 0 0

4

0

3

0 0 0

0

1

7 2 8 1

· ·· · · · · · ·15

0 0 0

12

0

11

0 1 0

8

0

7

1 1 0

4

1

3

0 0 1

0

0

· ·· · · · · · ·15

0 0 0

12

1

11

0 1 1

8

1

7

0 0 1

4

1

3

0 0 0

0

0

1 7 3 0

72811730

Binary data

Decimal

Bit position

BCD Hex code

Destination (d): 16#72811730

Source (s): 72811730

BCD code

Bit position

32-bit area

PLC types: Availability of F82_DBCD (see page 927)

Variable Data type Function
s DINT, DWORD binary data (source), range: 0 to 99,999,999

d DWORD 32-bit area for 8-digit BCD code (destination)

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- 32-bit data specified by s outside the range of
0 (16#0) to 99999999 (16#5F5E0FF) is
converted.

Description Converts the 32-bit binary data specified by s to the BCD code that expresses 8-
digit decimals if the trigger EN is in the ON-state. The converted data is stored in
d. The binary data that can be converted to BCD code are in the range of 0 (0
hex) to 99,999,999 (5F5E0FF hex).

Data types

Operands

Error flags

Conversion Instructions

FPWIN Pro Programming

630

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable Enable is set to TRUE, the function is executed. The decimal
value in DINT_input is converted to a BCD hexadecimal value and stored in the
variable BCD_output. You may also assign a decimal, binary (prefix 2#), or
hexadecimal (prefix 16#) value directly at the contact pin for s.

LD

ST IF Enable THEN
 F82_DBCD(DINT_input, BCD_output);
END_IF;

FPWIN Pro Programming

Conversion Instructions

631

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F83_DBIN 8-digit BCD -> 32-bit BIN conversion Steps: 7

· ·· · · · · · ·15

0 0 0

12

0

11

0 1 0

8

0

7

0 1 0

4

1

3

0 1 1

0

1

1730

1730 (BCD)

· ·· · · · · · ·15

0 1 1

12

1

11

0 0 1

8

0

7

1 0 0

4

0

3

0 0 0

0

1

7 2 8 1

· ·· · · · · · ·15

0 0 0

12

0

11

0 1 0

8

0

7

1 1 0

4

1

3

0 0 1

0

0

· ·· · · · · · ·15

0 0 0

12

1

11

0 1 1

8

1

7

0 0 1

4

1

3

0 0 0

0

0

1 7 3 0

72811730

Bit position

Bit position

Decimal

BCD code

Destination (d): 7281

BCD Hex code

Source (s): 16#7281

Binary data

 32-bit area

PLC types: Availability of F83_DBIN (see page 927)

Variable Data type Function
s DWORD area for 8-digit BCD data (source)

d DINT, DWORD 32-bit area for storing 32-bit data (destination)

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the data specified by s is not BCD data.

Description Converts the BCD code that expresses 8-digit decimals specified by s to 32-bit
binary data if the trigger EN is in the ON-state. The converted result is stored in
the area specified by d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Conversion Instructions

FPWIN Pro Programming

632

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable Enable is set to TRUE, the function is executed. The BCD
value assigned to the variable BCD_input is converted to a decimal value and
stored in the variable DINT_output.

LD

ST IF Enable THEN
 F83_DBIN(BCD_input, DINT_Output);
END_IF;

FPWIN Pro Programming

Conversion Instructions

633

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F89_EXT 16-bit data sign extension, INT -> DINT Steps: 3

If the sign bit (bit position 15) of the 16-bit data specified by s is 0, all higher 16
bits in the variable assigned to d will be 0. If the sign bit of s is 1, the higher 16
bits of d will be 1.

PLC types: Availability of F89_EXT (see page 927)

Variable Data type Function
s INT, WORD 16-bit source data area, bit 15 is sign bit

d DINT, DWORD 32-bit destination area, s copied to lower 16 bits, higher 16
bits filled with sign bit of s

For Relay T/C Register Constant
s - WY WR WL SV EV DT LD FL -

d - DWY DWR DWL DSV DEV DDT DLD DFL -

In this example the function F89_EXT is programmed in ladder diagram (LD) and
structured text (ST). The same POU header is used for all programming
languages.

Description 16-bit data is converted to 32-bit data without signs and values being changed.
F89 copies the sign bit of the 16-bit data specified in s to all the bits of the higher
16-bit area (extended 16-bit area) in d.

Data types

Operands

Example

Conversion Instructions

FPWIN Pro Programming

634

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F89_EXT(Var_16bit, Var_32bit);
END_IF;

FPWIN Pro Programming

Conversion Instructions

635

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F90_DECO Decode hexadecimal -> bit state Steps: 7

n specifies the starting bit position and the number of bits to be decoded using
hexadecimal data:

(The bits No. 4 through No. 7 and No. 12 through No. 15 are invalid.)

e.g. when n = 16#0404, four bits beginning at bit position four are decoded.

Relationship between number of bits and occupied data area for decoded result:

Number of bits to
be decoded

Data area required for
the result

Valid bits in the area for
the result

1 1-word 2-bit*

2 1-word 4-bit*

3 1-word 8-bit*

4 1-word 16-bit

5 2-word 32-bit

6 4-word 64-bit

7 8-word 128-bit

8 16-word 256-bit

*Invalid bits in the data area required for the result are set to 0.

PLC types: Availability of F90_DECO (see page 927)

Variable Data type Function
s INT, WORD source 16-bit area or equivalent constant to be decoded

n INT, WORD control data to specify the starting bit position and number of
bits to be decoded

d INT, WORD starting 16-bit area for storing decoded data (destination)

The variables s, n and d have to be of the same data type.

Description Decodes the contents of 16-bit data specified by s according to the contents of n
if the trigger EN is in the ON-state. The decoded result is stored in the area
starting with the 16-bit area specified by d.

 Bit No. 0 to 3: number of bits to be decoded
 Bit No. 8 to 11: starting bit position to be decoded

Data types

Conversion Instructions

FPWIN Pro Programming

636

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s, n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

In this example the function F90_DECO is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Operands

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F90_DECO(s:= input_value ,
 n:= specify_n ,
 d=> output_value);
END_IF;

FPWIN Pro Programming

Conversion Instructions

637

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F91_SEGT 16-bit data 7-segment decode Steps: 3

PLC types: Availability of F91_SEGT (see page 927)

Variable Data type Function
s INT, WORD 16-bit area or equivalent constant to be converted to 7-

segment indication (source)

d DINT, DWORD 32-bit area for storing 4-digit data for 7-segment indication
(destination)

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Converts the 16-bit equivalent constant or 16-bit data specified by s to 4-digit
data for 7-segment indication if the trigger EN is in the ON-state. The converted
data is stored in the area starting with the 16-bit area specified by d. The data for
7-segment indication occupies 8 bits (1 byte) to express 1 digit.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F91_SEGT(input_value, output_value);
END_IF;

Conversion Instructions

FPWIN Pro Programming

638

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F92_ENCO Encode bit state -> hexadecimal Steps: 7

n specifies the starting bit position of destination data d and the number of bits to
be decoded using hexadecimal data:
Bit No. 0 to 3 number of bits to be encoded
Bit No. 8 to 11 starting bit position of destination data to be encoded
(The bits No. 4 through No. 7 and No. 12 through No. 15 are invalid.)

 • Put at least one bit into the area to be checked to avoid an error message
from the PLC.

• When several bits are set, the uppermost bit is evaluated.

PLC types: Availability of F92_ENCO (see page 927)

Variable Data type Function
s INT, WORD starting 16-bit area to be encoded (source)

n INT, WORD control data to specify the starting bit position and number of
bits to be encoded

d INT, WORD 16-bit area for storing encoded data (destination)

The variables s, n and d have to be of the same data type.
For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Encodes the contents of data specified by s according to the contents of n if the
trigger EN is in the ON-state. The encoded result is stored in the 16-bit area
specified by d starting with the specified bit position. Invalid bits in the area
specified for the encoded result are set to 0.

Data types

Operands

FPWIN Pro Programming

Conversion Instructions

639

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example the function F92_ENCO is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F92_ENCO(s:= input_value ,
 n:= specify_n ,
 d=> output_value);
END_IF;

Conversion Instructions

FPWIN Pro Programming

640

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F95_ASC 12 Character -> ASCII transfer Steps: 15

 If the number of character constants specified by s is less than 12, the ASCII code
16#20 (SPACE) is stored in the extra destination area, e.g. s = ’12345’, d[0] = 3231,
d[1] = 3433, d[2] = 2034, d[3] - d[5] = 2020.

PLC types: Availability of F95_ASC (see page 927)

Variable Data type Function
s constant, no

variables possible
Character constants, max. 12 letters (source).

d WORD Starting 16-bit area for storing 6-word ASCII code
(destination).

For Relay T/C Register Constant
s - - - - - - - - - dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the last area for ASCII code exceeds the limit
(6 words: six 16-bit areas).

Description Converts the character constants specified by s to ASCII code. The converted
ASCII code is stored in 6 words starting from the 16-bit area specified by d.

Data types

Operands

Error flags

FPWIN Pro Programming

Conversion Instructions

641

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

HT

BS

BEL

ACK

ENQ

EOT

ETX

STX

SOH

DELNUL0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

b3 b2 b1 b0b6 b5 b4

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

ASCII

b4

b5

b6

SPACE

�

DEL

LF

VT

FF

CR

SO

SI

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

~

}

{

!

”

#

$

%

&

’

(

)

*

+

,

–

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

b7

b7

Most significant digit

si
gn

ifi
ca

nt
di

gi
t

Le
as

t

HEX code

ASCII Hex-
Code

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable Enable is enabled, the character constants entered at the
input s are converted to ASCII code and stored in the variable ASCII_Output.

Conversion Instructions

FPWIN Pro Programming

642

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF Enable THEN
 F95_ASC(s:= 'ABC1230 DEF' ,
 d_Start=> ASCII_Output[0]);
END_IF;

FPWIN Pro Programming

Conversion Instructions

643

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F235_GRY 16-bit data -> 16-bit Gray code Steps: 6

PLC types: Availability of F235_GRY (see page 930)

Variable Data type Function
s INT, WORD source data to be converted

d INT, WORD destination for storing gray codes

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Description The function converts a value at input s to a gray code value. The result of the
conversion is returned at output d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F235_GRY(input_value, output_value);
END_IF;

Conversion Instructions

FPWIN Pro Programming

644

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F236_DGRY 32-bit data -> 32-bit Gray code Steps: 8

PLC types: Availability of F236_DGRY (see page 930)

Variable Data type Function
s DINT, DWORD source data to be converted

d DINT, DWORD destination for storing gray code

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Description The function converts a value at input s to a gray code value. The result of the
conversion is returned at output d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F236_DGRY(input_value, output_value);
END_IF;

FPWIN Pro Programming

Conversion Instructions

645

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F237_GBIN 16-bit Gray code -> 16-bit binary data Steps: 6

PLC types: Availability of F237_GBIN (see page 930)

Variable Data type Function
s INT, WORD source area to gray code

d INT, WORD destination for storing converted data

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Description The function converts a gray-code value at input s to binary data. The result of
the conversion is returned at output d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F237_GBIN(input_value, output_value);
END_IF;

Conversion Instructions

FPWIN Pro Programming

646

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F238_DGBIN 32-bit Gray code -> 32-bit binary data Steps: 8

PLC types: Availability of F238_DGBIN (see page 930)

Variable Data type Function
s DINT, DWORD source area for gray code

d DINT, DWORD destination area for storing converted data

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Description The function converts a gray-code value at input s to binary data. The result of
the conversion is returned at output d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F238_DGBIN(input_value, output_value);
END_IF;

FPWIN Pro Programming

Conversion Instructions

647

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F240_COLM Bit line to bit column conversion Steps: 8

The bits of the ARRAY that are not overwritten by the input value (input s) are
not effected.

PLC types: Availability of F240_COLM (see page 930)

Variable Data type Function
s INT, WORD source

n INT, WORD specifies bit position

d ARRAY [0..15] of
INT or WORD

destination area that will be rewritten with bit column

Description The function creates a bit column out of a value given at input s that is returned
within an ARRAY at output d. The position of the column in the ARRAY is
specified at input n. The value assigned at n can be between 0 and 15.

Data types

Conversion Instructions

FPWIN Pro Programming

648

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant

s, n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the bit position specified at input n is not
between 0 and 15

- the conversion operation results in an
overflow of the address area at output d.

In this example bit_combination and position are declared as input variables.
However, you can write constants directly at the input contact of the function
instead.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F240_COLM(s:= bit_combination,
 n:= position,
 d=> data_field);
END_IF;

FPWIN Pro Programming

Conversion Instructions

649

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F241_LINE Bit column to bit line conversion Steps: 8

PLC types: Availability of F241_LINE (see page 930)

Variable Data type Function
s ARRAY [0..15] of

INT or WORD
source area where bit column will be read

n INT, WORD specifies bit position

d INT, WORD destination area for storing converted data

Description The function converts a bit column out of an ARRAY at input s and returns it at
output d. The position at which the conversion takes place is specified at input n.
The value assigned at input n should be between 0 and 15.

Data types

Conversion Instructions

FPWIN Pro Programming

650

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the bit position specified at input n is not
between 0 and 15

- an overflow of the address area at input s
occurs.

In this example bit_combination and position are declared as input variables.
However, you can write constants directly at the input contact of the function
instead.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F241_LINE(s:= data_field ,
 n:= position ,
 d=> bit_combination);
END_IF;

FPWIN Pro Programming

Conversion Instructions

651

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F327_INT Floating point data -> 16-bit integer data (the
largest integer not exceeding the floating
point data)

Steps: 8

The converted integer value at output d is always less than or equal to the
floating point value at input s:

PLC types: Availability of F327_INT (see page 932)

Variable Data type Function
s REAL source REAL number data (2 words)

s2 INT, WORD destination for storing converted data

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the value at input s is not a REAL number, or
the converted result exceeds the 16-bit area
at output d.

R900B %MX0.900.11 for an instant - the result is 0.

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description The function converts a floating point data at input s in the range -32767.99 to
32767.99 into integer data (including +/- sign). The result of the function is
returned at output d.

 When there is a positive floating point value at the input, a positive
pre-decimal value is returned at the output.

 When there is a negative floating point value at the input, the next
smallest pre-decimal value is returned at the output.

 If the floating point value has only zeros after the decimal point, its
pre-decimal point value is returned.

Data types

Operands

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Conversion Instructions

FPWIN Pro Programming

652

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out. It converts the
floating point value -1.234 into the whole number value -2, which is transferred to
the variable output_value at the output. Since the whole number may not
exceed the floating point value, the function rounds down here.

LD

ST IF start THEN
 F327_INT(input_value, output_value);
END_IF;

FPWIN Pro Programming

Conversion Instructions

653

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F328_DINT Floating point data -> 32-bit integer data (the
largest integer not exceeding the floating
point data)

Steps: 8

The converted integer value at output d is always less than or equal to the
floating point value at input s:

PLC types: Availability of F328_DINT (see page 932)

Variable Data type Function
s REAL source REAL number data (2 words)

d DINT, DWORD destination for storing converted data

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the value at input s is not a REAL number, or
the converted result exceeds the 32-bit area
of output d.

R900B %MX0.900.11 for an instant - the result is 0.

Description The function converts a floating point data at input s in the range -2147483000 to
214783000 into integer data (including +/- sign). The result of the function is
returned at output d.

 When there is a positive floating point value at the input, a positive
pre-decimal value is returned at the output.

 When there is a negative floating point value at the input, the next
smallest pre-decimal value is returned at the output.

 If the floating point value has only zeros after the decimal point, its
pre-decimal point value is returned.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Conversion Instructions

FPWIN Pro Programming

654

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out. It converts the
floating point value -1234567.89 into the whole number value -1234568, which is
transferred to the variable output_value at the output. Since the whole number
may not exceed the floating point value, the function rounds down here.

LD

ST IF start THEN
 F328_DINT(input_value, output_value);
END_IF;

FPWIN Pro Programming

Conversion Instructions

655

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F333_FINT Rounding the first decimal point down Steps: 8

The converted whole-number value at output d is always less than or equal to
the floating-point value at input s:

PLC types: Availability of F333_FINT (see page 932)

Variable Data type Function
s REAL source

d REAL destination

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the value at input s is not a REAL number.

R900B %MX0.900.11 to TRUE - the result is 0.

R9009 %MX0.900.9 for an instant - the result causes an overflow.

Description The function rounds down the decimal part of the real number data and returns it
at output d.

 If a positive floating-point value is at the input, a positive pre-decimal
point value is returned at the output.

 If a negative floating-point value is at the input, the next smallest
pre-decimal point value is returned at the output.

 If the negative floating-point value has only zeros after the decimal
point, its pre-decimal point position is returned.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Conversion Instructions

FPWIN Pro Programming

656

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Body The value 1234.888 is assigned to the variable input_value. When the variable
start is set to TRUE, the function is carried out. It rounds down the input_value
after the decimal point and returns the result (here: 1234.000) at the variable
output_value.

LD

ST input_value:=1234.888;
IF start THEN
 F333_FINT(input_value, output_value);
END_IF;

FPWIN Pro Programming

Conversion Instructions

657

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F334_FRINT Rounding the first decimal point off Steps: 8

If the first post-decimal digit is between 0..4, the pre-decimal value is rounded
down. If the first post-decimal digit is between 5..9, the pre-decimal value is
rounded up.

PLC types: Availability of F334_FRINT (see page 932)

Variable Data type Function
s REAL source

d REAL destination

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the value at input s is not a REAL number.

R900B %MX0.900.11 to TRUE - the result is 0.

R9009 %MX0.900.9 for an instant - the result causes an overflow.

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Description The function rounds off the decimal part of the real number data and returns it at
output d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. It rounds off
the input_value = 1234.567 after the decimal point and returns the result (here:
1235.000) at the variable output_value.

Conversion Instructions

FPWIN Pro Programming

658

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST IF start THEN
 F334_FRINT(input_value, output_value);
END_IF;

FPWIN Pro Programming

Conversion Instructions

659

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F335_FSIGN Floating point data sign changes
(negative/positive conversion) Steps: 8

PLC types: Availability of F335_FSIGN (see page 932)

Variable Data type Function
s REAL source

d REAL destination

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the value at input s is not a REAL number.

R9009 %MX0.900.9 for an instant - the result causes an overflow.

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Description The function changes the sign of the floating point value at input s and returns
the result at output d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The value 333.4 is assigned to the variable input_value. When the variable start
is set to TRUE, the function is carried out. The output_value is then -333.4.

LD

Conversion Instructions

FPWIN Pro Programming

660

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ST input_value:=333.444;
IF start THEN
 F335_FSIGN(input_value, output_value);
END_IF;

FPWIN Pro Programming

Conversion Instructions

661

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F337_RAD Conversion of angle units (Degrees ->
Radians) Steps: 8

PLC types: Availability of F337_RAD (see page 932)

Variable Data type Function
s REAL source angle data (degrees), 2 words

d REAL destination for storing converted data

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or

hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the value at input s is not a REAL number.

R900B %MX0.900.11 to TRUE - the result is 0.

R9009 %MX0.900.9 for an instant - the result causes an overflow.

Description The function converts the value of an angle entered at input s from degrees to
radians and returns the result at output d.

Data types

Operands

Error flags

Conversion Instructions

FPWIN Pro Programming

662

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F337_RAD(input_value, output_value);
END_IF;

FPWIN Pro Programming

Conversion Instructions

663

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F338_DEG Conversion of angle units (Radians ->
Degrees) Steps: 8

PLC types: Availability of F338_DEG (see page 932)

Variable Data type Function
s REAL source angle data (radians), 2 words

d REAL destination for storing converted data

For Relay T/C Register Constant
s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the value at input s is not a REAL number.

R900B %MX0.900.11 to TRUE - the result is 0.

R9009 %MX0.900.9 for an instant - the result causes an overflow.

Description The function converts the value of an angle entered at input s from radians to
degrees and returns the result at output d.

Data types

Operands

Error flags

Conversion Instructions

FPWIN Pro Programming

664

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN
 F338_DEG(input_value, output_value);
END_IF;

Chapter 21
 Selection Instructions

Selection Instructions

FPWIN Pro Programming

666

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F285_LIMT 16-bit data upper and lower limit control Steps: 10

If you want to control the output value solely via the upper value s2, set -32768
or 16#8000 for the lower limit s1. To perform lower limit control only, set 32767 or
16#7FFF for the upper limit s2.

PLC types: Availability of F285_LIMT (see page 931)

Variable Data type Function
s1 INT, WORD the area where the lower limit is stored or the lower limit data

s2 INT, WORD the area where the upper limit is stored or the upper limit
data

s3 INT, WORD the area where the input value is stored or the input value
data

d INT, WORD the area where the output value data is stored

For Relay T/C Register Constant
s1, s2, s3 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description The function compares the input value at input s3 with a lower and an upper limit.
The lower limit is specified at input s1, and the upper limit at input s2. The result
of the function is returned at output d as follows.

 If the input value at s3 < s1, the lower limit at input s1 is returned at
output d.

 If the input value at s3 < s2, the upper limit at input s2 is returned at
output d.

 If the input value at s2 ≥ s3 ≥ s1, the input value s3 is returned
unchanged at output d.

Data types

Operands

FPWIN Pro Programming

Selection Instructions

667

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the value at s1 > s2.

R900B %MX0.900.11 permanently - the result of processing is between the upper
and lower limits.

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. The constant
0 (lower limit) and 2000 (upper limit) are assigned to inputs s1 and s2. However,
you can declare variables in the POU header and write them in the function in the
body at the inputs.

LD

ST IF start THEN
 F285_LIMT(0, 2000, input_value, output_value);
END_IF; (* 0=lower limit, 2000=upper limit *)

Selection Instructions

FPWIN Pro Programming

668

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F286_DLIMT 32-bit data upper and lower limit control Steps: 10

If you want to control the output value solely via the upper value s2, set -
2147483648 or 16#80000000 for the lower limit s1. To perform lower limit control
only, set 2147483647 or 16#7FFFFFFF the upper limit s2.

PLC types: Availability of F286_DLIMT (see page 931)

Variable Data type Function
s1 DINT, DWORD the area where the lower limit is stored or the lower limit data

s2 DINT, DWORD the area where the upper limit is stored or the upper limit
data

s3 DINT, DWORD the area where the input value is stored or the input value
data

d DINT, DWORD the area where the output value data is stored

For Relay T/C Register Constant
s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description The function compares the input value at input s3 with a lower and an upper limit.
The lower limit is specified at input s1, and the upper limit at input s2. The result
of the function is returned at output d as follows:

 If the input value at s3 < s1, the lower limit at input s1 is returned at
output d.

 If the input value at s3 < s2, the upper limit at input s2 is returned at
output d.

 If the input value at s2 ≥ s3 ≥ s1, the input value s3 is returned
unchanged at output d.

Data types

Operands

FPWIN Pro Programming

Selection Instructions

669

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the value at s1 > s2.

R900B %MX0.900.11 permanently - the result of processing is between the upper
and lower limits.

In this example, the input variable input_value is declared. However, you can
write a constant directly at the input contact of the function instead.

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is carried out. The constant -
123456 (lower limit) and 654321 (upper limit) are assigned to inputs s1 and s2.
However, you can declare variables in the POU header and write them in the
function in the body at the inputs.

LD

ST IF start THEN
 F286_DLIMT(123456, 654321, input_value, output_value);
END_IF; (* 123456= lower limit, 654321=upper limit *)

Chapter 22
 Date and Time Instructions

Date and Time Instructions

FPWIN Pro Programming

672

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F138_TIMEBCD_TO
_SECBCD h:min:s -> s conversion Steps: 7

The converted seconds data is stored in the 32-bit area specified by d. All hours,
minutes, and seconds data to convert and the converted seconds data is BCD.
The max. data input value is 9,999 hours, 59 minutes and 59 seconds, which will
be converted to 35,999,999 seconds in BCD format.

PLC types: Availability of F138_TIMEBCD_TO_SECBCD (see page 928)

Variable Data type Function
s_TIMEBCD DWORD source area for storing hours, minutes and seconds data

d_SECBCD DWORD destination area for storing converted seconds data

For Relay T/C Register Const.
s_TIMEBCD DWX DWY DWR DWL DSV DEV DDT DLD DFL -

d_SECBCD - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Converts the hours, minutes, and seconds data stored in the 32-bit area
specified by s to seconds data if the trigger EN is in the ON-state.

Example

Data types

Operands

FPWIN Pro Programming

Date and Time Instructions

673

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F139_SECBCD_TO_
TIMEBCD s -> h:min:s conversion Steps: 5

The converted hours, minutes, and seconds data is stored in the 32-bit area
specified by d. The seconds prior to conversion and the hours, minutes, and
seconds after conversion are all BCD data. The maximum data input value is
35,999,999 seconds, which is converted to 9,999 hours, 59 minutes and 59
seconds.

PLC types: Availability of F139_SECBCD_TO_TIMEBCD (see page 928)

Variable Data type Function
s_SECBCD DWORD source area for storing seconds data

d_TIME_BCD DWORD destination area for storing converted hours, minutes and
seconds data

For Relay T/C Register Const.
s_SECBCD DWX DWY DWR DWL DSV DEV DDT DLD DFL -

d_TIME_BCD - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Converts the second data stored in the 32-bit area specified by s to hours,
minutes, and seconds data if the trigger EN is in the ON-state.

Example

Data types

Operands

Date and Time Instructions

FPWIN Pro Programming

674

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F157_ADD_DTBCD_
TIMEBCD Time addition Steps: 9

 You cannot specify special data registers DT9054 to DT9056 (DT90054 to DT90056
for FP2/2SH and FP10/10S/10SH) for the operand d_DTBCD. These registers are
factory built-in calendar timer values. To change the built-in calendar timer value,
first store the added result in other memory areas and transfer them to the special
data registers using SET_RTC_DTBCD (see page 677) instruction.

Example 1: clock/calendar data in
DTBCD format

DUT
Member

Result

MinSec 16#2331 (minutes/seconds)

DayHour 16#0114 (day/hour)

August 1, 1992, Time: 14:23:31
(hours:minutes:seconds)

 YearMon 16#9208 (year/month)

Example 2: time data in TIMEBCD
format

32 hours; 50 minutes; and 45 seconds 16#00325045 hex
(hours/minutes/seconds)

PLC types: Availability of F157_ADD_DTBCD_TIMEBCD (see page 929)

Variable Data type Function
s1_DTBCD DTBCD augend, time and date, values in BCD format

s2_TIMEBCD DWORD addend, 32-bit area for storing time data in BCD format

d_DTBCD DTBCD sum in BCD format

For Relay T/C Register Const.
s1_DTBCD WX WY WR WL SV EV DT LD FL -

s2_TIMEBCD - WY WR WL SV EV DT LD FL -

d_DTBCD WX WY WR WL SV EV DT LD FL dec. or hex.

Description The date/clock data (3 words) specified by s1_DTBCD and the time data (2
words) specified by s2_TIMEBCD are added together if the trigger EN is in the
ON-state. The result is stored in the area (3 words, same format as s1_DTBCD)
specified by d_DTBCD. This instruction handles all data in BCD format.

Symbol

Data types

Operands

FPWIN Pro Programming

Date and Time Instructions

675

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F158_SUB_DTBCD_
TIMEBCD Time subtraction Steps: 9

 You cannot specify special data registers DT9054 to DT9056 (DT90054 to DT90056
for FP2/2SH and FP10/10S/10SH) for the operand d_DTBCD. These registers are
factory built-in calendar timer values. To change the built-in calendar timer value,
first store the subtraction result in other memory areas and transfer them to the
special data registers using SET_RTC_DTBCD (see page 677) instruction.

Example 1: clock/calendar data in
DTBCD format

DUT
Member

Result

MinSec 16#2331 (minutes/seconds)

DayHour 16#0114 (day/hour)

August 1, 1992, Time: 14:23:31
(hour:minutes:seconds)

 YearMon 16#9208 (year/month)

Example 2: time data in TIMEBCD
format

32 hours; 50 minutes; and 45 seconds 16#00325045 hex
(hours/minutes/seconds)

PLC types: Availability of F158_SUB_DTBCD_TIMEBCD (see page 929)

Variable Data type Function
s1_DTBCD DTBCD minuend, time and date, values in BCD format

s2_TIMEBCD DWORD subtrahend, 32-bit area for storing time data in BCD format

d_DTBCD DTBCD result in BCD format

For Relay T/C Register Const.
s1_DTBCD WX WY WR WL SV EV DT LD FL -

s2_TIMEBCD - WY WR WL SV EV DT LD FL -

d_DTBCD WX WY WR WL SV EV DT LD FL dec. or
hex.

Description Subtracts time data (2 words) specified by s2_TIMEBCD from the date/clock
data (3 words) specified by s1_DTBCD if the trigger EN is in the ON-state. The
result is stored in the area (3 words, same format than s1_DTBCD) specified by
d_DTBCD. All the data used in this instruction are handled in form of BCD.

Symbol

Data types

Operands

Date and Time Instructions

FPWIN Pro Programming

676

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

GET_RTC_DTBCD Read Real-Time Clock

If you require an enable input (EN) and an enable output (ENO): Insert the
EN/ENO instruction by selecting [Insert with EN/ENO] from the OP/FUN/FB
selection in the LD, FBD and IL editors. To facilitate reusing the Enable (E_)
instruction, it will then appear as such under "Recently used" in the pop-up menu.

Description Use this PLC independent instruction to read the real-time clock data from the
PLC. When the instruction is carried out, the values from the special data
registers DT90054 to DT90056 (DT9054 to DT9056) are transferred to the data
unit type DTBCD. You can also use the system variables to set the RTC. For
detailed information on using system variables, please refer to data transfer to
and from special data registers (see page 4).

Example:

FPWIN Pro Programming

Date and Time Instructions

677

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

SET_RTC_DTBCD Set the Real-Time Clock Steps: 3

Description Use this PLC independent instruction to write date and time data in BCD format
(DTBCD) to the real-time clock. When the variable SetNewDtBcd is set to
TRUE, the values from the data unit type DTBCD are transferred to the special
data registers DT90054 to DT90056 (DT9054 to DT9056) and the value 16#8000
is written to the special data register DT90058 (DT9058) to set the real-time clock
of the PLC. You can also use the system variables to set the RTC. For detailed
information on using system variables, please refer to data transfer to and from
special data registers (see page 4).

Example

Chapter 23
 Bistable Instructions

Bistable Instructions

FPWIN Pro Programming

680

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

KEEP Serves as a relay with set and reset inputs Steps: 1

When the SetTrigger turns ON, output of the specified relay goes ON and
maintains its condition. Output relay goes OFF when the ResetTrigger turns ON.
The output relay’s ON state is maintained until a ResetTrigger turns ON
regardless of the ON or OFF states of the SetTrigger. If the SetTrigger and
ResetTrigger turn ON simultaneously, the ResetTrigger is given priority.

PLC types: Availability of KEEP (see page 933)

Variable Data type Function
Set Trigger BOOL sets Address output, i.e. turns in ON

Reset
Trigger

BOOL resets Address output, i.e. turns it OFF

Address BOOL specifed relay whose status (set or reset) is kept

For Relay T/C Register Constant
Set Trigger,

Reset
Trigger

X Y R L T C - - - -

o - Y R L - - - - - -

All input and output variables which are required for programming the function
are declared in the POU header.

 Class Identifier Type Initial Comment
0 VAR SetTrigger1 BOOL FALSE Set output
1 VAR ResetTrigger1 BOOL FALSE Reset

output
2 VAR Address1 BOOL FALSE Output

Description KEEP serves as a relay with set and reset points.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

Body
LD

ST Address1:=KEEP(SetTrigger1, ResetTrigger1);

FPWIN Pro Programming

Bistable Instructions

681

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

SET SET, RESET Steps: 3

Relays:

For Relay T/C Register Constant
SET
RST

- Y R L - - - E - -

Description SET: When the execution conditions have been satisfied, the output is turned
on, and the on status is retained.

RST: When the execution conditions have been satisfied, the output is turned
off, and the off status is retained.

 You can use relays with the same number as many times as you like
with the SET and RST instructions. (Even if a total check is run, this
is not handled as a syntax error.)

 When the SET and RST instructions are used, the output changes
with each step during processing of the operation.

 To output a result while operation is still in progress, use a partial I/O
update instruction (F143).

 The output destination of a SET instruction is held even during the
operation of an MC instruction.

 The output destination of a SET instruction is reset when the mode
is changed from RUN to PROG. or when the power is turned off,
except when a hold type internal relay is specified as the output
destination.

 Placing a DF instruction (or specifying a rising edge in LD) before
the SET and RST instructions ensures that the instruction is only
executed at a rising edge.

 Relays can be turned off using the RST instruction.
 Using the various relays with the SET and RST instructions does not

result in double output.
 It is not possible to specify a pulse relay (P) as the output destination

for a SET or RST instruction.

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list). Since
addresses are assigned directly using FP addresses, no POU header is
necessary.

Bistable Instructions

FPWIN Pro Programming

682

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body Using the DF command or specifying a rising edge refines the program by
making the programming step valid for one scan only:
(1) When the input X0 is activated, the output Y0 is set.
(2) When the input X0 is turned off, the output Y0 remains set.
(3) When the input X1 is activated, the output Y0 is reset.
(4) When the input X0 is reactivated, the output Y0 is set.

FBD

LD In ladder diagram, specify a rising edge in the contact and SET or RESET in the
coil:

FPWIN Pro Programming

Bistable Instructions

683

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ST (*TRUE and FALSE are assigned to Y0*)
IF DF(X0) THEN
 Y0:= TRUE;
END_IF;

IF DF(X1) THEN
 Y0:= FALSE;
END_IF;

Chapter 24
 Edge Detection Instructions

Edge Detection Instructions

FPWIN Pro Programming

686

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

DF Leading edge differential Steps: 1

PLC types: Availability of DF (see page 924)

Variable Data type
input BOOL

output BOOL

For Relay T/C Register Constant
i X Y R L T C - - - -

o - Y R L - - - - - -

Description DF is a leading edge differential instruction. The DF instruction executes and
turns ON output o for a singular scan duration if the trigger i changes from an
OFF to an ON state.

Data types

Operands

Example In this example the function DF is programmed in ladder diagram (LD) and
structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body Each rising edge at the input Increment increments the counter.

LD

ST When programming with structured text, enter the following:
IF DF(Increment) THEN
 Counter:=Counter+1;
END_IF;

FPWIN Pro Programming

Edge Detection Instructions

687

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

DFN Trailing edge differential Steps: 1

PLC types: Availability of DFN (see page 924)

Variable Data type
input BOOL

output BOOL

For Relay T/C Register Constant
i X Y R L T C - - - -

o - Y R L - - - - - -

Description The DFN instruction executes and turns ON output o for a single scan duration if
the trigger i changes from an ON to an OFF state.

Data types

Operands

Example In this example the function DFN is programmed in ladder diagram (LD) and
structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body Each falling edge at the input Decrement decrements the couter.

LD

ST When programming with structured text, enter the following:
IF DFN(Decrement) THEN
 Counter:=Counter-1;
END_IF;

Edge Detection Instructions

FPWIN Pro Programming

688

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

DFI Leading edge differential (initial execution
type) Steps: 1

Detection of the input signal’s leading edge is also assured at the first scan.

You may use an unlimited number of DFI functions.

If the input signal = TRUE already when the system is turned on and this signal
should not be interpreted as the first leading edge, the DF function must be used
instead.

PLC types: Availability of DFI (see page 924)

 Be careful when programming with commands that effect the order in which a
program is carried out, e.g. jump or loop instructions within a sequential
function chart or a function block. The order of the instructions might change
depending on the time when the instruction is carried out or the input value.
(Specific basic JUMP and LOOP instructions are: MC to MCE instruction, JP to
LBL instruction, F19 (SJP) to LBL instruction, LOOP to LBL instruction.

Variable Data type
input BOOL

output BOOL

For Relay T/C Register Constant
i X Y R L T C - - - -

o - Y R L - - - - - -

Description When a leading edge of the input signal (input i) is detected, this function
changes the status of the output signal (output o) to TRUE for the duration of the
scan.

Data types

Operands

FPWIN Pro Programming

Edge Detection Instructions

689

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

LD

ST output_value:=DFI(input_value);

Edge Detection Instructions

FPWIN Pro Programming

690

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ALT Alternative out

When the mode is changed from PROG to RUN or the power is turned on in
RUN mode while the input signal is TRUE, a leading edge will not be detected for
the first scan.

PLC types: Availability of ALT (see page 923)

 Be careful when programming with commands that effect the order in which a
program is carried out, e.g. jump or loop instructions within a sequential function
chart or a function block. The order of the instructions might change depending on
the time when the instruction is carried out or the input value. (Specific basic JUMP
and LOOP instructions are: MC to MCE instruction, JP to LBL instruction, F19_SJP
to LBL instruction, LOOP to LBL instruction.

Variable Data type
input BOOL

output BOOL

For Relay T/C Register Constant
i X Y R L T C - - - -

o - Y R L - - - - - -

Description The function inverts the output condition (output o) each time the leading edge of
the input signal (input i) is detected.

Time chart

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

LD

ST output_value:=(ALT(input_value));

Chapter 25
 Counter Instructions

Counter Instructions

FPWIN Pro Programming

692

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

CT_FB Down Counter Steps: 3

Count count contact
each time a rising edge is detected at Count, the value 1 is subtracted from the
elapsed value EV until the value 0 is reached

Reset reset contact
each time a rising edge is detected at Reset, the value 0 is assigned to EV and
the signal output C is reset; each time a falling edge is detected at Reset, the
value at SV is assigned to EV

SV set value
value of EV after a reset procedure

C signal output
is set when EV becomes 0

EV elapsed value
current counter value

PLC types: Availability of CT_FB (see page 924)

Variable Data type Function
Count BOOL count contact (down)

Reset BOOL reset contact

SV INT, WORD set value

C BOOL set when EV = 0

EV INT, WORD elapsed value

Time
Chart

Description Counters realized with the CT_FB function block are down counters. The count
area SV (set value) is 1 to 32767.

For the CT_FB function block declare the following:

Data types

FPWIN Pro Programming

Counter Instructions

693

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

 • In order to work correctly, the CT_FB function block needs to be reset
each time before it is used.

• The number of available counters is limited and depends on the
settings in the system registers 5 and 6. The compiler assigns a NUM*
address to every counter instance. The addresses are assigned
counting downwards, starting at the highest possible address.

• The basic CT (see page 695) function (down counter) uses the same
NUM* address area (Num* input). In order to avoid errors (address
conflicts), the CT function and the CT_FB function block should not be
used together in a project.

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are used for programming the function block
CT_FB are declared in the POU header. This also includes the function block
(FB) itself. By declaring the FB you create a copy of the original FB. This copy is
saved under copy_name, and a separate data area is reserved.

Counter Instructions

FPWIN Pro Programming

694

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body This example uses variables. You may also use constants for the input variables.
Each rising edge detected at count_contact the value 1 is subtracted from
set_value. Signal_output is set to TRUE if set_value becomes zero.

LD

FPWIN Pro Programming

Counter Instructions

695

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

CT Counter

When the Reset input is on, the set value (SV) is reset to the value assigned to
it. The set value can be set to a decimal constant from 0 to 32767.

When the Count input changes from off to on, the set value begins to decrement.
When this value reaches 0, the counter output (C) turns on.

If the Count input and Reset input both turn on at the same time, the Reset input
is given priority.

If the Count input rises and the Reset input falls at the same time, the count
input is ignored and preset is executed.

PLC types: Availability of CT (see page 924)

 This function does not require a variable at the output "C".

Variable Data type Function
Count BOOL subtracts 1 from the set value each time it is activated

Reset BOOL resets the counter when it is ON

Num* decimal constant number assigned to the counter (see System Register 5)

SV INT, WORD set value is the number the counter starts subtracting from

C BOOL the counter turns on when it reaches the SV

For Relay T/C Register Constant
Count X Y R L T C - - - -

Reset X Y R L T C - - - -

Num* - - - - - - - - - dec. or hex.

C - Y R L - - - - - -

SV - - - - SV - - - - dec. or hex.

Description Decrements a preset counter. The function has the following parameters: Count,
Reset, Num*, SV, and C. Their functions are listed in the Data types table below.

Data types

Operands

Counter Instructions

FPWIN Pro Programming

696

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

 Details about points of Down Counter CT:

Type Number of points Nos. that can be used
FP-Sigma 24 points 1000 to 1023

The number of counter points can be changed using System Register 5. The
number of points can be increased up to 1,024 with the FP-Sigma. Be aware that
increasing the number of counter points decreases the number of timer points.

For all models there is a hold type, in which the counter status is retained even if
the power supply is turned off, or if the mode is switched from RUN to PROG,
and a non-hold type, in which the counter is reset under these conditions.
System register 6 can be used to specify a non-hold type.

 Set Value and Elapsed Value area

At the fall time when the reset input goes from on to off, the value of the set value
area (SV) is preset in the elapsed value area (EV).

When the reset input is on, the elapsed value is reset to 0.

When the count input changes from off to on, the set value begins to decrement,
and when the elapsed value reaches 0, the counter contact Cn (n is the counter
number) turns on.

Example In this example the function CT is programmed in ladder diagram (LD) and
structured text (ST).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The set value SV is set to 10 when Reset_input is activated. Each time
Count_input is activated, the value of SV decreases by 1. When this value
reaches 0, Counter100 turns on. Num* is assigned the counter number, which
must be equal to or greater to the number assigned to Data in System Register
5.

FPWIN Pro Programming

Counter Instructions

697

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST Counter100:=CT(Count:= Count_input ,
 Reset:= Reset_input ,
 Num:= 100 ,
 SV:= Setvalue);
 (* Num*, 100 in this example, must be a
constant *)

Counter Instructions

FPWIN Pro Programming

698

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F118_UDC UP/DOWN counter Steps: 5

Cnt_Trig: Adds or subtracts one count at the leading edge of this trigger.

Rst_Trig: The condition is reset when this signal is on.

The area for the elapsed value d becomes 0 when the leading edge of the trigger
is detected (OFF → ON). The value in s is transferred to d when the trailing edge
of the trigger is detected (ON → OFF).

s: Preset (Set) value or area for Preset (Set) value.

d: Area for count (elapsed) value.

PLC types: Availability of F118_UDC (see page 928)

Variable Data type Function
UD_Trig BOOL sets counter to count up (ON) or down (0FF)

Cnt_Trig BOOL starts counter

Rst_Trig BOOL resets counter

s INT, WORD 16-bit area or equivalent constant for counter preset value

d INT, WORD 16-bit area for counter elapsed value

The variables s and d have to be of the same data type.
For Relay T/C Register Constant

UD_Trig,
Cnt-Trig,
Rst_Trig

X Y R L T C - - - -

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description UD_Trig: DOWN counting if the trigger is in the OFF state. UP counting if the
trigger is in the ON state.

Data types

Operands

FPWIN Pro Programming

Counter Instructions

699

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example the function F118_UDC is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body A rising edge at the input Cnt_Trig activates the counter. The boolean variable at
the input UD_Trig sets the direction of the counter (TRUE = up, FALSE =down).
TRUE at the input Rst_Trig resets the counter to the starting value.

LD

ST When programming with structured text, enter the following:
output_value:=F118_UDC(UD_Trig:= up, Cnt_Trig:= count,
Rst_Trig:= reset, s:= set_value);
(* output_value contains the count value *)

Chapter 26
 High Speed Counter and Pulse Output

Instructions

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

702

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F0_MV High-speed counter control Steps: 5

PLC types: Availability of F0_MV (see page 925)

Variable Data type Function
s INT, WORD specifies high-speed counter operation

d INT, WORD controls high-speed counter operation at specified address,
DT9052/DT90052 (DT90052 for FP0 T32-CP, FP2/2SH and
FP10/10S/10SH)

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Nr. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

the value of s exceeds the limit of specified
range.

Enter the control code into the area DT9052/DT90052 of the corresponding
channel.

16#0 (0000):
- Software reset operation is not performed.
- Count inputs are accepted.
- Reset input X2 enabled.

Description This instruction controls the software reset, disabling of the counter and stops
pulse outputs.

Data types

Operands

Error flags

Example The following provides generic examples and explanations of F0_MV when used
to control high-speed counter functions.

 Perform software reset 16#1(0001)
 Count disable 16#2(0010)
 Stop pulse output 16#8(1000)
 Turn off pulse output and reset elapsed value 16#9(1001)

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

703

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

When a control code is programmed once, it is saved until the next time it is
programmed.

Operation This instruction is used when performing the following operations while using the
high-speed counter:

 Performing a software reset.
 Disabling the count.
 Temporarily disabling the hardware reset by the external input X2

and X5.
 Stopping the positioning and pulse outputs.
 Clearing the controls executed with the high-speed counter

instructions F166 (see page 717), F167 (see page 720), F171 (see
page 723), F172 (see page 732), F173 (see page 736) and F174
(see page 739).

 Setting the near home input during home return operations for
decelerating the speed of movement.

Precautions
during prog.

 The hardware reset disable is only effective when using reset inputs
(X2 and X5).

 Count disable and software reset during home return operations
does not allow near home processing.

 To enable near home processing during home return operations, bit
4 of special data register DT90052 must be set to 1. This bit is
saved. Therefore, the near home bit should be reset to 0 right after
setting it.

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

704

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Control code (specify with a hex constant)

15 12 11 8

DT90052:

7 4 3 0

Near home input
0: Off
1: On

High-speed counter instruction
0: Continue
1: Clear
Pulse output
0: Continue
1: Stop

Hardware reset
0: Permit
1: Prohibit

Count
0: Permit
1: Prohibit

Software reset
0: No
1: Yes

Channel specification
16#0-16#3: CH0-CH3

Operations of control code:

Software reset operation (bit position 0 of DT90052)

Count input control operation (bit position 1 of DT90052)

Hardware reset control operation (bit position 2 of DT90052)

Control of high-speed counter instructions (bit position 3 of DT90052)

Near home input instructions (bit position 4 of DT90052)

Channel specification (bit positions 12 - 15 of DT90052)

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

705

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

26.1.1.1 Setting the Control Code for High-Speed Counter with FP-X

The area DT90052 for writing channels and control codes is allocated as shown below.

Control codes written with an F0_MV instruction are stored by channel in special registers
DT90190 to DT90193.

Example In this example the function F0_MV is programmed in ladder diagram (LD).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

LD

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

706

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

High-speed counter and pulse output controls flag area of FP-X:

At the reset input setting, you set whether the reset input (X2 or X5), which was
assigned by the system register high-speed counter setting, will be enabled or
disabled.

26.1.1.2 Setting the Control Code for High-Speed Counter with FP-Sigma

The area DT90052 for writing channels and control codes is allocated as shown below.

Control codes written with an F0_MV instruction are stored by channel in special registers
DT90190 to DT90193.

High-speed counter and Pulse output controls flag area of FP-Sigma:

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

707

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Note:
At the reset input setting, you set whether the reset input (X2 or X5), which was
assigned by the system register high-speed counter setting, will be enabled or
disabled.

26.1.1.3 Setting the Control Code for Pulse Output with FP-X

The area DT90052 for writing channels and control codes is allocated as shown below.

Control codes written with an F0_MV instruction are stored by channel in special registers
DT90372 to DT90373.

High-speed counter and pulse output controls flag area of FP-X:

26.1.1.4 Setting the Control Code for Pulse Output with FP-Sigma

The area DT90052 for writing channels and control codes is allocated as shown below.

Control codes written with an F0_MV instruction are stored by channel in special registers
DT90190 to DT90192.

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

708

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

High-speed counter and pulse output controls flag area of FP-Sigma:

26.1.2 Reading the Elapsed Value and Setting the Target Values

26.1.2.1 Elapsed Values and Target Values for FP-X

FP-X Address System variable
Control Code DT90052 sys_w_HSC_PLS_ControlFlags

Monitoring active: R9110 sys_b_HSC_CH0_IsActive

Monitoring value: DT90360 sys_w_HSC_CH0_ControlFlags

Elapsed value: DDT90300 sys_di_HSC_CH0_ElapsedValue

CH0

Target value: DDT90302 sys_di_HSC_CH0_TargetValue

Monitoring active: R9111 sys_b_HSC_CH1_IsActive

Monitoring value: DT90361 sys_w_HSC_CH1_ControlFlags

Elapsed value: DDT90304 sys_di_HSC_CH1_ElapsedValue

CH1

Target value: DDT90306 sys_di_HSC_CH1_TargetValue

Monitoring active: R9112 sys_b_HSC_CH2_IsActive

Monitoring value: DT90362 sys_w_HSC_CH2_ControlFlags

Elapsed value: DDT90308 sys_di_HSC_CH2_ElapsedValue

CH2

Target value: DDT90310 sys_di_HSC_CH2_TargetValue

Monitoring active: R9113 sys_b_HSC_CH3_IsActive

Monitoring value: DT90363 sys_w_HSC_CH3_ControlFlags

Elapsed value: DDT90312 sys_di_HSC_CH3_ElapsedValue

CH3

Target value: DDT90314 sys_di_HSC_CH3_TargetValue

Monitoring active: R9114 sys_b_HSC_CH4_IsActive

High-speed
counter
channel no.

CH4

Monitoring value: DT90364 sys_w_HSC_CH4_ControlFlags

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

709

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

FP-X Address System variable
Elapsed value: DDT90316 sys_di_HSC_CH4_ElapsedValue
Target value: DDT90318 sys_di_HSC_CH4_TargetValue

Monitoring active: R9115 sys_b_HSC_CH5_IsActive

Monitoring value: DT90365 sys_w_HSC_CH5_ControlFlags

Elapsed value: DDT90320 sys_di_HSC_CH5_ElapsedValue

CH5

Target value: DDT90322 sys_di_HSC_CH5_TargetValue

Monitoring active: R9116 sys_b_HSC_CH6_IsActive

Monitoring value: DT90366 sys_w_HSC_CH6_ControlFlags

Elapsed value: DDT90324 sys_di_HSC_CH6_ElapsedValue

CH6

Target value: DDT90326 sys_di_HSC_CH6_TargetValue

Monitoring active: R9117 sys_b_HSC_CH7_IsActive

Monitoring value: DT90367 sys_w_HSC_CH7_ControlFlags

Elapsed value: DDT90328 sys_di_HSC_CH7_ElapsedValue

CH7

Target value: DDT90330 sys_di_HSC_CH7_TargetValue

Monitoring active: R9118 sys_b_HSC_CH8_IsActive

Monitoring value: DT90368 sys_w_HSC_CH8_ControlFlags

Elapsed value: DDT90332 sys_di_HSC_CH8_ElapsedValue

CH8

Target value: DDT90334 sys_di_HSC_CH8_TargetValue

Monitoring active: R9119 sys_b_HSC_CH9_IsActive

Monitoring value: DT90369 sys_w_HSC_CH9_ControlFlags

Elapsed value: DDT90336 sys_di_HSC_CH9_ElapsedValue

CH9

Target value: DDT90338 sys_di_HSC_CH9_TargetValue

Monitoring active: R911A sys_b_HSC_CHA_IsActive

Monitoring value: DT90370 sys_w_HSC_CHA_ControlFlags

Elapsed value: DDT90340 sys_di_HSC_CHA_ElapsedValue

CHA

Target value: DDT90342 sys_di_HSC_CHA_TargetValue

Monitoring active: R911B sys_b_HSC_CHB_IsActive

Monitoring value: DT90371 sys_w_HSC_CHB_ControlFlags

Elapsed value: DDT90344 sys_di_HSC_CHB_ElapsedValue

CHB

Target value: DDT90346 sys_di_HSC_CHB_TargetValue

Monitoring active: R911C sys_b_PLS_CH0_IsActive

Monitoring value: DT90372 sys_w_PLS_CH0_ControlFlags

Elapsed value: DDT90348 sys_di_PLS_CH0_ElapsedValue

CH0

Target value: DDT90350 sys_di_PLS_CH0_TargetValue

Monitoring active: R911D sys_b_PLS_CH2_IsActive

Monitoring value: DT90373 sys_w_PLS_CH2_ControlFlags

Elapsed value: DDT90352 sys_di_PLS_CH2_ElapsedValue

Pulse output
channel no.

CH2

Target value: DDT90354 sys_di_PLS_CH2_TargetValue

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

710

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

26.1.2.2 Elapsed Values and Target Values for FP-Sigma

These target values are set implicitly by the corresponding F instructions.

FP-Σ Address System variable
Control Code DT90052 sys_w_HSC_PLS_ControlFlags

Monitoring active: R903A sys_b_HSC_CH0_IsActive

Monitoring value: DT90190 sys_w_HSC_CH0_ControlFlags

Elapsed value: DDT90044 sys_di_HSC_CH0_ElapsedValue

CH0

Target value: DDT90046 sys_di_HSC_CH0_TargetValue

Monitoring active: R903B sys_b_HSC_CH1_IsActive

Monitoring value: DT90191 sys_w_HSC_CH1_ControlFlags

Elapsed value: DDT90048 sys_di_HSC_CH1_ElapsedValue

CH1

Target value: DDT90050 sys_di_HSC_CH1_TargetValue

Monitoring active: R903C sys_b_HSC_CH2_IsActive

Monitoring value: DT90192 sys_w_HSC_CH2_ControlFlags

Elapsed value: DDT90200 sys_di_HSC_CH2_ElapsedValue

CH2

Target value: DDT90202 sys_di_HSC_CH2_TargetValue

Monitoring active: R903D sys_b_HSC_CH3_IsActive

Monitoring value: DT90193 sys_w_HSC_CH3_ControlFlags

Elapsed value: DDT90204 sys_di_HSC_CH3_ElapsedValue

High-speed
counter
channel no.

CH3

Target value: DDT90206 sys_di_HSC_CH3_TargetValue

Monitoring active: R903A sys_b_PLS_CH0_IsActive

Monitoring value: DT90190 sys_w_PLS_CH0_ControlFlags

Elapsed value: DDT90044 sys_di_PLS_CH0_ElapsedValue

CH0

Target value: DDT90046 sys_di_PLS_CH0_TargetValue

Monitoring active: R903C sys_b_PLS_CH2_IsActive

Monitoring value: DT90192 sys_w_PLS_CH2_ControlFlags

Elapsed value: DDT90200 sys_di_PLS_CH2_ElapsedValue

Pulse output
channel no.

CH2

Target value: DDT90202 sys_di_PLS_CH2_TargetValue

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

711

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F162_HC0S High-speed counter output set Steps: 7

The target value is stored in special data registers DT9047 and DT9046 when
the F162_HC0S instruction is executed, and it is cleared when the elapsed value
of the high-speed counter matches the target value.

Use 24-bit binary data with sign data for the target value of HSC (FF800000 hex
to 007FFFFF hex / -8,388,608 to 8,388,607).

Special internal relay R903A turns ON and stays ON while the F162_HC0S
instruction is executed and it is cleared when the elapsed value of the high-speed
counter reaches the target value.

Even if the reset operation of the high-speed counter is performed after executing
the F162_HC0S instruction, the target value setting is not cleared until the
elapsed value of the high-speed counter reaches the target value.

To reset the external output relay, which is set ON by the F162_HC0S
instruction, use the F163_HCOR (see page 713) instruction.

You can use the same external output relay specified by the F162_HC0S
instruction in other parts of program. The system does not register a duplicate
use of the same output.

While special internal relay R903A is in ON state, no other high-speed counter
instructions F162_HC0S, F163_HCOR (see page 713), F164_SPDO (see page
715), F165_CAMO (see page 716) can be executed.

PLC types: Availability of F162_HC0S (see page 929)

Variable Data type Function
s DINT, DWORD area or equivalent constant for storing target value of high-

speed counter

d BOOL available external output relay: Y0 to Y7

For Relay T/C Register Constant
s DWX DWY DWR - DSV DEV DDT - - dec. or hex.

d - Y - - - - - - - -

Description Sets the value specified by s as the target value of the high-speed counter if the
trigger EN is in the ON-state. When the elapsed value (DT9045 and DT9044) of
the high-speed counter matches the target value (DT9047 and DT9046), the
external output relay specified by d turns ON. You can use 8 external output
relays (Y0 to Y7).

Data types

Operands

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

712

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example the function F162_HC0S is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST When programming with structured text, enter the following:
IF start THEN
 F162_HC0S(s_Target:= 100 ,
 d=> output_value);
END_IF;

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

713

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F163_HC0R High-speed counter output reset Steps: 7

When the F163 (HC0R) instruction is executed, the target value is stored in
special data registers DT9047 and DT9046 and it is cleared when the elapsed
value of the high-speed counter matches the target value.

Use 24-bit binary data with sign data for the target value of HSC (FF800000 hex
to 007FFFFF hex / -8,388,608 to 8,388,607).

Once the F163 (HC0R) instruction is executed, special internal relay R903A turns
ON and stays ON. It is cleared when the elapsed value of the high-speed counter
reaches the target value.

Even if the reset operation of the high-speed counter is performed after executing
the F163 (HC0R) instruction, the target value setting is not cleared until the
elapsed value of the high-speed counter reaches the target value.

You can use the same external output relay specified by the F163 (HC0R)
instruction in other parts of program. The system does not register a duplicate
use of the same output.

While special internal relay R903A is in ON state, no other high-speed counter
instructions F162_HC0S (see page 711), F163 (HC0R), F164_SPD0 (see page
715), F165_CAM0 (see page 716) can be executed.

PLC types: Availability of F163_HC0R (see page 929)

Variable Data type Function
s DINT, DWORD area or equivalent constant for storing target value of high-

speed counter

d BOOL available external output relay: Y0 to Y7

For Relay T/C Register Constant
s DWX DWY DWR - DSV DEV DDT - - dec. or hex.

d - Y - - - - - - - -

Description Sets the value specified by s as target value of the high-speed counter if the
trigger EN is in the ON-state. When the elapsed value (DT9045 and DT9044) of
the high-speed counter matches the target value (DT9047 and DT9046), the
external output relay specified by d turns OFF. You can use 8 external output
relays (Y0 to Y7).

Data types

Operands

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

714

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example the function F163_HC0R is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST When programming with structured text, enter the following:
IF start THEN
 F163_HC0R(s_Target:= 100 ,
 d=> output_value);
END_IF;

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

715

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F164_SPD0 Pulse output control; Pattern output control Steps: 3

When the executing condition is ON and the HSC control-flag (R903A) is OFF,
this instruction starts operation. This instruction executes pattern output or pulse
output corresponding to the data of the data table registered at the data register
specified by s.

You can use pulse output for positioning with a pulse motor and pattern output
for controlling an inverter. When you execute pulse output with this instruction,
input the pulse of Y7 directly to HSC or input the encoder output pulse. When
you execute pattern output, input the encoder output pulse to HSC. Specify using
system register No. 400 whether you will use HSC or not.

It is not possible to execute this instruction without the following settings: input
condition to detect a rising edge (0/1), and the HSC flag (R903A) must be reset.
The output coils of pattern output are within the 8 outputs Y0 to Y7. The output
coil of pulse output is Y7 only. Select either pattern outputs or pulse outputs by
the content of the first word of the data table. When you input 0 for one word of
the first address (all bits are 0), it will be the pulse output. When you execute
pattern output, an error occurs unless the No. of the control steps is 1 to F or
unless the No. of control points is 1 to 8. An error occurs when the first target
value is not FF800000 to 7FFFFF. An error does not occur when the first target
value on and after the second one are not FF800000 to 7FFFFF. The operation,
however, is stopped and R903A turns OFF. When the frequency data is "0",
pulse output ends. It will also end if the area is exceeded during its execution.

PLC types: Availability of F164_SPD0 (see page 929)

Variable Data type Function
s INT, WORD starting 16-bit area for storing control data

For Relay T/C Register Constant
s - - - - - - DT - - -

Below is an example of a ladder diagram (LD) body for the instruction.

Description Outputs the pattern of the pulse corresponding to the elapsed value of the HSC.

Data types

Operands

Example

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

716

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F165_CAM0 Can control Steps: 5

This instruction controls up to 8 cam control outputs (Y0 to Y7), corresponding to
the ON/OFF target value of each coil on the table, which is for the control of cam
position specified by s. The target value is within the range of 0 to 8388607 (i.e.
23 bits of data, 16#00000001 to 16#007FFFFF).

If you execute cam control, you have to specify the operating mode as addition
counter.

(If it is not addition counter, you will not be able to execute the control properly.)
The target value is 32 steps maximum with FP1-C16, 64 steps maximum with
FP1-C24/C40.

If you cancel hard reset, soft reset, and control maximum value you can set the
initial pattern at output, set the elapsed value to 0 and restart Cam control. You
can output the initial pattern at the start of control. However, you cannot clear the
elapsed value to 0.

PLC types: Availability of F165_CAM0 (see page 930)

Variable Data type Function
s_Control INT, WORD starting 16-bit area for storing control data

For Relay T/C Register Constant
s - - - - - - DT - - -

Description Converts ON/OFF of output specified in the table corresponding to the elapsed
value of HSC.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

717

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F166_HC1S Sets Output of High-Speed Counter (4
channels) Steps: 11

Target value (s)
10000

0

F166_start

PLC output (d)

Elapsed value of HSC

End of F166 control
(clear)

ON when matches target value

Special Relay (n)
R903A/B/C/D

If the high-speed counter is reset (reset input of HSC from 0 to 1, see system
register 400/401 in the project navigator) before the elapsed value has reached
the target value s, the elapsed value will be reset to zero. F166 remains active
and counting restarts at zero. The duplicate use of an external output relay in
other instructions (OUT, SET, RST, KEEP and other F instructions) is not verified
by FPWIN Pro and will not be detected. While the special relay(s) R903A/B/C/D
is/are in ON state no other high-speed counter instructions can be executed. FP0
and FP-Sigma provide 4 HSC channels. The channel number is specified by n (0
to 3).

n values for 0 1 2 3

Elapsed value
register

DDT90044 DDT90048 DDT90200 DDT90204

Target value
register

DDT90046 DDT90050 DDT90202 DDT90206

Used channel CH0 of
HSC0

CH1 of
HSC0

CH0 of
HSC1

CH1 of
HSC1

FP-Sigma

ON during
execution

R903A R903B R903C R903D

s values dec hex

2,147,483,468 16#80000000

... ...

FP-Sigma

-2,147,483,647 16#7FFFFFFF

Description If the trigger EN of the instruction F166 has the status TRUE, pulses at the high-
speed counter (HSC) will be counted. If the elapsed value of the HSC equals the
target value s, an interrupt will be executed and the output relay d of the PLC will
be set. In addition to this the special relay for the HSC n (R903A/B/C/D) will be
reset and F166 is deactivated.

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

718

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

d values value output
FP-X

0 to 671 Y0 to Y29F

PLC types: Availability of F166_HC1S (see page 930)

Variable Data type Function
n DINT, DWORD the channel no. of the high-speed counter that corresponds

to the matching output (n: 0 to 3)
For the FP-X: n: 16#0 to 16#B

s DINT, DWORD the high-speed counter target value data or the starting
address of the area that contains the data

d BOOL the output coil that is turned on when the values match (Yn,
n: 0 to 7)
For the FP-X: Yn, n: 0 to 29F

For Relay T/C Register Constant
n - - - - - - - - - dec. or hex.

s DWX DWY DWR - DSV DEV DDT - - -

d - Y - - - - - - - -

No. IEC address Set If
R9007 %MX0.900.7 ON

R9008 %MX0.900.8 ON

- if index is too high
- parameter s exceeds the valid range

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

GVL In the Global Variable List, you define variables that can be accessed by all
POUs in the project.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable F166_start is set to TRUE, the function is executed.

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

719

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

 Assign a number to the input variable (e.g. Monitor → Monitor Header, click the
variable, enter the value, press <Enter>) or replace the input variables by numbers.

LD

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

720

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F167_HC1R Resets Output of High-Speed Counter (4
channels) Steps: 11

Target value (s)
-200

0

F167_start

PLC output (d)

Elapsed value of HSC

End of F167 control
(clear)

OFF when matches target value

Special Relay (n)
R903A/B/C/D

If the high-speed counter is reset (reset input of HSC from 0 to 1, see system
register 400/401 in the project navigator) before the elapsed value has reached
the target value s, the elapsed value will be reset to zero. F167 remains active
and counting restarts at zero. The duplicate use of an external output relay d in
other instructions (OUT, SET, RST, KEEP and other F instructions) is not verified
by FPWIN Pro and will not be detected. While the special relay(s) R903A/B/C/D
is/are in ON state no other high-speed counter instructions can be executed. FP0
and FP-Sigma provide 4 HSC channels. The channel number is specified by n (0
to 3).

n values for 0 1 2 3

Elapsed value
register

DDT90044 DDT90048 DDT90200 DDT90204

Target value
register

DDT90046 DDT90050 DDT90202 DDT90206

Used channel CH0 of
HSC0

CH1 of
HSC0

CH0 of
HSC1

CH1 of
HSC1

FP-Sigma

ON during
execution

R903A R903B R903C R903D

s values dec hex

2,147,483,468 16#80000000

... ...

FP-Sigma

-2,147,483,647 16#7FFFFFFF

Description If the trigger EN of the instruction F167 has the status TRUE, pulses at the high-
speed counter (HSC) will be counted. If the elapsed value of the HSC equals the
target value s, an interrupt will be executed and the output relay d of the PLC will
be reset. In addition to this the special relay for the HSC n (R903A/B/C/D) will be
reset and F167 is deactivated.

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

721

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

d values value output
FP-X

0 to 671 Y0 to Y29F

PLC types: Availability of F167_HC1R (see page 930)

Variable Data type Function
n DINT, DWORD the channel no. of the high-speed counter that corresponds

to the matching output (n: 0 to 3)
For the FP-X: n: 16#0 to 16#B

s DINT, DWORD the high-speed counter target value data or the starting
address of the area that contains the data

d BOOL the output coil that is turned on when the values match (Yn,
n: 0 to 7)
For the FP-X: Yn, n: 0 to 29F

For Relay T/C Register Constant
n - - - - - - - - - dec. or hex.

s DWX DWY DWR - DSV DEV DDT - - -

d - Y - - - - - - - -

No. IEC address Set If
R9007 %MX0.900.7 ON

R9008 %MX0.900.8 ON

- if index is too high
- parameter s exceeds the valid range

 Identifier Address Type Initial Comment
0 out_0 %QX0.0 BOOL FALSE output Y0 of PLC

 Class Identifier Type Initial Comment
0 VAR_EXTERNAL out_0 BOOL FALSE output Y0 of PLC

1 VAR F167_start BOOL FALSE F167 start condition

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

GVL In the Global Variable List, you define variables that can be accessed by all
POUs in the project.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable F167_start is set to TRUE, the function is executed.

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

722

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

 Assign a number to the input variable (e.g. Monitor → Monitor Header, click the
variable, enter the value, press <Enter>) or replace the input variables by numbers.

LD

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

723

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F171_SPDH Pulse Output Instruction for Trapezoidal
Control and Home Return with Channel
Specification

Steps: 5

 • When using this instruction, set the HSC channels in system
registers 400 and 401 to "Unused".

• If you perform a rewrite during RUN when pulse output is taking
place, more pulses than the setting may be output.

• The high-speed counter control flag also changes during scanning.

PLC types: Availability of F171_SPDH (see page 930)

Variable Data type Function
s DUT Starting address of area containing the data table

n decimal constant Channel 0 or 2 for pulse output

For Relay T/C Register Constant
s - - - - - - DDT - - -

n - - - - - - - - - dec. or hex.

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- n is a value other than 0 or 2
- the data for the control code, Fmin, Fmax

(and the target value for trapezoidal control)
are outside the specification range

- Fmin > Fmax

Description This instruction outputs pulses from the specified channel (CH0 or CH2)
according to the specified parameters. You can use this instruction for:

 Trapezoidal control (see page 724)
 Home position return (see page 729)

Data types

Operands

Error flags

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

724

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Trapezoidal Control
Pulses are output from the specified channel (CH0 or CH2) when the corresponding control
flag turns off and the internal relay turns on. There are two different output methods to control
positioning: CW/CCW and pulse/direction. CW/CCW uses one pulse output to specify a
forward rotation and one pulse output to specify a reverse rotation. Pulse/direction uses one
pulse output to specify the speed and one pulse output to specify the direction of rotation with
on/off signals. Use the control code to set the pulse output method.

Channel
no.

Output Output method

 CW/CCW Pulse/direction
Y0 CW (clockwise) Pulse CH0
Y1 CCW (counter-

clockwise)
Direction

Y3 CW Pulse FP-Σ: CH2
FP-X: CH1 Y4 CCW Direction

The control code, initial speed, maximum speed, acceleration/deceleration time, and target
value are specified by creating a DUT (Data Unit Type) variable.

The frequency is changed using the specified acceleration/deceleration time from the initial
speed to the maximum speed. During deceleration (normally 30 steps), the frequency is
changed based on the same slope as during acceleration.

If the frequency is set to 50 kHz or more, specify a duty of 1/4 (25%).

Precautions
during Prog.

 When the control code (lower order) is 16#20 to 16#27, the home
input is enabled after near home input regardless of whether
deceleration has ended or is still in progress.

 When the control code (lower order) is 16#30 to 16#37, the home
input is only enabled following near home input after deceleration to
the initial speed has been completed.

 Even when home input has occurred, executing this instruction
causes pulse output to begin.

 If the near home input is enabled while acceleration is in progress,
deceleration begins.

 If both the normal program and the interrupt program contain code
for the same channel, make sure both are not executed
simultaneously.

 If the specified value for the deviation counter clear signal is outside
the specification range, it will be corrected to a value within the
range.

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

725

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Table of areas used

Channel
no.

Control flag Elapsed value area Target value area

CH0 R903A DDT90044 DDT90046 FP-Sigma

CH2 R903C DDT90200 DDT90202

CH0 R911C DDT90348 DDT90350 FP-X

CH1 R911D DDT90352 DDT90354

Operation modes

Incremental position control
Outputs the pulses set with the target value.

Selected
mode

Target
value

CW/CCW Pulse + direction
Forward off
Reverse on

Pulse + direction
Forward on
Reverse off

HSC counting
method

Positive Pulse output from
CW

Pulse output when direction
output is off

Pulse output when direction
output is on

Incremental

Negative Pulse output from
CCW

Pulse output when direction
output is on

Pulse output when direction
output is off

Decremental

Absolute position control
Outputs a number of pulses equal to the difference between the set target value and the
current value.

Selected
mode

Target
value

CW/CCW Pulse + direction
Forward off
Reverse on

Pulse + direction
Forward on
Reverse off

HSC counting
method

Target value
greater than
current value

Pulse output from
CW

Pulse output when direction
output is off

Pulse output when direction
output is on

Incremental

Target value
less than
current value

Pulse output from
CCW

Pulse output when direction
output is on

Pulse output when direction
output is off

Decremental

Precautions during programming
If both the regular program and the interrupt program contain code for the same channel,
make sure both are not executed simultaneously.

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

726

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Data Unit Type settings
f

t

t

Fmax

Fmin

t

Output pulse
number

Acceleration
time

Deceleration
time

DUT element 0: Control code (specify with a hex. constant)

Position control mode and output metho d

00: Incremental CW/CCW
02: Incremental pulse and direction (forward off/reverse on)
03: Incremental pulse and direction (forward on/reverse off)
10: Absolute CW/CCW
12: Absolute pulse and direction (forward off/reverse on)
13: Absolute pulse and direction (forward on/reverse off)

16#

0: Fixed

Duty (ON width)

0: Duty 1/2 (50%)
1: Duty 1/4 (25%)

Frequency rang e

0: 1.5 Hz to 9.8 kHz
1: 48 Hz to 100 kHz
2: 191 Hz to 100 kHz

Number of acceleration/deceleration steps

0: 30 steps
1: 60 steps (can only be specified for ve r. 2.0 or higher)

DUT element 1, 2: Frequency (Hz)
1.5 Hz to 9.8 kHz [1 to 9800 (units: Hz)]
(Maximum error near 9.8 kHz approximately -0.9 kHz)

48 Hz to 100 kHz [48 to 100000 (units: Hz)]
(Maximum error near 100 kHz approximately -3 kHz)

191 Hz to 100 kHz [191 to 100000 (units: Hz)]
(Maximum error near 100 kHz approximately -0.8 kHz)
The minimum frequency is 1.5 Hz. Therefore setting 1 will specify 1.5 Hz.

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

727

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Specify the initial frequency to 30 kHz or less.

DUT element 3: Acceleration/deceleration time (ms)
With 30 steps: K30 to K32767

With 60 steps: K36 to K32767

DUT element 4: Target value
-2147483648 to 2147483647 (16#80000000 to 16#7FFFFFFF)

The parameters defined in the DUT will be executed as illustrated below.

Example In this example the function F171_SPDH is programmed in ladder diagram (LD).

GVL In the Global Variable List, you define variables that can be accessed by all
POUs in the project.

DUT A Data Unit Type (DUT) can be composed of several data types. A DUT is first
defined in the DUT pool and then processed like the standard data types (BOOL,
INT, etc.) in the list of global variables or the POU header.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

728

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

300ms 300ms

7kHz

1kHz

t

f

Number of
output pulse
100,000

f = (7000 - 1000) / 30 steps = 200(Hz)
t = 300ms / 30 steps = 10ms

LD

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

729

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Home Position Return
Precautions During Programming (see page 724)

Pulses are output from the specified channel (CH0 or CH2) when the corresponding control
flag turns off and the internal relay turns on. There are two different output methods to control
positioning: CW/CCW and pulse/direction. CW/CCW uses one pulse output to specify a
forward rotation and one pulse output to specify a reverse rotation. Pulse/direction uses one
pulse output to specify the speed and one pulse output to specify the direction of rotation with
on/off signals. Use the control code to set the pulse output method.

Channel
no.

Output Output method

 CW/CCW Pulse/direction
Y0 CW (clockwise) Pulse

Y1 CCW (counter-
clockwise)

Direction
CH0

Y2 Deviation counter clear

Y3 CW Pulse

Y4 CCW Direction
FP-Σ: CH2
FP-X: CH1

Y5 Deviation counter clear

The control code, initial speed, maximum speed, acceleration/deceleration time, and deviation
counter reset output time are specified by creating a DUT (Data Unit Type) variable.

The frequency is changed using the specified acceleration/deceleration time from the initial
speed to the maximum speed. During deceleration (normally 30 steps), the frequency is
changed based on the same slope as during acceleration.

If the frequency is set to 50 kHz or more, specify a duty of 1/4 (25%).

Table of areas used

Channel
no.

Control
flag

Elapsed
value area

Target value
area

Near home Home
input

CH0 R903A DT90044, 90045 DT90046, 90047 DT90052 bit4 X2 FP-Sigma

CH2 R903C DT90200, 90201 DT90202, 90203 DT90052 bit4 X5

CH0 R911C DT90348,
DT90349

DT90350,
DT90351

DT90052 bit4 X2 FP-X

CH1 R911D DT90352,

DT90353
DT90354,
DT90355

DT90052 bit4 X5

Operation modes
Pulses are output continually until home input (X2 or X5) occurs. To decelerate at near home,
set the bit4 of special data register DT90052 to off → on → off when near home input occurs.
The value in the elapsed value area during a home position return differs from the current
value. When the return is completed, the elapsed value changes to 0.

There are two different operating modes:

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

730

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

• Type I Home Return
The home input is effective regardless of whether or not there is a near home input,
whether deceleration is taking place, or whether deceleration has been completed.

f

t

Fmax

Fmin

home input

• Type II Home Return
In this mode, the home input is effective only after deceleration (started by near home
input) has been completed.

f

t

near home input

Fmax

Fmin

home input

Example In this example the function F171_SPDH is programmed in ladder diagram (LD).

GVL In the Global Variable List you define variables that can be accessed by all POUs
in the project.

DUT A Data Unit Type (DUT) can be composed of several data types. A DUT is first
defined in the DUT pool and then processed like the standard data types (BOOL,
INT, etc.) in the list of global variables or the POU header.

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

731

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The parameters defined in the DUT will be executed as illustrated below.

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

732

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F172_PLSH Pulse output instruction with channel
specification (JOG operation) Steps: 5

Channel
no.

Output Output method

 CW/CCW Pulse/direction

Y0 CW (clockwise) Pulse CH0
Y1 CCW (counter-

clockwise)
Direction

Y3 CW Pulse FP-Σ: CH2
FP-X: CH1 Y4 CCW Direction

By specifying either incremental counting or decremental counting in the control
code, this instruction can be used as an instruction for JOG operations.

The frequency can be changed each time a scan is carried out. It cannot be
changed, however, when the control code is in the midst of executing an
instruction.

If the frequency is set to 50 kHz or more, specify a duty of 1/4 (25%).

Channel
no.

Control flag Elapsed value area Target value area

CH0 R903A DDT90044 DDT90046 FP-Sigma

CH2 R903C DDT90200 DDT90202

CH0 R911C DDT90348 DDT90350 FP-X

CH1 R911D DDT90352 DDT90354

• When using this instruction, set the HSC channels in system registers 400 and 401 to

"Unused".

• If a rewrite is executed during RUN while the system is operating, pulse output stops
while the program is being rewritten.

• If the same notation is being used for both the ordinary program and the interrupt
program, make sure they are not both executed at the same time.

• The high-speed counter control flag can be changed while a scan is in progress.

Description Pulses are output from the specified channel (CH0 or CH2) when the
corresponding control flag is off and the execution condition is on. There are two
different output methods to control positioning: CW/CCW and pulse/direction.
CW/CCW uses one pulse output to specify a forward rotation and one pulse
output to specify a reverse rotation. Pulse/direction uses one pulse output to
specify the speed and one pulse output to specify the direction of rotation with
on/off signals. Use the control code to set the pulse output method.

Table of
areas used

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

733

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

• If a value outside the specified range is written for the frequency area while the
instruction is being executed, the frequency that is output will be adjusted to either
minimum or maximum. An operation error occurs when execution of the instruction
starts.

DUT element 0: Control code (specify with a hex constant)

Duty (ON width)
0: Duty 1/2 (50%)
1: Duty 1/4 (25%)

Frequency rang e
0: 1.5 Hz to 9.8 kHz
1: 48 Hz to 100 kHz
2: 191 Hz to 100 kHz

Output method
00: No counting CW
01: No counting CCW
10: Incremental counting CW
12: Incremental counting Direction output off
13: Incremental counting Direction output on
21: Decremental counting CCW
22: Decremental counting Direction output off
23: Decremental counting Direction output on

0: Fixed

Target value settin g
0: Mode with no target value
1: Target value match stop mode
(can only be specified for ve r. 2.0 or higher)

16#

DUT element 1: Frequency (Hz)

1.5 Hz to 9.8 kHz [1 to 9800 (units: Hz)]
(Maximum error near 9.8 kHz approximately -0.9 kHz)

48 Hz to 100 kHz [48 to 100000 (units: Hz)]
(Maximum error near 100 kHz approximately -3 kHz)

191 Hz to 100 kHz [191 to 100000 (units: Hz)]
(Maximum error near 100 kHz approximately -0.8 kHz)
The minimum frequency is 1.5 Hz. Therefore setting 1 will specify 1.5 Hz.

DUT element 2: Target value (absolute value) - only V2.0 or higher

DUT Settings

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

734

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Designate the target value setting in the range indicated below. If an out of range
value is designated, the number of pulses output will be different than the
designated value. The target value setting is ignored in the no count mode (0 =
"Mode with no target value").

Output method Range of target values which can be designated
Incremental counting Designate a value larger than the current value.
Decremental counting Designate a value smaller than the current value.

PLC types: Availability of F172_PLSH (see page 930)

Variable Data type Function
s DUT Starting address of area containing the data table

n* decimal constant Channel 0 or 2 for pulse output

For Relay T/C Register Constant
s - - - - - - DDT - - -

n* - - - - - - - - - dec. or hex.

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- n is a value other than 0 or 2
- the data for the control code or frequency

are outside the specification range

Data types

Operands

Error flags

Example In this example the function F172_PLSH is programmed in ladder diagram (LD).

GVL In the Global Variable List, you define variables that can be accessed by all
POUs in the project.

DUT A Data Unit Type (DUT) can be composed of several data types. A DUT is first
defined in the DUT pool and then processed like the standard data types (BOOL,
INT, etc.) in the list of global variables or the POU header.

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

735

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

LD

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

736

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F173_PWMH Pulse output instruction with channel
specification (PWM output) Steps: 5

The data table shown below, indicating the frequency and duty, is created and
the values are specified by the user program.

The duty, particularly when it is close to the minimum or maximum value, may be
off from the specified ratio, depending on the load voltage and load current.

The duty can be changed for each separate scan. Control codes, however,
cannot be changed while an instruction is being executed.

Channel no. Output Output method

Ch0 Y0 R903A FP-Sigma
Ch2 Y3 R903C

Ch0 Y0 R911C FP-X
Ch1 Y3 R911D

• When using this instruction, set the HSC channels in system registers 400 and 401 to

"Unused".

• If a rewrite is executed during RUN while the system is operating, pulse output stops
while the program is being rewritten.

• If the same notation is being used for both the ordinary program and the interrupt
program, make sure they are not both executed at the same time.

• The high-speed counter control flag can be changed while a scan is in progress.

• If a value outside the specified range is written for the frequency area while the
instruction is being executed, the frequency that is output will be adjusted to either
minimum or maximum. An operation error occurs when execution of the instruction
starts.

 Data table settings
Offset 0 Control code (ARRAY of INT [0])

Offset 1 Duty (ARRAY of INT [1])

Description When the corresponding control flag is off and the execution condition is in the
on state, a PWM pulse is output from the specified channel (CH0 or CH2) is
obtained. The pulses are output while the execution condition is on.

Table of
areas used

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

737

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Offset 0: control code
Resolution of 1000

 Resolution of 100

Setting Frequency (Hz) Timing (ms)

Setting Frequency (Hz) Timing (ms)

0 1.5 666.7 20 15.6 k 0.06

1 2.0 502.5 21 20.8 k 0.05

2 4.1 245.7 22 25.0 k 0.04

3 6.1 163.9 23 31.3 k 0.03

4 8.1 122.9 24 41.7 k 0.02

5 9.8 102.4

6 19.5 51.2

7 48.8 20.5

8 97.7 10.2

9 201.6 5.0

10 403.2 2.5

11 500.0 2.0

12 694.4 1.4

13 1.0 k 1.0

14 1.3 k 0.8

15 1.6 k 0.6

16 2.1 k 0.5

17 3.1 k 0.3

18 6.3 k 0.2

19 12.5 k 0.1

Offset 1: duty
If the control code is 0 to 19, the duty is 0 to 999 (0.0% to 99.9%).
If the control code is 20 to 24, the duty is 0 to 990 (0% to 99%).
Values are specified in units of 1% (10). Digits below the decimal point are rounded off.

PLC types: Availability of F173_PWMH (see page 930)

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

738

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Variable Data type Function
s ARRAY [0..1] of

INT or WORD
Contains settings for the control code and duty

n decimal constant Channel 0 or 2 that corresponds to the pulse

For Relay T/C Register Constant

s - - - - - - DT - - -

n - - - - - - - - - dec. or hex.

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- n is a value other than 0 or 2
- the value set for frequency is outside the

specified range
- a value higher than 100% is specified for the

duty

Data types

Operands

Error flags

Example In this example the function F173_PWMH is programmed in ladder diagram (LD).

GVL In the Global Variable List, you define variables that can be accessed by all
POUs in the project.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

739

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F174_SP0H Pulse output instruction, table control with
channel specification Steps: 5

The pulse output control mode is selected by settings in the contents of the 32-bit
areas specified by s, which includes:

The pulse output operation starts at the first frequency specified by the contents
of offset 2 when the trigger turns on.

When the elapsed value of the high-speed counter agrees with the target value,
specified by the contents of offset 4, the output pulse frequency changes from
the initial output pulse frequency to the next output pulse frequency.

Then the PLC executes the next (nth) pulse output specified by the nth frequency
of offset 2+(offset n-1)*4 and the nth target value at offset 4+(offset n-1)*4, and
so on.

When the frequency 0 is specified, this is regarded as the final frequency and the
pulse output operation stops.

• When using this instruction, set the HSC channels in system registers 400

and 401 to "Unused".

• If you perform a rewrite during RUN when pulse output is taking place, more
pulses than the setting may be output.

• The high-speed counter control flag also changes during scanning.

PLC types: Availability of F174_SP0H (see page 930)

Variable Data type Function
s DUT Starting address of area containing the data table

n decimal constant Channel 0 or 2 for pulse output

Description This instruction outputs pulses from the specified channel (0 or 2) according to
the specified parameters.

 the control code
 frequencies
 target values

Data types

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

740

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s - - - - - - DDT - - -

n - - - - - - - - - dec. or hex.

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- n is a value other than 0 or 2
- the data for the control code or frequency 1

are outside the setting range

Output method Channel no.

Output
 CW/CCW Pulse/direction

Y0 CW (clockwise) Pulse CH0
Y1 CCW (counter-

clockwise)
Direction

Y3 CW Pulse FP-Σ: CH2
FP-X: CH1 Y4 CCW Direction

The control code, frequencies, and target values are specified by creating a DUT
(Data Unit Type) variable.

If the frequency is set to 50 kHz or more, specify a duty of 1/4 (25%).

Channel no. Control flag Elapsed value area Target value area

CH0 R903A DDT90044 DDT90046 FP-Sigma

CH2 R903C DDT90200 DDT90202

CH0 R911C DDT90348 DDT90350 FP-X

CH1 R911D DDT90352 DDT90354

 Operation modes

Operands

Error flags

Table
shaped
control

There are two different output methods to control positioning: CW/CCW and
pulse/direction. CW/CCW uses one pulse output to specify a forward rotation and
one pulse output to specify a reverse rotation. Pulse/direction uses one pulse
output to specify the speed and one pulse output to specify the direction of
rotation with on/off signals. Use the control code to set the pulse output method.

Table of
areas used

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

741

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Incremental position control
Outputs the pulses set with the target value.

Mode 0 1 2 3 4 5 Counter
CW CCW Pulse + direction Target

CH0

CH2

 forward
OFF

reverse
ON

forward
ON

reverse OFF

Positive Y0
Y1

Y3
Y4

pulses
OFF

OFF
pulses

pulses
OFF

pulses
ON

pulses
ON

pulses
OFF

Incremental

Negative Y0
Y1

Y3
Y4

OFF
pulses

pulses
OFF

pulses
ON

pulses
OFF

pulses
OFF

pulses
ON

Decremental

Absolute position control
Outputs a number of pulses equal to the difference between the set target value and the
current value.

Mode 0 1 2 3 4 5 Counter
CW CCW Pulse + direction Target

value
CH0 CH2

 forward
OFF

reverse
ON

forward
ON

reverse
OFF

> current
value

Y0
Y1

Y3
Y4

pulses
OFF

OFF
pulses

pulses
OFF

pulses
ON

pulses
ON

pulses
OFF

Incremental

< current
value

Y0
Y1

Y3
Y4

OFF
pulses

pulses
OFF

pulses
ON

pulses
OFF

pulses
OFF

pulses
ON

Decremental

Precautions during programming
• The high-speed counter control flag R903A (R903C) is on from the time that the

execution condition for the F174_SP0H instruction has gone on until the pulse output
stops.

• During the time that the high-speed counter control flag R903A (R903C) is on, the
high-speed counter and pulse output instructions F166 to F174 which use the same
control flag, cannot be executed.

• An operation error occurs if a value that is not within the allowable range is specified
for the control code or for frequency 1. (If the data for frequency 1 is 0, the operation is
terminated without anything being executed.)

• Pulse output is stopped if the frequency of the second or a subsequent stage is
specified as 0 or as a value outside the allowable range.

• If the table pointer exceeds the data register DT area during pulse output, pulse output
control stops and the high-speed counter control flag R903A (R903C) goes off.

• When the F174_SP0H instruction is executed, the channel CH0 target value areas
(DT90046 and DT90047) and the CH2 target value areas (DT90202 and DT90203)
are not used.

• Always make sure that the target values are specified within the ranges indicated on
the following page. If a value outside the allowable range is specified, the number of
pulses output will be different from the specified value.

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

742

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

• If a periodic interrupt or high-speed counter value interrupt program is run, or the PLC
link function is used at the same time, a frequency of 80 kHz or less should be used.

Data Unit Type settings

Overview of the settings for the data table

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

743

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

DUT element 0: Control code (specify with a hex. constant)

DUT element 1, 3, 5, 7, etc.: Frequency (Hz)
1.5 Hz to 9.8 kHz [1 to 9800 (units: Hz)]
The minimum frequency is 1.5 Hz. Therefore setting 1 will specify 1.5 Hz.

48 Hz to 80 kHz [48 to 80000 (units: Hz)]
(Maximum error near 80 kHz approximately -2 kHz)

191 Hz to 80 kHz [191 to 100000 (units: Hz)]
(Maximum error near 80 kHz approximately -0.5 kHz)

DUT element 2, 4, 6, 8, etc.: Target value
-2147483648 to 2147483647 (16#80000000 to 16#7FFFFFFF)

Incremental: Specify move value (pulse):
positive value when counter increases
negative value when counter decreases

Absolute: Specify target value

Final DUT element: End of Table
Set 0 at the final address of the DUT to stop pulse output.

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

744

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

 Class Identifier Type Initial Comment

0 VAR_EXTERN
AL

MotorSwitch BOOL FALSE

1 VAR DataTable1 F174_D
UT

ControlCode := 16#1200,
Frequency1 := 800,
TargetValue1 := 1000,
Frequency2 := 1460,
TargetValue2:= 3000,
Frequency3 := 800
TargetValue3 := 4000

Control Code:
1=Duty 25%
2=Range 101Hz to
80kHz
0=Incremental
0=CW(counter
increases)

Example In this example the function F174_SP0H is programmed in ladder diagram (LD).

GVL In the Global Variable List, you define variables that can be accessed by all
POUs in the project.

DUT A Data Unit Type (DUT) can be composed of several data types. A DUT is first
defined in the DUT pool and then processed like the standard data types (BOOL,
INT, etc.) in the list of global variables or the POU header.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The parameters defined in the DUT will be executed as illustrated in the following
time chart:

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

745

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

746

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F175_SPSH_LINEAR Pulse output (Linear interpolation) Steps: 5

Precautions during programming (see page 747)

Pulses are output from channel CH0 and CH2, in accordance with the
parameters specified in the DUT PULSE_LINEAR, so that the path to the target
position forms a straight line. The DUT is predefined in the FP Library.

Pulses are output from channel CH0 (X-axis) and CH2 (Y-axis) when the
corresponding control flag is off and the execution conditions are on. There are
two different output methods to control positioning: CW/CCW and pulse/direction.
CW/CCW uses one pulse output to specify a forward rotation and one pulse
output to specify a reverse rotation. Pulse/direction uses one pulse output to
specify the speed and one pulse output to specify the direction of rotation with
on/off signals. Use the control code to set the pulse output method.

Channel no. Output Output method

 CW/CCW Pulse/direction
Y0 CW (clockwise) Pulse CH0 (for X-axis)
Y1 CCW (counter-

clockwise)
Direction

Y3 CW Pulse FP-Σ: CH2
FP-X: CH1
(for Y-axis)

Y4 CCW Direction

 • When using this instruction, set the HSC channels in system
registers 400 and 401 to "Unused".

• If you perform a rewrite during RUN when pulse output is taking
place, more pulses than the setting may be output.

PLC types: Availability of F175_SPSH_LINEAR (see page 930)

Variable Data type Function
s PULSE_LINEAR

(DUT)
Contains all data for the instruction to be executed.

n* Constant Must always be zero.

Description

Data types

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

747

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s - - - - - - DDT - - -

n* - - - - - - - - - dec. or hex

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- "n" is anything other than 0.
- the DUT data is outside the specification

range.
- the initial speed 'InitialSpeed' (offset 2, 3) >

maximum speed 'MaximumSpeed' (offset 4,
5)

- the maximum speed 'MaximumSpeed' (offset
4, 5) > 100kHz

Channel no. Control flag Elapsed value area Target value area

CH0 R903A DDT90044 DDT90046 FP-
Sigma CH2 R903C DDT90200 DDT90202

CH0 R911C DDT90348 DDT90350 FP-X

CH1 R911D DDT90352 DDT90354

26.1.3 Precautions during programming

• The execution conditions for this instruction must be set permanently. When the

execution conditions are off, pulse output stops.

• Designate settings for the target value or movement distance so they are within the
following range:
-8,388,608 to +8,388,607

• When using in combination with other positioning instructions like F171_SPDH (see
page 723), the target value in these instructions must also be within the above range.

• With this instruction, the component speed is calculated once per scan, and
movement is done in an arc shape while performing correction. As the execution
conditions must always be set, use in combination with a constant scan or periodical
interrupt program.

• The constant scan time or the periodical interrupt should be 10 to 20 times the cycle of
the specified frequency.

Operands

Error flags

Table of
areas used

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

748

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

If you specify a frequency of 5 kHz (0.2ms cycle), then the set time should be 2ms to
4ms.

When the scan time is shorter than ten times the cycle, we recommend using the
constant scan function. When it is longer, we recommend using the periodical
interrupt function.

If both the regular program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

If you make the current position equal the target value when specifying the center
position setting method, a circle drawing operation will result.

When using in application requiring precision, check the actual machine.

Example In this example the function F175_SPSH_LINEAR is programmed in ladder
diagram (LD).

DUT The following DUT PULSE_LINEAR is predefined in the library "System Lib".

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

749

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

750

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F176_SPCH_CENTER Pulse output (Arc interpolation) Steps: 5

Precautions during programming (see page 747)

Pulses are output from the channel CH0 (X-axis) and CH2 (Y-axis) when the
corresponding control flag turns off and the execution condition (trigger) turns on.
There are two different output methods to control positioning: CW/CCW and
pulse/direction. CW/CCW uses one pulse output to specify a forward rotation and
one pulse output to specify a reverse rotation. Pulse/direction uses one pulse
output to specify the speed and one pulse output to specify the direction of
rotation with on/off signals. Use the control code to set the pulse output method.

Channel no. Output Output method

 CW/CCW Pulse/direction
Y0 CW (clockwise) Pulse CH0 (for X-axis)
Y1 CCW (counter-

clockwise)
Direction

Y3 CW Pulse CH2 (for Y-axis)
Y4 CCW Direction

 • When using this instruction, set the HSC channels in system registers 400
and 401 to "Unused".

• If you perform a rewrite during RUN when pulse output is taking place,
more pulses than the setting may be output.

• Bit number 8 of the control code specifies the method used. Using
PULSE_ARC_CENTER this bit is set automatically by the compiler.

PLC types: Availability of F176_SPCH_CENTER (see page 930)

Variable Data type Function
s DUT

PULSE_ARC_CE
NTER (see page
751)

Contains all data for the instruction to be executed.

n* Constant Must always be "0".

Description

Pulses are output from channel CH0 and CH2, in accordance with the
parameters specified in the DUT PULSE_ARC_CENTER (see page 751), so that
the path to the target position forms an arc. Both DUTs are predefined in the
library "System Lib".

Data types

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

751

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s - - - - - - DDT - - -

n* - - - - - - - - - dec. or hex.

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- "n" is anything other than 0.
- the DUT data is outside the specification

range.
- incremental mode is designated and the value

of "current value + movement distance" is
outside the range -8388608 to +8388607.

- absolute mode is designated and the target
value is outside the range -8388608 to
+8388607.

- Center position O = Target position E
- Center position O = Current position S

Channel
no.

Control
flag

Elapsed value
area

Target value area

CH0 R903A DT90044, DT90045 DT90046, DT90047

CH2 R903C DT90200, DT90201 DT90202, DT90203

Setting area

Offset Name of
DUT
element

Meaning Units Range

0
1

ControlCode Control code (see
page 752)

Hz

2
3

Speed Composite speed
(Frequency) Fv

Hz 100 Hz to 20 kHz
[100 to 20000]

4
5

TargetPos_X X-axis (CH0)
Target position

pulses -8388608 to 8388607

6
7

TargetPos_Y Y-axis (CH2)
Target position

pulses -8388608 to 8388607

8
9

CenterPos_X X-axis (CH0)
Center position

pulses -8388608 to 8388607

10
11

CenterPos_Y Y-axis (CH2)
Center position

pulses -8388608 to 8388607

Operation result storage area
12
13

Radius Radius pulses

Operands

Error flags

Table of
areas used

DUT
PULSE_ARC
_CENTER

This DUT specifies the control code, composite speed, target position and center
position.

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

752

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

 Control code of PULSE_ARC_CENTER (PASS)

 Control code explanations

Bit 16: Operation connection mode

Stop:
When stop (0) is specified, pulse output will stop when the target position is
reached.

Continue:

When continue (1) is specified after arc interpolation action begins, the arc
interpolation data table is overwritten. The following arc interpolation begins
when the first arc interpolation that was started up finishes (target position
reached). To finish, specify stop (0) for this flag (operation connection mode)
after the last arc interpolation action has started.

Bit 8: Rotation direction

Pulses are output according to the designated direction. Operation differs, as
indicated below, depending on the pass position and rotation direction setting.

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

753

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

P

S

E

P

S

E

Clockwise direction
(Right rotation)

S: Current position P: Pass position E: Target position

Counterclockwise direction
(Left rotation)

Operation due to calculation result

Bit 4: Arc (Circular shape) method

Pass position setting method:

The center position and the radius of the arc are calculated by specifying the
pass and target positions for the current position.

Center position setting method:
The radius of the arc is calculated by specifying the center and target positions
for the current position.

Let CH0 be the X–axis, and CH2 be the Y–axis.

Counterclockwise direction
(Left rotation)

Clockwise direction
(Right rotation)

Pass position P (Xp, Yp)

Target position E (Xe, Ye)

X (CH0)

|Y Yo |
r

|X |
r

O (Xo, Yo): Center point (Center position)
S (Xs, Ys): Start point (Current position)
P (Xp, Yp): Pass point (Pass position)
E (Xe, Ye): End point (Target position)

Fx= Fv sin = =yFvF Fv cos = Fv

Fv: Composite speed
Fx: X–axis component speed
Fy: Y–axis component speed
r: Radius

Current position S (Xs, Ys)

Fy Fv

Center position O
(Xo, Yo)

Fx

r

Y (CH2)

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

754

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example the function F176_SPCH_CENTER is programmed in ladder
diagram (LD).

DUT The following DUT PULSE_ARC_CENTER is predefined in the library "System
Lib".

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

LD

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

755

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F176_SPCH_PASS Pulse output (Arc interpolation) Steps:

Precautions during programming (see page 747)

Pulses are output from the channel CH0 (X-axis) and CH2 (Y-axis) when the
corresponding control flag turns off and the execution condition (trigger) turns on.
There are two different output methods to control positioning: CW/CCW and
pulse/direction. CW/CCW uses one pulse output to specify a forward rotation and
one pulse output to specify a reverse rotation. Pulse/direction uses one pulse
output to specify the speed and one pulse output to specify the direction of
rotation with on/off signals. Use the control code to set the pulse output method.

Channel no. Output Output method

 CW/CCW Pulse/direction
Y0 CW (clockwise) Pulse CH0 (for X-axis)
Y1 CCW (counter-

clockwise)
Direction

Y3 CW Pulse CH2 (for Y-axis)
Y4 CCW Direction

 • When using this instruction, set the HSC channels in system
registers 400 and 401 to "Unused".

• If you perform a rewrite during RUN when pulse output is taking
place, more pulses than the setting may be output.

• Bit number 8 of the control code specifies the method used. Using
PULSE_ARC_PASS (see page 756) this bit is reset automatically by
the compiler.

PLC types: Availability of F176_SPCH_PASS (see page 930)

Variable Data type Function
s DUT

PULSE_ARC_P
ASS (see page
756)

Contains all data for the instruction to be executed.

n* Constant Must always be "0".

Description

Pulses are output from channel CH0 and CH2, in accordance with the
parameters specified in the DUT PULSE_ARC_PASS (see page 756), so that
the path to the target position forms an arc. Both DUTs are predefined in the
library "System Lib".

Data types

High Speed Counter and Pulse Output Instructions

FPWIN Pro Programming

756

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
s - - - - - - DDT - - -

n* - - - - - - - - - dec. or hex

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- "n" is anything other than 0.
- the DUT data is outside the specification

range.
- incremental mode is designated and the

value of "current value + movement distance"
is outside the range -8388608 to +8388607.

- absolute mode is designated and the target
value is outside the range -8388608 to
+8388607.

- Current position S ≈ Target position E
- Current position S ≈ Pass position P
- Pass position P ≈ Target position E
- Current position S, Pass position P and

Target position E approximate a straight line.

Setting area

Offset Name of DUT
element

Meaning Units Range

0
1

ControlCode Control code (see
page 752)

Hz

2
3

Speed Composite speed
(Frequency) Fv

Hz 100 Hz to 20 kHz
[100 to 20000]

4
5

TargetPos_X X-axis (CH0)
Target position

pulses -8388608 to 8388607

6
7

TargetPos_Y Y-axis (CH2)
Target position

pulses -8388608 to 8388607

8
9

PassPos_X X-axis (CH0)
Pass position

pulses -8388608 to 8388607

10
11

PassPos_Y Y-axis (CH2)
Pass position

pulses -8388608 to 8388607

Operation result storage area
12
13

Radius Radius pulses

14
15

CenterPos_X X-axis (CH0)
Center position

pulses

16
17

CenterPos_Y Y-axis (CH2)
Center position

pulses

For more detailed information, please refer to the control code explanations (see
page 752)

Operands

Error flags

DUT
PULSE_ARC
_PASS

The DUT PULSE_ARC_PASS (see page 756) specifies the control code,
composite speed, target position and pass position.

FPWIN Pro Programming

High Speed Counter and Pulse Output Instructions

757

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Example In this example the function F176_SPCH_PASS is programmed in ladder
diagram (LD).

DUT The following DUT PULSE_ARC_PASS is predefined in the library "System Lib".

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

LD

Chapter 27
 Timer Instructions

Timer Instructions

FPWIN Pro Programming

760

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

TM_1ms_FB Timer for 1ms intervals (0 to 32.767s) Steps: 3-4

For the TM_1ms_FB function block declare the following:
start start contact

each time a rising edge is detected, the set value SV is copied to the elapsed
value EV and the timer is started

SV set value
the defined ON-delay time (0 to 32.767s)

T timer contact
is set when the time defined at SV has elapsed, this means when EV
becomes 0

EV elapsed value
count value from which 1 is subtracted every 0.001s while the timer is running

Time
Chart:

 • The number of available timers is limited and depends on the settings
in the system registers 5 and 6.

• The system timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s)
use the same NUM* address area as the system timer function blocks
(TM_1s_FB, TM_100ms_FB, TM_10ms_FB, and TM_1s_FB). For the
timer function blocks the compiler automatically assigns a NUM*
address to every timer instance. The addresses are assigned counting
downwards, starting at the highest possible address. In order to avoid
errors (address conflicts), these timer functions and function blocks
should not be used together in a project.

PLC types: Availability of TM_1ms_FB (see page 935)

Description This timer for 0.001s units works as an ON-delay timer. If the start contact of the
function block is in the ON state, the preset time SV (set value) is started. When
this time has elapsed, the timer contact T turns ON.

FPWIN Pro Programming

Timer Instructions

761

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Variable Data type Function
start BOOL start contact

SV INT, WORD set value

T BOOL timer contact

EV INT, WORD elapsed value

For Relay T/C Register Constant
start X Y R L T C - - - -

T - Y R L - - - - - -

SV, EV - WY WR WL SV EV DT LD FL -

This example uses variables. You may also use constants for the input variables.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are used for programming the function block
TM_1ms_FB are declared in the POU header. This also includes the function
block (FB) itself. By declaring the FB you create a copy of the original FB. This
copy is saved under Alarm_Control, and a separate data area is reserved.

Body As soon the variable Start_contact becomes TRUE, the timer Alarm_control
will be started. The variable EV of the timer is set to the value of SV. As long as
Start_contact is TRUE, the value 1 is subtracted from EV every 1ms. When EV
reaches the value 0 (after 1 second as SV = 1000 with the timer type
TM_1ms_FB), the variable Alarm_Relay_2 becomes TRUE.
As soon as the value of the variable EV of the timer is smaller than or equal to
500 (after 0.5s) and EV is unequal 0, Alarm_Relay_1 is set to TRUE.

LD

Timer Instructions

FPWIN Pro Programming

762

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ST Alarm_Control(start:= Start_Contact ,
 SV:= 1000,
 T=> Alarm_Relay_2 ,
 EV=> Alarm_Control.EV);
(*The ON-delay time is 1000ms*)
Alarm_Relay_1:= Alarm_Control.EV <= 500 & Alarm_Control.EV
<> 0;
(*Alarm_Relay_1 is set to TRUE after 500ms*)

FPWIN Pro Programming

Timer Instructions

763

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

TM_10ms_FB Timer for 10ms intervals (0 to 327.67s) Steps: 3-4

For the TM_10ms_FB function block declare the following:
start start contact

each time a rising edge is detected, the set value SV is copied to the elapsed
value EV and the timer is started

SV set value
the defined ON-delay time (0 to 327.67s)

T timer contact
is set when the time defined at SV has elapsed, this means when EV becomes
0

EV elapsed value
count value from which 1 is subtracted every 0.01s while the timer is running

Time
Chart:

 • The number of available timers is limited and depends on the settings
in the system registers 5 and 6.

• The system timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s)
use the same NUM* address area as the system timer function blocks
(TM_1s_FB, TM_100ms_FB, TM_10ms_FB, and TM_1s_FB). For the
timer function blocks the compiler automatically assigns a NUM*
address to every timer instance. The addresses are assigned counting
downwards, starting at the highest possible address. In order to avoid
errors (address conflicts), these timer functions and function blocks
should not be used together in a project.

PLC types: Availability of TM_10ms_FB (see page 936)

Description This timer for 0.01s units works as an ON-delay timer. If the start contact of the
function block is in the ON state, the preset time SV (set value) is started. When
this time has elapsed, the timer contact T turns ON.

Timer Instructions

FPWIN Pro Programming

764

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Variable Data type Function
start BOOL start contact

SV INT, WORD set value

T BOOL timer contact

EV INT, WORD elapsed value

For Relay T/C Register Constant
start X Y R L T C - - - -

T - Y R L - - - - - -

SV, EV - WY WR WL SV EV DT LD FL -

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Data types

Operands

Example

POU
Header

All input and output variables which are used for programming the function block
TM_10ms_FB are declared in the POU header. This also includes the function
block (FB) itself. By declaring the FB you create a copy of the original FB. This
copy is saved under Alarm_Control, and a separate data area is reserved.

This example uses variables. You may also use constants for the input variables.

Body As soon the variable Start_contact becomes TRUE, the timer Alarm_control
will be started. The variable EV of the timer is set to the value of SV. As long as
Start_contact is TRUE, the value 1 is subtracted from EV every 10ms. When EV
reaches the value 0 (after 10 second as SV = 1000 with the timer type
TM_10ms_FB), the variable Alarm_Relay_2 becomes TRUE.
As soon as the value of the variable EV of the timer is smaller than or equal to
500 (after 5s) and EV is unequal 0, Alarm_Relay_1 is set to TRUE.

FPWIN Pro Programming

Timer Instructions

765

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST Alarm_Control(start:= Start_Contact ,
 SV:= 1000,
 T=> Alarm_Relay_2 ,
 EV=> Alarm_Control.EV);
(*The ON-delay time is 10s*)

Alarm_Relay_1:= Alarm_Control.EV <= 500 & Alarm_Control.EV
<> 0;
(*Alarm_Relay_1 is set to TRUE after 5s*)

Timer Instructions

FPWIN Pro Programming

766

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

TM_100ms_FB Timer for 100ms intervals (0 to 3276.7s) Steps: 3-4

For the TM_100ms_FB function block declare the following:
start start contact

each time a rising edge is detected, the set value SV is copied to the elapsed
value EV and the timer is started

SV set value
the defined ON-delay time (0 to 3276.7s)

T timer contact
is set when the time defined at SV has elapsed, this means when EV becomes
0

EV elapsed value
count value from which 1 is subtracted every 0.1s while the timer is running

Time
Chart:

 • The number of available timers is limited and depends on the settings
in the system registers 5 and 6.

• The system timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s)
use the same NUM* address area as the system timer function blocks
(TM_1s_FB, TM_100ms_FB, TM_10ms_FB, and TM_1s_FB). For the
timer function blocks the compiler automatically assigns a NUM*
address to every timer instance. The addresses are assigned counting
downwards, starting at the highest possible address. In order to avoid
errors (address conflicts), these timer functions and function blocks
should not be used together in a project.

PLC types: Availability of TM_100ms_FB (see page 936)

Description This timer for 0.1s units works as an ON-delay timer. If the start contact of the
function block is in the ON state, the preset time SV (set value) is started. When
this time has elapsed, the timer contact T turns ON.

FPWIN Pro Programming

Timer Instructions

767

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Variable Data type Function
start BOOL start contact

SV INT, WORD set value

T BOOL timer contact

EV INT, WORD elapsed value

For Relay T/C Register Constant
start X Y R L T C - - - -

T - Y R L - - - - - -

SV, EV - WY WR WL SV EV DT LD FL -

This example uses variables. You may also use constants for the input variables.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are used for programming the function block
TM_100ms_FB are declared in the POU header. This also includes the function
block (FB) itself. By declaring the FB you create a copy of the original FB. This
copy is saved under Alarm_Control, and a separate data area is reserved.

Body As soon the variable Start_contact becomes TRUE, the timer Alarm_control
will be started. The variable EV of the timer is set to the value of SV. As long as
Start_contact is TRUE, the value 1 is subtracted from EV every 100ms. When
EV reaches the value 0 (after 10 seconds as SV = 100 with the timer type
TM_100ms_FB), the variable Alarm_Relay_2 becomes TRUE.
As soon as the value of the variable EV of the timer is smaller than or equal to 50
(after 5s) and EV is unequal 0, Alarm_Relay_1 is set to TRUE.

Timer Instructions

FPWIN Pro Programming

768

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST Alarm_Control(start:= Start_Contact ,
 SV:= 100,
 T=> Alarm_Relay_2 ,
 EV=> Alarm_Control.EV);
(*The ON-delay time is 10s*)
Alarm_Relay_1:= Alarm_Control.EV <= 50 & Alarm_Control.EV <>
0;

(*Alarm_Relay_1 is set to TRUE after 5s*)

FPWIN Pro Programming

Timer Instructions

769

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

TM_1s_FB Timer for 1s intervals (0 to 32767s) Steps: 4-5

For the TM_1s_FB function block declare the following:
start start contact

each time a rising edge is detected, the set value SV is copied to the elapsed
value EV and the timer is started

SV set value
the defined ON-delay time (0 to 32767s)

T timer contact
is set when the time defined at SV has elapsed, this means when EV becomes
0

EV elapsed value
count value from which 1 is subtracted every 1s while the timer is running

Time
Chart:

 • The number of available timers is limited and depends on the settings
in the system registers 5 and 6.

• The system timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s)
use the same NUM* address area as the system timer function blocks
(TM_1s_FB, TM_100ms_FB, TM_10ms_FB, and TM_1s_FB). For the
timer function blocks the compiler automatically assigns a NUM*
address to every timer instance. The addresses are assigned counting
downwards, starting at the highest possible address. In order to avoid
errors (address conflicts), these timer functions and function blocks
should not be used together in a project.

PLC types: Availability of TM_1s_FB (see page 935)

Description This timer for 1s units works as an ON-delay timer. If the start contact of the
function block is in the ON state, the preset time SV (set value) is started. When
this time has elapsed, the timer contact T turns ON.

Timer Instructions

FPWIN Pro Programming

770

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Variable Data type Function
start BOOL start contact

SV INT, WORD set value

T BOOL timer contact

EV INT, WORD elapsed value

For Relay T/C Register Constant
start X Y R L T C - - - -

T - Y R L - - - - - -

SV, EV - WY WR WL SV EV DT LD FL -

This example uses variables. You may also use constants for the input variables.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

All input and output variables which are used for programming the function block
TM_1s_FB are declared in the POU header. This also includes the function block
(FB) itself. By declaring the FB you create a copy of the original FB. This copy is
saved under Alarm_Control, and a separate data area is reserved.

Body As soon the variable Start_contact becomes TRUE, the timer Alarm_control
will be started. The variable EV of the timer is set to the value of SV. As long as
Start_contact is TRUE, the value 1 is subtracted from EV every 1s. When EV
reaches the value 0 (after 10 seconds as SV = 10 with the timer type
TM_1s_FB), the variable Alarm_Relay_2 becomes TRUE.
As soon as the value of the variable EV of the timer is smaller than or equal to 5
(after 5s) and EV is unequal 0, Alarm_Relay_1 is set to TRUE.

FPWIN Pro Programming

Timer Instructions

771

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LD

ST Alarm_Control(start:= Start_Contact ,
 SV:= 10,
 T=> Alarm_Relay_2 ,
 EV=> Alarm_Control.EV);
(*The ON-delay time is 10s*)
Alarm_Relay_1:= Alarm_Control.EV <= 5 & Alarm_Control.EV <>
0;
(*Alarm_Relay_1 is set to TRUE after 5s*)

Timer Instructions

FPWIN Pro Programming

772

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

TM_1ms Timer for 1ms intervals (0 to 32.767s) Steps: 3-4

The areas used for the instruction are:

When the mode is set to RUN mode, the Preset (Set) value is transferred to the
SV. If the trigger of the timer instruction start is in the ON-state, the Preset (Set)
value is transferred to the EV from the SV.

During the timing operation, the time is subtracted from the EV.

The scan time is also subtracted from the EV in the next scan.

The timer contact T turns ON, when the EV becomes 0.

Calculation of the timing operation:

timing operation = time set value - 0 to 1/2 of units (0.5ms) + scan time

Example:

150ms time set value and 8ms PLC scan time

Upper limit = 150 - 0 + 8 = 158ms
Lower limit = 150 -0.5 +8 = 157.5ms

The result is a timing operation from 157.5ms to 158ms.

PLC types: Availability of TM_1ms (see page 935)

Variable Data type Function
start BOOL starts timer

Num* INT, WORD timer contact

SV INT, WORD timer address in system registers 5 and 6

T BOOL set value

Description The TM_1ms instruction sets the ON-delay timer for 0.001s units (0 to 32.767s).

 Preset (Set) value area: SV
 Count (Elapsed) value area: EV

Data types

FPWIN Pro Programming

Timer Instructions

773

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
start X Y R L T C - - - -

T - Y R L - - - - - -

Num* - - - - - - - - - dec. or hex.

SV - - - - SV - - - - dec. or hex.

 • It is not possible to use this function in a function block POU.

• For correct results, timer functions and timer function blocks
must be executed exactly one time in each scan. Thus it is not
allowed to use timer function or timer function blocks in
interrupt programs or in loops.

• Every used timer must have a separate constant Num*.
Available Num* addresses depend on system registers 5 and
6.
Timer of type TM_1s, TM_100ms, TM_10ms, TM_1ms use the
same Num* address range.

• The system timer functions (TM_1s, TM_100ms, TM_10ms,
and TM_1s) use the same NUM* address area as the system
timer function blocks (TM_1s_FB, TM_100ms_FB,
TM_10ms_FB, and TM_1s_FB). For the timer function blocks
the compiler automatically assigns a NUM* address to every
timer instance. The addresses are assigned counting
downwards, starting at the highest possible address. In order
to avoid errors (address conflicts), these timer functions and
function blocks should not be used together in a project.

• This function does not require a variable at the output "T".

Please refer to the example of TM_1ms_FB (see page 760).

Operands

Example

Timer Instructions

FPWIN Pro Programming

774

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

TM_10ms Timer for 10ms intervals (0 to 327.67s) Steps: 3-4

The areas used for the instruction are:

When the mode is set to RUN mode, the Preset (Set) value is transferred to the
SV. If the trigger of the timer instruction start is in the ON-state, the Preset (Set)
value is transferred to the EV from the SV.

During the timing operation, the time is subtracted from the EV.

The scan time is also subtracted from the EV in the next scan.

The timer contact T turns ON, when the EV becomes 0.

Calculation of the timing operation:

timing operation = time set value - 0 to 1/4 of units (2.5ms) + scan time

Example:

150ms time set value and 8ms PLC scan time

Upper limit = 150 - 0 + 8 = 158ms
Lower limit = 150 -2.5 +8 = 155.5ms

The result is a timing operation from 155.5ms to 158ms.

PLC types: Availability of TM_10ms (see page 936)

Variable Data type Function
start BOOL starts timer

Num* INT, WORD timer address in system registers 5 and 6

SV INT, WORD set value

T BOOL timer contact

Description The TM_10ms instruction sets the ON-delay timer for 0.01 s units (0 to 327.67s).

 Preset (Set) value area: SV
 Count (Elapsed) value area: EV

Data types

FPWIN Pro Programming

Timer Instructions

775

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
start X Y R L T C - - - -

T - Y R L - - - - - -

Num* - - - - - - - - - dec. or hex.

SV - - - - SV - - - - dec. or hex.

 • It is not possible to use this function in a function block POU.

• For correct results, timer functions and timer function blocks
must be executed exactly one time in each scan. Thus it is not
allowed to use timer function or timer function blocks in
interrupt programs or in loops.

• Every used timer must have a separate constant Num*.
Available Num* addresses depend on system registers 5 and
6.
Timer of type TM_1s, TM_100ms, TM_10ms, TM_1ms use the
same Num* address range.

• The system timer functions (TM_1s, TM_100ms, TM_10ms,
and TM_1s) use the same NUM* address area as the system
timer function blocks (TM_1s_FB, TM_100ms_FB,
TM_10ms_FB, and TM_1s_FB). For the timer function blocks
the compiler automatically assigns a NUM* address to every
timer instance. The addresses are assigned counting
downwards, starting at the highest possible address. In order
to avoid errors (address conflicts), these timer functions and
function blocks should not be used together in a project.

• This function does not require a variable at the output "T".

Please refer to the example of TM_10ms_FB (see page 763).

Operands

Example

Timer Instructions

FPWIN Pro Programming

776

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

TM_100ms Timer for 100ms intervals (0 to 3276.7s) Steps: 3-4

The TM instruction is a down type preset timer.

The area used for the instruction are:

When the mode is set to RUN mode, the Preset (Set) value is transferred to the
SV. If the trigger of the timer instruction start is in the ON-state, the Preset (Set)
value is transferred to the EV from the SV.

During the timing operation, the time is subtracted from the EV.

The scan time is also subtracted from the EV in the next scan.

The timer contact T turns ON, when the EV becomes 0.

Calculation of the timing operation:

timing operation = time set value - 0 to 1/4 of units (25ms) + scan time

Example:

1500ms time set value and 8ms PLC scan time

Upper limit = 1500 - 0 + 8 = 1508ms
Lower limit = 1500 -25 +8 = 1483ms

The result is a timing operation from 1483ms to 158ms.

PLC types: Availability of TM_100ms (see page 936)

Variable Data type Function
start BOOL starts timer

Num* INT, WORD timer address in system registers 5 and 6

SV INT, WORD set value

T BOOL timer contact

Description The TM_100ms instruction sets the ON-delay timer for 0.1s units (0 to 3276.7s).

 Preset (Set) value area: SV
 Count (Elapsed) value area: EV

Data types

FPWIN Pro Programming

Timer Instructions

777

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
start X Y R L T C - - - -

T - Y R L - - - - - -

Num* - - - - - - - - - dec. or hex.

SV - - - - SV - - - - dec. or hex.

 • It is not possible to use this function in a function block POU.

• For correct results, timer functions and timer function blocks
must be executed exactly one time in each scan. Thus it is not
allowed to use timer function or timer function blocks in
interrupt programs or in loops.

• Every used timer must have a separate constant Num*.
Available Num* addresses depend on system registers 5 and
6.
Timer of type TM_1s, TM_100ms, TM_10ms, TM_1ms use the
same Num* address range.

• The system timer functions (TM_1s, TM_100ms, TM_10ms,
and TM_1s) use the same NUM* address area as the system
timer function blocks (TM_1s_FB, TM_100ms_FB,
TM_10ms_FB, and TM_1s_FB). For the timer function blocks
the compiler automatically assigns a NUM* address to every
timer instance. The addresses are assigned counting
downwards, starting at the highest possible address. In order
to avoid errors (address conflicts), these timer functions and
function blocks should not be used together in a project.

• This function does not require a variable at the output "T".

Please refer to the example of TM_100ms_FB (see page 766).

Operands

Example

Timer Instructions

FPWIN Pro Programming

778

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

TM_1s Timer for 1s intervals (0 to 32767s) Steps: 4-5

The area used for the instruction are:

When the mode is set to RUN mode, the Preset (Set) value is transferred to the
SV. If the trigger of the timer instruction start is in the ON-state, the Preset (Set)
value is transferred to the EV from the SV.

During the timing operation, the time is subtracted from the EV.

The scan time is also subtracted from the EV in the next scan.

The timer contact T turns ON, when the EV becomes 0.

Calculation of the timing operation:

timing operation = time set value - 0 to 1/4 of units (250ms) + scan time

Example:

150s time set value and 8ms PLC scan time

Upper limit = 150000 - 0 + 8 = 150008ms
Lower limit = 150000 -250 +8 = 149758ms

The result is a timing operation from 149758ms to 158ms.

PLC types: Availability of TM_1s (see page 935)

Variable Data type Function
start BOOL starts timer

Num* INT, WORD timer address in system registers 5 and 6

SV INT, WORD set value

T BOOL timer contact

Description The TM_1s instruction sets the ON-delay timer for 1s units (0 to 32767s).

 Preset (Set) value area: SV
 Count (Elapsed) value area: EV

Data types

FPWIN Pro Programming

Timer Instructions

779

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

For Relay T/C Register Constant
start X Y R L T C - - - -

T - Y R L - - - - - -

Num* - - - - - - - - - dec. or hex.

SV - - - - SV - - - - dec. or hex.

 • It is not possible to use this function in a function block POU.

• For correct results, timer functions and timer function blocks
must be executed exactly one time in each scan. Thus it is not
allowed to use timer function or timer function blocks in
interrupt programs or in loops.

• Every used timer must have a separate constant Num*.
Available Num* addresses depend on system registers 5 and
6.
Timer of type TM_1s, TM_100ms, TM_10ms, TM_1ms use the
same Num* address range.

• The system timer functions (TM_1s, TM_100ms, TM_10ms,
and TM_1s) use the same NUM* address area as the system
timer function blocks (TM_1s_FB, TM_100ms_FB,
TM_10ms_FB, and TM_1s_FB). For the timer function blocks
the compiler automatically assigns a NUM* address to every
timer instance. The addresses are assigned counting
downwards, starting at the highest possible address. In order
to avoid errors (address conflicts), these timer functions and
function blocks should not be used together in a project.

• This function does not require a variable at the output "T".

Please refer to the example of TM_1s_FB (see page 769).

Operands

Example

Timer Instructions

FPWIN Pro Programming

780

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F137_STMR Timer 16-bit Steps: 5

Timer operation:

PLC types: Availability of F137_STMR (see page 928)

Variable Data type Function
s INT, WORD 16-bit area or equivalent constant for timer set value

d INT, WORD 16-bit area for timer elapsed value

The variables s and d have to be of the same data type.
For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description The auxiliary timer instruction F137_STMR is a down type timer. The formula of
the timer-set time is 0.01 sec. * set value s (time can be set from 0.01 to 327.67
sec.). If you use the special internal relay R900D as the timer contact, be sure to
program it at the address immediately after the instruction.

 If the trigger EN of the auxiliary timer instruction (STMR) is in the
ON-state, the constant or value specified by s is transferred to the
area specified by d.

 During the timing operation, the time is subtracted from the value in
the area specified by d.

 The output ENO turns ON when the value in the area specified by d
becomes 0.

Data types

Operands

Example

FPWIN Pro Programming

Timer Instructions

781

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F183_DSTM Timer 32-bit Steps: 7

The delay time of the timer can be calculated using the following formula: (Set
Value s) * (0.01s) = on-delay

PLC types: Availability of F183_DSTM (see page 930)

Variable Data type Function
s DINT, DWORD set value, range 0 to 2147483647

d DINT, DWORD elapsed value, range 0 to 2147483647

For Relay T/C Register Constant
s DWX DWY DWR - DSV DEV DDT - - dec. or hex.

d - DWY DWR - DSV DEV DDT - - -

Description The F183 instruction activates an upward counting 32-bit timer which works on-
delayed. The smallest counting unit is 0.01s. During execution of F183 (start =
TRUE), elapsing time is added to the elapsed value d. The timer output will be
enabled when the elapsed value d equals the set value s. If the start condition
start is set to FALSE, execution will be interrupted and the elapsed value d will
be reset to zero. The set value s can be changed during execution of F183.

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
header

LD

Chapter 28
 Process Control Instructions

Process Control Instructions

FPWIN Pro Programming

784

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

28.1 Explanation of the Operation of the PID Instuctions

set
value
(SP)

output
value (MV)

+

-

output
quantity

measurement value (PV)

analogue
section

Control
input A/D

A/D

D/A

parameter
(Kp, Ti, Td, Ts)

e
PID
calculation

F355_PID

POU body

The above POU body represents the standard control loop. The control input is determined by
the user (e.g. desired room temperature of 22°C). After the A/D conversion the set value (SP)
is entered as the input value for the PID processing instruction. The measured value (PV)
(e.g. current room temperature) is normally transmitted via a sensor and entered as the input
value for the PID processor. F355_PID calculates the standard tolerance e from the set value
and the measured value (e = set value - measured value). With the parameters given
(proportional gain Kp, integral time Ti, ...) a new output value (MV) is calculated in increments
set by the control cycle Ts. This result is then applied to the actuator (e.g. a fan that regulates
room temperature) after the D/A conversion. The analog section represents the system’s
actuator, e.g. heater and temperature regulation of a room.

A PID operation consists of three components:
1. Proportional part (P part)

A proportional part generates an output that is proportional to the input. The proportional gain
Kp determines by how much the input value is increased or decreased.
A proportional part can be a simple electric resistor or a linear amplifier, for example.

The P part displays a relatively large maximum overshot, a long settling time and a
constant standard tolerance.

set value SP +

-

standard
tolerance e Proportional

gain (Kp) Output MVp

Measurement
signal PV

1

0 t

e

1
0.5

2

Kp=1
Kp=0.5

Kp=2

0 t

MVp

FPWIN Pro Programming

Process Control Instructions

785

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

2. Integral part (I part)

An integral part produces an output quantity that corresponds to the time integral and input
quantity (area of the input quantity). The integral time thus evaluates the output quantity MVi.
The integral part can be a quantity scale of a tank that is filled by a volume flow, for example.
Because of the slow reaction time of the integral part, it has a larger maximum overshot than
the P component, but no constant standard tolerance.

set value SP +

-

standard
tolerance e Integral

operation
Output MVi

Measurement
signal PV

0 t

e

0 t

MVi

MVi=1/Ti edt

3. Derivative part (D part)

The derivative part produces an output quantity that corresponds to the time derivation of the
input quantity. The derivative time corresponds to the weighting of the derived input quantity.
A derivative component can be an RC-bleeder (capacitor hooked up in series and resistance
in parallel), for example.

set value SP +

-

standard
tolerance e Derivative

operation
Output MVd

Measurement
signal PV

Example Input quantity e and the output quantity MVi produced.

Process Control Instructions

FPWIN Pro Programming

786

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

0 t

e

0 t

MVd
MVd=Td*de/td

4. PID controller

A PID controller is a combination of a P component, an I component and a D component.
When the parameters Kp, Ti and Td are optimally adjusted, a PID controller can quickly
control and maintain a quantity at a predetermined set value.

set value SP +

-

standard
tolerance e Integral

operation
Output MV

Measurement signal PV

Derivative
operation

+
+

+

Kp

Reference equations for calculating the controller output MV
The following equations are used to calculate the controller output MV under the following
conditions:

In general:
The output value at time period n is calculated from the previous output value (n-1) and the
change in the output value in this time interval.

MVMVMV 1nn Δ+= −

Reverse operation PI-D Control = 16#X000

() ⎥⎦
⎤

⎢⎣
⎡ Δ+×+−×=Δ − nn1nn D

Ti
TseeeKpMV

() ()

()

()TdTs
Td

ttancons
8
1

PVPVD1Dn
PVSPe

n1n1n

nnn

η+
=β

=η

−β+−ηβ=Δ
−=

−−

Example Input quantity e and the output quantity MVd produced.

FPWIN Pro Programming

Process Control Instructions

787

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Forward operation PI-D Control = 16#X001

() ⎥⎦
⎤

⎢⎣
⎡ Δ+×+−×=Δ − nn1nn D

Ti
TseeeKpMV

() ()

()

()TdTs
Td

ttancons
8
1

PVPVD1Dn
SPPVe

1nn1n

nnn

η+
=β

=η

−β+−ηβ=Δ
−=

−−

Reverse operation I-PD Control = 16#X002

() ⎥⎦
⎤

⎢⎣
⎡ Δ+×+−×=Δ − nn1 D

Ti
TsePVPVKpMV

nn

() ()

()

()TdTs
Td

ttancons
8
1

PVPVD1Dn
PVSPe

n1n1n

nnn

η+
=β

=η

−β+−ηβ=Δ
−=

−−

Forward operation I-PD Control = 16#X003

() ⎥⎦
⎤

⎢⎣
⎡ Δ+×+−×=Δ − nn1nn D

Ti
TsePVPVKpMV

() ()

()

()TdTs
Td

ttancons
8
1

PVPVD1Dn
SPPVe

1nn1n

nnn

η+
=β

=η

−β+−ηβ=Δ
−=

−−

PID processing instructions:

- PID_FB_DUT (see page 802)

- PID_FB (see page 799)

- F355_PID_DUT (see page 788)

Process Control Instructions

FPWIN Pro Programming

788

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F355_PID_DUT PID processing instruction Steps: 4

The function calculates a PID algorithm whose parameters are determined in a
data table in the form of an ARRAY with 30 elements that is entered at input s.

The required data table PID_DUT_31 contains the following parameters:

Parameter Data type Function
Control WORD Control mode

SP Set point value

PV Process value

MV Manipulated value

LowerLimit Output lower limit

UpperLimit Output upper limit

Kp Proportional gain

Ti Integral time

Td Derivative time

Ts Control cycle

AT_Progress

INT

Auto-tuning progress

Dummies ARRAY (see page
20) [11 .. 30] OF
WORD

are utilized internally by the PID
controller

PLC types: Availability of F355_PID_DUT (see page 932)

Variable Data type Function
s PID_DUT_31 Detailed explanation of parameters

For Relay T/C Register Constant
s - - WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- the parameter settings are outside the
allowed range.

Description The PID processing instruction is used to regulate a process (e.g. a heater) given
a measured value (e.g. temperature) and a predetermined output value (e.g.
20°C).

Data types

Operands

Error flags

FPWIN Pro Programming

Process Control Instructions

789

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

In the initialization of the variable PidParameters of the data type PID_DUT_31 ,
the upper limit of the controller output is set to 4000. The proportional gain Kp is
initially set at 80 (8), Ti and Td at 200 (20s) and the control cycle Ts at 100 (1s).

Example

Global
Variable

List

In the global variable list, all values of global inputs and outputs are declared that
are used for programming this function.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Process Control Instructions

FPWIN Pro Programming

790

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body The standard function MOVE copies the value 16#8000 to the member Control of
the DUT PidParameters when the variable EnableAutoTuning is set from FALSE
to TRUE (i.e. activates the control mode auto-tuning in the function
F355_PID_DUT).
The variables Set_Value_SP and Process_Value_PV are assigned to the
members SP and PV of the DUT PidParameters. They receive their values from
the A/D converter CH0 and CH1.
Because the F355_PID_DUT function block has an EN output connected directly
to the power rail, the function is carried out when the PLC is in RUN mode. The
calculated controller output stored the member MV of the DUT PidParameters is
assigned to the variable Output_Value_MV. Its value is returned via a D/A
converter from the PLC to the output of the system.

LD

ST (* Auto Tuning: *)
if DF(EnableAutoTuning) then
 PidParameters.Control:=16#8000;
end_if;

(* Fill the DUT PidParameters with the corresponding input
values: *)
PidParameters.SP:=Set_Value_SP;
PidParameters.PV:=Process_Value_PV;

(* Carry out the PID arithmetic: *)
F355_PID_DUT(PidParameters);

(* Write the manipulated value to the output: *)
Output_Value_MV:=PidParameters.MV;

FPWIN Pro Programming

Process Control Instructions

791

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F356_PID_PWM Easy PID processing instruction Steps: 10

Abbreviations used when describing PID processing

Abbreviation What it stands for Also know as
PV Process value Measured value

SP Set point value Target value or set value

MV Manipulated value Output value

Ts Time, sampling Sampling time, Cycle time

Ti Time, integral Integral time

Td Time, derivative Derivative time

Kp Proportional gain -

AT Auto-tuning -

Description PID processing is performed to keep the processing value (PV) as close as
possible to the set point value (SP). In contrast to F355_PID_DUT (see page
788), this instruction enables a PWM output (on-off output). Auto-tuning is also
available to automatically calculate the PID control data Kp, Ti and Td.

Precautions
on prog.

1. When the input at Run is executed, the data in the argument
ParametersNonHold is initialized.
If you want a value in the DUT to use non-default values, write the
values into the DUT using a MOVE instruction, for example, which
must be triggered continuously by a TRUE condition.

2. F356_PID_PWM must be executed once and only once per scan.
Therefore, do not execute F356_PID_PWM in interrupt programs or
loops.

3. Do not turn off the execution condition during PID processing.
Otherwise, PID processing will be disabled.

4. If you do not want parallel PWM output cycles, e.g. to control multiple
objects, delay the start-up times accordingly, e.g. by employing a timer
instruction.

Example

Process Control Instructions

FPWIN Pro Programming

792

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

PLC types: Availability of F356_PID_PWM (see page 932)

 The period (cycle) of the pulsed output is the sampling time Ts (the frequency of
the pulsed output is 1/Ts) and the duty is the MV in 0.01% units, e.g. MV = 10000
means a duty of 100%.

Variable Data type Function
Run BOOL Start condition

Control F356_Control_DUT (see page
794)

Control data

Parameters
Hold

F356_Parameters_Hold_DUT
(see page 795)

PID control parameters

Parameters
NonHold

F356_Parameters_NonHold_DUT
(see page 796)

Manipulated (output) value (MV),
additional control mode area, auto-tuning
related area and working area

ProcessValue INT Process value (-30000 to 30000)

PWM_Output
(see note)

BOOL Pulsed width output (optional instead of
manipulated (output) value MV)

For Relay T/C Register Constant
Control - WY WR WL SV EV DT LD FL -

Parameters WX WY WR WL SV EV DT LD FL -

Process
Values

- WY WR WL SV EV DT LD FL -

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

- any parameter of
F356_Parameters_NonHold_DUT is out of
the setting range

R900B %MX0.900.11 permanently - the area specified with UpperLimit or
LowerLimit is out of the valid range

Detailed information:

 Control conditions: F356_Parameters_Hold_DUT (see page 795)

Target value (SP) and the control parameters: F356_Parameters_NonHold_DUT
(see page 796)

Data types

Operands

Error flags

FPWIN Pro Programming

Process Control Instructions

793

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

 Additional notes on auto-tuning

When bRunPidControl turns on, the work area specified with the
F356_Parameters_NonHold_DUT (see page 796) will be initialized. However,
only the member MV (manipulated value) can be held depending on the status of
the flag b2_HoldMV of F356_Control_DUT (see page 794).

The default control conditions are:

PID control starts from the next scan, and PWM output is executed for
PWM_Output.

If the member flag b0_AT_Request of ControlData, a DUT with overlapping

 The members AT_Progress in F356_Parameters_NonHold_DUT
(see page 796) and b1_AT_Complete in F356_Control_DUT (see
page 794) are cleared at the leading edge of the auto-tuning signal.

 When auto-tuning has completed successfully, the member
b1_AT_Complete in F356_Control_DUT (see page 794) is set, and
the auto-tuning done code is stored in the member AT_Progress in
F356_Parameters_NonHold_DUT (see page 796).

 When auto-tuning is aborted, the parameters of Kp, Ti and Td are
not changed.

Example In this example, the same POU header is used for all programming languages.

Global
Variable

List

In the global variable list, all values of global inputs and outputs are declared that
are used for programming this function.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body Specify the member SP (set point value) of F356_Parameters_Hold_DUT (see
page 795) before operation.

 operation cycle = 1 sec
 proportional-derivative type reverse operation (heating)
 PWM resolution = 1000.

Process Control Instructions

FPWIN Pro Programming

794

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

elements, is set, auto-tuning begins. When auto-tuning has completed
successfully, the member flag b1_AT_Complete of ControlData is set and Kp,
Ti and Td are set for the PID control. If bRunPidControl is still on, it will change
to PID control automatically and the PWM output will be executed.

 If the execution condition bRunPidControl has turned off during PID control,
PWM_Output also turns off. However, only the member MV (manipulated value)
can be held depending on the status of the flag b2_HoldMV of
F356_Control_DUT (see page 794).

28.1.1 F356_Control_DUT

This data type, a DUT with overlapping elements, is predefined in the System Library and is
used by the function F356_PID_PWM (see page 791).

We recommend specifying the non-hold type area.

Identifier Description
w0 Since this is a DUT with overlapping elements, the BOOL members occupy the same

data areas as the WORD member w0. Therefore by using w0 you can
simultaneously access all bits.

LD

ST (* Auto Tuning: *)
if DF(bStartAutoTuning) then
 ControlData.b0_AT_Request:=TRUE;
end_if;
y_bPwmOutput:=F356_PID_PWM(Run := bRunPidControl,

 Control := ControlData,

 ParametersHold := ParametersHold,

 ParametersNonHold := ParametersNonHold,

 ProcessValue := x_iTemperatureInput);

FPWIN Pro Programming

Process Control Instructions

795

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Identifier Description
b0_AT_Request
(bit 0)

When set, auto- tuning is requested. This bit is reset with the instruction
F356_PID_PWM when auto-tuning is complete. Reset this bit to cancel auto-tuning.
When not set, PID control will be executed.

b1_AT_Complete
(bit 1)

When set, auto-tuning has been completed successfully.

b2_HoldMV (bit 2) When set, the manipulated value output is held by switching F356_PID_PWM (see
page 791) from off to on.

Bits 3 to F Are reserved and normally 0.

28.1.2 F356_Parameters_Hold_DUT

This data type is predefined in the System Library and is used by the function
F356_PID_PWM (see page 791).

This DUT specifies the control parameter (4 words). We recommend allocating the area used
by this data type to the hold-type operation memory.

Variable Comment Range
SP Set point value. -30000 to 30000

Kp Stores proportional gain (KP). After auto-tuning has
been completed, it is automatically set.

1 to 9999

Ti Stores integral time (TI). After auto- tuning has been
completed, it is automatically set.

0 to 30000

Td Stores derivative time (TD). After auto-tuning has
been completed, it is automatically set.

1 to 10000

If the parameters Kp, Ti and Td are all 0 when PID operation has started, they are initialized at
1,1 and 0, respectively, and operation continues. If any parameter for Kp, Ti, or Td is out of
range when auto-tuning has started, they are initialized at 1, 1 and 0, respectively, and auto-
tuning continues.

Process Control Instructions

FPWIN Pro Programming

796

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

28.1.3 F356_Parameters_NonHold_DUT

This data type is predefined in the System Library and is used by the function
F356_PID_PWM (see page 791).

This DUT specifies the manipulated value (MV) and the control parameters (4 words).

Variable Comment Default
value

Range

MV Stores the manipulated (output) value 0 -10000 to 10000

LowerLimit Sets the lower limit value of
manipulated value (MV)

0 min. -10000

UpperLimit Sets the upper limit value of the
manipulated value (MV)

10000 max. 10000

PV_Band_WithFullOutput No PID control is performed and the
output is set to 100% until the defined
level (0% - 80%) of the set point value
has been reached.

0 0% to 80%

Ts Sets sampling time (TS). Setting unit =
10ms, default value = 1sec.
The sampling time is also the cycle
time of the pulsed output.

100 1 to 6000

0 Derivative type (PI-D) reverse,
e.g. heating

1 Derivative type (PI-D) forward,
e.g. cooling

2 Proportional-derivative type (I-
PD) reverse, e.g. heating

ControlMode

3 Proportional-derivative type (I-
PD) forward, e.g. cooling

0

0 to 3

AT_Bias Sets bias value for performing auto-
tuning

0 0

AT_Correction_Kp Sets correction data of auto-tuning
result (KP)

100 50% to 500%

AT_Correction_Ti Sets correction data of auto-tuning
result (Ti)

100 50% to 500%

AT_Correction_Td Sets correction data of auto-tuning
result (Td)

100 50% to 500%

AT_Progress Stores the status while auto-tuning is
being performed

0 0 to 5

WorkingArea Working area of up to 30 words for PID
processing and auto-tuning processing

0

FPWIN Pro Programming

Process Control Instructions

797

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

When the execution condition has turned on, the operation work area is initialized.

The default value is written when the execution condition turns on. MV is only
output in the range between the upper limit value and lower limit value.

Detailed information on the setting method:

PV_Band_WithFullOutput
Define at what percent of the set point value PID control should start. Below this level, output
is 100%.

For example, you have set PV_Band_WithFullOutput to 80% and the actual processing
value (i.e. measured value) is only 50% of the set point value. In this case the output will be
set to 100% and remain at 100% until the processing value reaches 80% of the set point
value, at which point PID control will start.

By choosing a greater or lesser percentage, you determine how quickly the set point value is
reached.

Fine adjustment of auto-tuning
When auto-tuning has completed, the parameters for Kp, Ti and Td are stored in the members
of F356_Parameters_Hold_DUT (see page 795). For fine adjustment, you can now correct the
result of auto-tuning with the parameters AT_Correction_Kp, AT_Correction_Ti and
AT_Correction_Td.

Set AT_Correction_Kp to 200 (i.e. 200%): perform auto-tuning to correct Kp to
double its value.

Set AT_Correction_Ti to 125 (i.e. 125%): perform auto-tuning to correct Ti to 1.25
times its value.

Set AT_Correction_Td to 75 (i.e. 75%): perform auto-tuning to correct Td to 0.75
times value.

Auto-tuning bias value
In reverse operation, auto-tuning is executed with (set point value (SP) - auto-tuning bias
value) as a temporary set point value (SP’).

It is used to control excessive temperature rise during auto-tuning.

Process Control Instructions

FPWIN Pro Programming

798

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In forward operation, auto-tuning is executed with (set point value (SP) + auto-tuning bias
value) as a temporary set point value (SP’).

Temperature

During auto- tuning
KP, TI and TD calculation

PID control

Time

Set value
(SP)

Auto- tuning bias value

(SP’)

Temperature

KP, TI and TD calculation

PID control

Time

Set value
(SP)

Auto - tuning bias value

(SP’)

During auto-tuning

Auto-tuning in
reverse operation

Auto-tuning in
forward operation

Even if auto-tuning starts when the processing value (PV) is close to the set
point value (SP), auto-tuning is peformed with the above SP’.

FPWIN Pro Programming

Process Control Instructions

799

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

PID_FB PID processing instruction

Input variables (VAR_INPUT):

Variable Data type Function
Automatic FALSE: Manual setting of MV possible

TRUE: Automatic PID controlled MV
Forward FALSE: Reverse operation (heating)

TRUE: Forward operation (cooling)
I_PD

BOOL

FALSE: derivative control (PI-D)
TRUE: proportional derivative control (I-PD)

SP Set point value, Range 0-10000

PV Process value, Range 0-10000

Kp Proportional gain, Range: 1-9999, Unit: 0.1

Ti Integral time, Range: 1-30000, Unit: 0.1s

Td Derivative time, Range: 1-10000, Unit: 0.1s

Ts Sampling time, Range: 1-6000, Unit: 0.01s

LowerLimit Output lower limit, Range: 0-10000

UpperLimit

INT

Output upper limit, Range: 1-10000

Input/output variable (VAR_IN_OUT):
MV Manipulated value

• Autotuning is not possible using PID_FB. For this, use PID_FB_DUT (see

page 802).

• The value for MV can be assigned externally either when the program is
initialized or when the value of Automatic is FALSE.

• In order to achieve maximum resolution and minimum dead time beyond
LowerLimit and UpperLimit, their values should, if possible, cover the
entire range of 0-10000.

Description This implementation allows you to set the parameters of F355_PID directly using
arguments:

Data types

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Process Control Instructions

FPWIN Pro Programming

800

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Global
Variable

List

In the global variable list all global input and output values are declared that are
used to program the function. The addresses are depending on the respective
PLC-Type.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body
LD

FPWIN Pro Programming

Process Control Instructions

801

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ST PID_Control(Automatic:= TRUE,
 Forward:= FALSE,
 I_PD:= FALSE,
 SP:= Set_Value_SP,
 PV:= Process_Value_PV,
 Kp:= 15,
 Ti:= 200,
 Td:= 1,
 Ts:= 10,
 LowerLimit:= 0,
 UpperLimit:= 1000,
 MV:= Output_Value_MV);

Process Control Instructions

FPWIN Pro Programming

802

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

PID_FB_DUT PID processing instruction

Parameter Function Range Unit
Control: Control mode
SP: Set Point value 0-10000

PV: Process Value 0-10000

Kp: Proportional gain 1-9999 0.1

Ti: Integral time 1-30000 0.1s

Td: Derivative time 1-10000 0.1s

Ts: Sampling time 1-6000 0.01s

LowerLimit: Output lower limit 0-10000

UpperLimit: Output upper limit 1-10000

MV: Manipulated output Value 0-10000

Input variables (VAR_INPUT):

Variable Data type Function
Automatic BOOL FALSE: Manual setting of MV possible

TRUE: Automatic PID controlled MV

Input/Output variable (VAR_IN_OUT):
PidDut PID_DUT

• You may not enter the DUT PID_DUT a second time under DUTs of the

current project.

• The value for MV can be assigned externally either when the program is
initialized or when the value of Automatic is FALSE.

• In order to achieve maximum resolution and minimum dead time beyond
LowerLimit and UpperLimit, these values should, if possible, cover the
entire range of 0-10000.

In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

Description This implementation allows you to access the F355_PID instruction via the
structure PID_DUT. This structure is defined in System Libraries / FP Library /
DUTs as follows:

Data types

Example

FPWIN Pro Programming

Process Control Instructions

803

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Global
Variable

List

In the global variable list all global input and output values are declared that are
used to program the function. The addresses are depending on the respective
PLC-Type.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body
LD

ST PID_Parameter.SP := Set_Value_SP;
PID_Parameter.PV := Process_Value_PV;
PID_Control(Automatic:= TRUE,
 PidDut:= PID_Parameter);
Output_Value_MV := PID_Parameter.MV;

Chapter 29
 System Register Instructions

System Register Instructions

FPWIN Pro Programming

806

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

SYS1 Change PLC system setting Steps: 13

PLC types: Availability of SYS1 (see page 935)

Communication condition setting for the COM ports of the CPU

This changes the communication conditions for the COM port or Tool port based
on the contents specified by the character constant.

The communication conditions for the port specified by the first keyword are
changed to the contents specified by the second keyword. The first and second
keywords are separated by a comma.

Contents that can be changed include the following:

1. Communication format (Shared by the Tool, COM 1 and COM 2 ports)

Description The description for SYS1 is divided into the following sections:

 Communication condition setting (see page 806)
 Password setting (see page 810)
 Interrupt setting (see page 811)
 PLC link time setting (see page 813)
 RS485 response time control (see page 815)

1. Communication format
2. Baud rate
3. Unit No.
4. Header and Terminator
5. RS (Request to Send) control

Keyword
setting

FPWIN Pro Programming

System Register Instructions

807

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

2. Baud rate (Shared by the Tool, COM 1 and COM 2 ports)

3. Unit No. (Shared by the Tool, COM 1 and COM 2 ports)

4. Header and Terminator (Shared by the COM 1 and COM 2 ports)

System Register Instructions

FPWIN Pro Programming

808

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

5. RS (Request to Send) control (COM 1 port only)

Precautions
during prog.

 Executing this instruction does not rewrite the contents of the system
ROM in the control unit. As a result, turning the power supply off and
then on again rewrites the contents of the system registers specified
by the tool software.

 We recommend using differential execution with this instruction.
 Because the system register settings are changed, a verification

error may occur in some cases if verification is carried out with the
tools.

 Separate first and second keywords with a comma "," and do not
use spaces.

FPWIN Pro Programming

System Register Instructions

809

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

- any character other than a keyword is specified
- no comma is between the first and second

keywords
- small letters of the alphabet are used to specify

the keyword (except for numbers used to specify
unit no.)

- no communication cassette has been installed
when COM1 or COM2 has been set

- the setting of the unit no. setting switch is
anything other than 0 when COM1 or COM2 has
been set and the unit no. is being changed

- the unit no. set using this instruction is anything
other than a value between 1 and 99

- the baud rate or transmission format for COM1
has been changed when the PLC link mode is
specified for COM1

- the baud rate or transmission format is changed
while the Tool port, COM port 1, or COM port 2 is
being initialized using MODEM

- the communication mode is set to anything other
than the general communication mode when
header and terminator have been set

- any communication cassette other than the 1-
channel RS232C type communication cassette is
installed when using RS control

- the specified unit no. is larger than the largest unit
no. specified by the system register when the
COM 1 port is in the PLC link mode

In this example the function SYS1 is programmed in ladder diagram (LD).

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When CommSettings turns on, the transmission format and baud rate for the
COM1 port are set as follows: Character bit: 8, Parity: Odd; Stop bit: 1; Baud
rate: 19,200 bps.

LD

System Register Instructions

FPWIN Pro Programming

810

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

 The values entered at s* will be right aligned automatically by the compiler.

This changes the password specified by the controller to the contents specified
by the second keyword. The first and second keywords are separated by a
comma.

Keyword setting for 4-digit hexadecimal password

Keyword setting for 8-digit alphanumeric password (for the FP-X)

The FP-X also supports 8-digit alphanumeric passwords. Enter 'PAS,FP-X v 3'.
Spaces at the end of the password are not significant.

No. IEC address Set If
R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

- any character other than a keyword is specified
- no comma is between the first and second

keywords
- small letters of the alphabet are used to specify

the keyword
- the data specified for the password setting is

any character other than 0 to 9 or A to F, or the
specified data consists of other than four digits.

Password
Setting

This changes the password specified by the controller, based on the contents
specified by the character constant.

Precautions
during prog.

 When this instruction is executed, writing to the internal F-ROM
takes approximately 100ms.

 If the specified password is the same as the password that has
already been written, the password is not written to the F-ROM.

 We recommend using differential execution with this instruction.
 Separate first and second keywords with a comma "," and do not

use spaces.

Error flags

FPWIN Pro Programming

System Register Instructions

811

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example the function SYS1 is programmed in ladder diagram (LD).

 The values entered at s* will be right aligned automatically by the compiler.

This sets the input specified by the first keyword as the interrupt input, and
changes the input conditions to the contents specified by the second keyword.
The first and second keywords are separated by a comma.

Keyword setting

For the FP-X you can set INT0 to INT13.

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When ChangePassword turns on, the controller password is changed to
"ABCD".

LD

Interrupt
Setting

This sets the interrupt input based on the contents specified by the character
constant.

System Register Instructions

FPWIN Pro Programming

812

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

- any character other than a keyword is specified
- no comma is between the first and second

keywords
- small letters of the alphabet are used to specify

the keyword

 The values entered at s* will be right aligned automatically by the compiler.

Precautions
during prog.

 Executing this instruction does not rewrite the contents of the system
ROM in the control unit. As a result, turning the power supply off and
then on again rewrites the contents of the system registers specified
by the tool software.

 We recommend using differential execution with this instruction.
 When UP or DOWN has been specified, the contents of the system

registers change in accordance with the specification, so a
verification error may occur in some cases, when the program is
verified. When BOTH has been specified, the contents of the system
registers do not change.

 Separate first and second keywords with a comma "," and do not
use spaces.

Error flags

Example In this example the function SYS1 is programmed in ladder diagram (LD).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When ChangePassword turns on, the controller password is changed to
"ABCD".

LD

FPWIN Pro Programming

System Register Instructions

813

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

The conditions specified by the first keyword are set as the time specified by the
second keyword. The first and second keywords are separated by a comma.

The setting for the link entry waiting time is set if the transmission cycle time is
shortened when there are stations that have not joined the link. (Stations that
have not joined the link: Stations that have not been connected between the first
station and the station with the largest number, or stations for which the power
supply has not been turned on.)

The error detection time setting for the transmission assurance relay is set if the
time between the power supply being turned off at one station and the
transmission assurance relay being turned off at a different station is to be
shortened.

Keyword setting

1. Link entry wait time

2. Error detection time for transmission assurance relay

PLC Link
Time Setting

This sets the system setting time when a PLC link is used, based on the contents
specified by the character constant.

System Register Instructions

FPWIN Pro Programming

814

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Precautions during programming

Precautions when setting the link entry wait time

Precautions when setting the error detection time for the transmission
assurance relay

No. IEC address Set If
R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

- any character other than a keyword is specified
- no comma is between the first and second

keywords
- small letters of the alphabet are used to specify

the keyword
- the specified value is outside the specified range

Precautions

 The program should be placed at the beginning of all PLCs being
linked, and the same values specified.

 This instruction should be specified in order to set special internal
relay R9014 as the differential execution condition.

 The setting contents of the system registers are not affected by this
instruction being executed.

 Separate first and second keywords with a comma "," and do not
use spaces.

 This should be specified such that the value is at least twice that of
the largest scan time of all the PLCs that are linked.

 If a short value has been specified, there may be some PLCs that
are not able to join the link even though the power supply for that
PLC has been turned on.

 If there are any stations that have not joined the link, the setting
should not be changed, even if the link transmission cycle time is
longer as a result. (The default value is 400 ms.)

 This should be specified such that the value is at least twice that of
the largest transmission cycle time of all the PLCs that are linked.

 If a short value has been specified, there is a possibility that the
transmission assurance relay will malfunction.

 The setting should not be changed, even if the detection time for the
transmission assurance relay is longer than the result. (The default
value is 6400ms.)

Error flags

FPWIN Pro Programming

System Register Instructions

815

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Below is an example of a ladder diagram (LD) body for the instruction. Because
FP addresses and strings are entered directly instead of using variables, no POU
header is required.

Link entry wait time: 100ms

Error detection time for transmission assurance relay: 100ms.

 The values entered at s* will be right aligned automatically by the compiler.

The port response time specified by the first keyword is delayed based on the
contents specified by the second keyword. This instruction is used to delay the
response time on the PLC side until the state is reached in which commands can
be sent by an external device and responses can be received from the PLC.

The first and second keywords are separated by a comma.

Example

Body When R9014 turns on when a PLC link is being used, the link entry wait time and
the error detection times for transmission assurance relay are set as follows:

LD

RS485
Response
Time Control

This changes the communication conditions based on the RS485 of the COM
port or Tool port, in response to the contents specified by the character constant.

System Register Instructions

FPWIN Pro Programming

816

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

When a commercial RS232C/RS485 converter is being used to carry out
communication between a personal computer and the FPΣ, this instruction is
used to return the PLC response after switching of the enable signal has been
completed on the converter side.

Keyword setting

If the communication mode has been set to the computer link mode, the set time
is the scan time x n (n: 0 to 999).

If the communication mode has been set to the PLC link mode, the set time is n
μs (n: 0 to 999).

If n = 0, the delay time set by this instruction will be set to "None".

Usage
example

FPWIN Pro Programming

System Register Instructions

817

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

No. IEC address Set If
R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

- any character other than a keyword is specified
- no comma is between the first and second

keywords
- small letters of the alphabet are used to specify

the keyword
- no communication cassette has been installed

when COM1 or COM2 has been set

In this example the function SYS1 is programmed in ladder diagram (LD).

 The values entered at s* will be right aligned automatically by the compiler.

Precautions
during Prog.

 This instruction is valid only if the setting on the controller side has
been set to the computer link mode or the PLC link mode. It is
invalid in the general communication mode.

 Executing this instruction does not change the settings in the system
registers.

 We recommend using differential execution with this instruction.
 When the power supply to the PLC is off, the settings set by this

instruction are cleared. (The set value will become 0.) If the mode is
switched to the PROG. mode after the instruction has been
executed, however, the settings will be retained.

 If a commercial RS232C/RS485 converter is being used in the PLC
link mode, this instruction should be programmed in all of the
stations (PLCs) connected to the link.

 Separate first and second keywords with a comma "," and do not
use spaces.

Error flags

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When ChangeResponseT turns on, the response time for COM port 1 is
delayed by 2μs.

LD

System Register Instructions

FPWIN Pro Programming

818

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

SYS2 Change System Register Settings for PC
Link Area Steps: 7

You can change the values in system registers 40 - 47 (with the FP-X also 50 -
57), PC link area.

PLC types: Availability of SYS2 (see page 935)

Variable Data type Function
s_Start INT, WORD Contains new values for the system registers defined by

remaining two variables.

d_Start* constant First system register (between 40-47) to receive new value.

d_End* constant Last system register (between 40-47) to receive new value.

For Relay T/C Register Constant
s_Start - - - - - - DT - - -

d_Start* - - - - - - - - - dec. or hex.

d_End* - - - - - - - - - dec. or hex.

No. IEC
address

Set If

R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

- d1 > d2
- the specified value is outside the ranges specified

for the various system registers setting values

Description While the PLC is in RUN mode, SYS2 changes the settings for the specified
system registers. s_Start contains the new values for those system registers
defined between d_Start* and d_End*.

Precautions
during prog.

 Executing this instruction does not rewrite the contents of the system
ROM in the control unit. As a result, turning the power supply off and
then on again rewrites the contents of the system registers specified
by the tool software.

 A value between 40 and 47 should be specified for d_Start* or
d_End*. Also, the values should always be specified in such a way
that d_Start* ≤ d_End*.

 The values of the system registers change, so a verification error
may occur when the program is verified.

Data types

Operands

Error flags

FPWIN Pro Programming

System Register Instructions

819

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

In this example the function SYS2 is programmed in ladder diagram (LD).

Example

DUT A Data Unit Type (DUT) can be composed of several data types. A DUT is first
defined in the DUT pool and then processed like the standard data types (BOOL,
INT, etc.) in the list of global variables or the POU header.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body Changes the values for the PC link area system registers 40 through 45 as
defined in LinkAreas when SetLinkAreas turns on.

LD

Chapter 30
 Special Instructions

Special Instructions

FPWIN Pro Programming

822

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F140_STC Carry-flag set Steps: 1

PLC types: Availability of F140_STC (see page 928)

In this example the function F140_STC is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

Description Special internal relay R9009 (carry-flag) goes ON if the trigger EN is in the ON-
state. This instruction can be used to control data using carry-flag R9009 (e.g.
F122_RCR (see page 566) and F123_RCL (see page 568) instructions).

Example

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F140_STC();
END_IF;

FPWIN Pro Programming

Special Instructions

823

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F141_CLC Carry-flag reset Steps: 1

PLC types: Availability of F141_CLC (see page 928)

Description Special internal relay R9009 (carry-flag) goes OFF if the trigger EN is in the ON-
state. This instruction can be used to control data using carry-flag R9009 (e.g.
F122_RCR (see page 566) and F123_RCL (see page 568) instructions).

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F141_CLC();
END_IF;

Special Instructions

FPWIN Pro Programming

824

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F148_ERR Self-diagnostic error set Steps: 3

At the same time, the self-diagnostic error-flag R9000 is set and ERROR LED on
the CPU is turned ON.
The contents of the error flag R9000 can be read and checked using Control
FPWIN Pro (Monitor → Display Special Relays and Registers → Basic Error
Messages).

The error No., special data register DT9000, can be read and checked using
Control FPWIN Pro (Monitor → Display Special Relays and Registers →
Basic Error Messages).

When n* = 0, the error is reset. (only for operation continue errors, n* = 200 to
299.)

The ERROR LED is turned OFF and the contents of special data register
DT9000 are cleared with 0.

Error number areas:

When n* = 100 to 199, the operation is halted.

When n* = 200 to 299, the operation is continued.

PLC types: Availability of F148_ERR (see page 929)

Variable Data type Function
n* constant self-diagnostic error code number, range: 0 and 100 to 299

For Relay T/C Register Constant
n* - - - - - - - - - dec. or hex.

No. IEC address Set If
R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 permanently

- n exceeds the limit.

Description The error No. specified by n* is placed into special data register DT9000.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

FPWIN Pro Programming

Special Instructions

825

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 (* Sets the self-diagnostic error 100 *)
 (* The ERROR/ALARM LED of the PLC is on,
 and operation stops. *)
 F148_ERR(100);
END_IF;

Special Instructions

FPWIN Pro Programming

826

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

F149_MSG Message display Steps: 13

When the F149_MSG instruction is executed, the message-flag R9026 is set and
the message specified by s is set in special data registers DT9030 to DT9035.
Once the message is set in special data registers, the message cannot be
changed even if the F149_MSG instruction is executed again. You can clear the
message with the FP Programmer II.

PLC types: Availability of F149_MSG (see page 929)

Variable Data type Function
s STRING(12) message to be displayed

For Relay T/C Register Constant
s - - - - - - - - - character

Description This instruction is used for displaying the message on the FP Programmer II
screen. After executing the F149_MSG instruction, you can see the message
specified by s on the FP Programmer II screen.

Data types

Operands

Example In this example the function F149_MSG is programmed in ladder diagram (LD)
and structured text (ST). The same POU header is used for all programming
languages.

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body When the variable start is set to TRUE, the function is executed.

LD

ST IF start THEN
 F149_MSG('Hello, world');
END_IF;

Chapter 31
 Program Execution Control Functions

Program Execution Control Functions

FPWIN Pro Programming

828

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

MC Master control relay Steps: 2

When the predetermined trigger EN is in the OFF state, the program between the
master control relay MC and master control relay end MCE instructions is not
executed.

A master control instruction (MC and MCE) pair may also be programmed in
between another pair of master control instructions. This construction is called
"nesting".

The constant number Num* that must correspond to MC number, both of which
delimit a "nested" program that is not executed.

 • It is not possible to use this function in a function block POU.

• The maximum possible value that can be assigned to Num* depends
on the PLC type.

PLC types: Availability of MC (see page 933)

Variable Data type Function
Num* constant Constant number that must correspond to MCE number,

both of which delimit a "nested" program that is not executed

Description Executes the program between the master control relay MC and master control
relay end MCE (see page 829) instructions of the same number Num* only if the
trigger EN is in the ON-state

Data types

Example

FPWIN Pro Programming

Program Execution Control Functions

829

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

MCE Master control relay end Steps: 2

When the predetermined trigger EN is in the OFF state, the program between the
master control relay MC and master control relay end MCE instructions is not
executed.

A master control instruction (MC and MCE) pair may also be programmed in
between another pair of master control instructions. This construction is called
"nesting".

The constant number Num* that must correspond to MC number, both of which
delimit a "nested" program that is not executed.

 • It is not possible to use this function in a function block POU.

• The maximum possible value that can be assigned to Num* depends
on the PLC type.

PLC types: Availability of MCE (see page 933)

Variable Data type Function
Num* constant Constant number that must correspond to MC number, both

of which delimit a "nested" program that is not executed

LD start (* EN = start; Starting signal for the MC/MCE function. *)
MC 1 (* 1 = Num* *)

 (* ... *)
(* Execute or execute not this program part. *)
(* ... *)

MCE 1 (* 1 = Num* *)

Description Executes the program between the master control relay MC (see page 828) and
master control relay end MCE instructions of the same number Num* only if the
trigger EN is in the ON-state.

Data types

Example In this example, the progamming language Instruction List (IL) is used.

IL

Program Execution Control Functions

FPWIN Pro Programming

830

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

JP Jump to label Steps: 2

The JP function will skip all instructions between a JP and an LBL of the same
number. When the JP instruction is executed, the execution time of the skipped
instructions is not included in the scan time. Two or more JP functions with the
same number Num* can be used in a program. However, no two LBL
instructions may be identically numbered. LBL instructions are specified as
destinations of JP, LOOP (see page 831) and F19_SJP instructions.

One JP and LBL instruction pair can be programmed between another pair. This
construction is called nesting.

• It is not possible to use this function in a function block POU.

• The maximum possible value that can be assigned to Num* depends
on the PLC type.

PLC types: Availability of JP (see page 933)

Variable Data type Function
Num* constant Constant number that must correspond to LBL number, this

"nested" program is jumped over

LD start (* EN = start; Starting signal for the JP function. *)
JP 1 (* Num* = 1 (Address of Label) *)

Description The JP (Jump to Label) instruction skips to the Label (LBL (see page 832))
function that has the same number Num* as the JP function when the
predetermined trigger EN is in the ON-state.

Data types

Example In this example, the programming language Instruction List (IL) is used.

IL

FPWIN Pro Programming

Program Execution Control Functions

831

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LOOP Loop to label Steps: 4

The LBL instructions are specified as destination of the LOOP instruction. It is
not possible to specify two or more LBL instructions with the same number Num*
within a program. If the set value s in the data area is "0" from the beginning, the
LOOP instruction is not executed (ignored).

 • It is not possible to use this function in a function block POU.

• The maximum possible value that can be assigned to Num* depends
on the PLC type.

PLC types: Availability of LOOP (see page 933)

Variable Data type Function
s INT, WORD Set value

Num* constant Constant number that must correspond to LBL number, this
"nested" program is looped until the variable at s reaches 0

For Relay T/C Register Constant
s WX WY WR WL SV EV DT LD FL -

Description LOOP (Loop to Label) instruction skips to the LBL (see page 832) instruction with
the same number Num* as the LOOP instruction and repeats execution of what
follows until the data of a specified operand becomes "0".

Data types

Operands

Example

Program Execution Control Functions

FPWIN Pro Programming

832

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

LBL Label for the JP- and LOOP-instruction Steps: 1

Skips to the LBL instruction with the same number Num* as the (see page
831)LOOP instruction and repeats execution of what follows until the data of a
specified operand becomes "0".

 • It is not possible to use this function in a function block POU.

• The maximum possible value that can be assigned to Num*
depends on the PLC type.

PLC types: Availability of LBL (see page 933)

Variable Data type Function
Num* constant Constant number that must correspond to JP, LOOP or F19

label number

Description The LBL (Label for the JP and LOOP) instruction skips to the LBL instruction
with the same number Num* as the JUMP (see page 830) instruction if the
predetermined trigger EN is in the ON-state.

Data types

Example

FPWIN Pro Programming

Program Execution Control Functions

833

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

ICTL Interrupt Control

The number of interrupt programs available is:

Be sure to use ICTL instructions so that they are executed once at the leading
edge of the ICTL trigger using the DF instruction.

Two or more ICTL instructions can have the same trigger.

Bit 15 .. 8 7 .. 0
s1 16# Selection of control function

00: Interrupt "enable/disable" control

01: Interrupt trigger reset control

Interrupt type selection
00: Interrupt module
 initiated interrupt (INT 0-15)
01: Advanced module
 initiated interrupt (INT 16-23)
02: Time-initiated interrupt (INT 24)

s2 2# Bit 0: 0 Interrupt program 0 disabled
Bit 0: 1 Interrupt program 0 enabled
Bit 1: 0 Interrupt program 1 disabled
...
Bit 15: 1 Interrupt program 15 enabled
Example: s2 = 2#0000000000001010

Description The ICTL instruction sets all interrupts to enable or disable. Each time the ICTL
instruction is executed, it is possible to set parameters like the type and validity of
interrupt programs. Settings can be specified by s1 and s2.

 s1 16-bit equivalent constant or 16-bit area for interrupt control
setting

 s2 16-bit equivalent constant or 16-bit area for interrupt trigger
condition setting

 16 interrupt module initiated interrupt programs (INT 0 to INT 15)
 8 advanced module (special modules, like positioning,...) initiated

interrupt programs (INT 16 to INT 23)

Program Execution Control Functions

FPWIN Pro Programming

834

Pa
rt

 II
I

F/
P

In
st

ru
ct

io
ns

 • The current enable/disable status of each interrupt module initiated
interrupt can be checked by monitoring the special data register
DT90025.

• The current enable/disable status of each non-interrupt module
initiated interrupt can be checked by monitoring the special data
register DT90026.

• The current interrupt interval of the time-interrupt can be checked
by monitoring the special data register DT90027.

• If a program is written into an interrupt task, the interrupt concerned
will be enabled automatically during the initialization routine when
starting the program.

• With the ICTL instruction an interrupt task can be enabled or
disabled by the program.

PLC types: Availability of ICTL (see page 932)

Variable Data type Function
s1 INT, WORD Interrupt control data setting

s2 INT, WORD Interrupt condition setting

For Relay T/C Register Constant
s1, s2 - WY WR WL SV EV DT LD FL dec. or hex.

 Class Identifier Type Initial Comment
0 VAR Var_1 WORD 16#0002 Input parameter s1
1 VAR Var_2 WORD 10 Input parameter s2
2 VAR start BOOL FALSE Enable signal

Data types

Operands

Example In this example, the same POU header is used for all programming languages.
Please refer to the online help for an example using IL (instruction list).

POU
Header

In the POU header, all input and output variables are declared that are used for
programming this function.

Body The interval for executing INT 24 program is specified as 100 ms (10ms time
base selected) when the leading edge of start is detected.

LD

Chapter 32
 Appendix Programming Information

Appendix Programming Information

FPWIN Pro Programming

836

32.1 FP TOOL Library
The NC TOOL Library contains advanced address, information and copy functions available
for all PLCs to make programming easier. Below please find a selection of these functions.
For more detailed information and examples, see Online help.

Program can be adversely effected!
These functions can cause substantial problems by
accessing incorrect memory areas if they are not
used in the sense they were meant for. Especially
other parts of the program can be adversely effected.

Name Function

Addresses Instructions
Adr_Of_Var Address of a variable at the input/output of a FP function

AdrLast_Of_Var Address of a variable at the input/output of a FP function

Adr_Of_VarOffs Address of a variable with offset at the input/output of a FP function

Pointers Instructions
AdrDT_Of_Offs DT address from the address offset for the input/output of a FP function

AdrFL_Of_Offs_I FL address from the address offset for the input/output of a FP function

AreaOffs_OfVar Yields memory area and address offset of a variable (with Enable)

Is_AreaDT Yields TRUE if the memory area of a variable is a DT area (with Enable)

Is_AreaFL Yields TRUE if the memory area of a variable is a FL area (with Enable)
AreaOffs_ToVar Copies the content of an address specified by memory area and address

offset to a variable (with Enable)
Var_ToAreaOffs Copies the value of a variable to an address specified by memory area and

address offset to a variable (with Enable)

Size Information Instructions
Size_Of_Var Yields the size of a variable in words (with Enable)

Elem_OfArray1D Yields the number of elements in an array (with Enable)

Elem_OfArray2D Yields the number of elements of the 1st and 2nd dimension of an array (with
Enable)

Elem_OfArray3D Yields the number of elements of the 1st, 2nd and 3rd dimension of an array
(with Enable)

Additional Copy Instructions

 This functions are allowed to be compiled because of the down-
compatibility to lower versions but cannot be selected in the
OP/FUN/FB dialog anymore.

Any16_ToBool16 Replaced from version 5 onwards by the function INT_TO_BOOL16 or
WORD_TO_BOOL16.

Bool16_ToAny16 Replaced from version 5 onwards by the function BOOL16_TO_INT or
BOOL16_TO_WORD.

Any32_ToBool32 Replaced from version 5 onwards by the function DINT_TO_BOOL32 or
DWORD_TO_BOOL32.

FPWIN Pro Programming

Appendix Programming Information

837

Name Function

Bool32_ToAny32 Replaced from version 5 onwards by the function BOOL32_TO_DINT or
BOOL32_TO_DWORD.

Any16_ToSpecDT Replaced from version 5 onwards by the function INT_TO_SDT or
WORD_TO_SDT.

SpecDT_ToAny16 Replaced from version 5 onwards by the function SDT_TO_INT or
SDT_TO_WORD.

Any32_ToSpecDT Replaced from version 5 onwards by the function DINT_TO_SDDT or
DWORD_TO_SDDT.

SpecDT_ToAny32 Replaced from version 5 onwards by the function SDDT_TO_DINT or
SDDT_TO_DWORD.

SFC Control Instructions

Instructions that control all SFC programs simultaneously
StartStopAllSfcs
StartStopAllSfcsAndInitData

Stops and restarts all Sequential Function Chart (SFC) programs

A function that reveals the status of all SFCs
AllSfcsStopped Indicates whether all Sequential Function Chart (SFC) programs were stopped

Instructions that control a specific SFC
StartStopSfc
StartStopSfcAndInitData

Stops and restarts a specific Sequential Function Chart (SFC) program

ControlSfc
ControlSfcAndData

Controls a specific Sequential Function Chart (SFC) program

ActivateStepsOfStoppedSfc Continues a Sequential Function Chart (SFC) program that has been stopped

Instructions that reveal the statuses of a specific SFC
SfcStopped Indicates whether a specific Sequential Function Chart (SFC) program was

stopped

SfcTransitionsInhibited Indicates whether the transitions of a specific Sequential Function Chart (SFC)
program are locked

SfcRunning Indicates whether a certain Sequential Function Chart (SFC) program is
running

SfcOutputsReset Indicates whether the inputs of a specific Sequential Function Chart (SFC)
program have been reset

Appendix Programming Information

FPWIN Pro Programming

838

32.2 Floating Point Instructions
The floating point F/P instructions are designed specifically for applications that require
variables of the data type REAL. Most of these can be replaced by the more flexible IEC
commands. By doing so you will reduce the number of commands with which you need to be
familiar.

The following floating point instructions are described in detail in this manual because they are
not easily duplicated with IEC instructions: F327_INT (see page 651), F328_DINT (see page
653), F333_FINT (see page 655), F334_FRINT (see page 657), F335_FSIGN (see page
659), F337_RAD (see page 661) and F338_DEG (see page 663).

For details and examples on the other floating point instructions, see Online help. For quick
reference, please refer to the table below.
Name Function Equivalent IEC function

F309_FMV Constant floating point data move E_MOVE

F310_FADD Floating point data add E_ADD

F311_FSUB Floating point data subtract E_SUB

F312_FMUL Floating point data multiply E_MUL

F313_FDIV Floating point data divide E_DIV

F314_FSIN Floating point Sine operation E_SIN

F315_FCOS Floating point Cosine operation E_COS

F316_FTAN Floating point Tangent operation E_TAN

F317_ASIN Floating point Arcsine operation E_ASIN

F318_ACOS Floating point Arccosine operation E_ACOS

F319_ATAN Floating point Arctangent operation E_ATAN

F320_LN Floating point data natural logarithm E_LN

F321_EXP Floating point data exponent E_EXP

F322_LOG Floating point data logarithm E_LOG

F323_PWR Floating point data power E_EXPT

F324_FSQR Floating point data square root E_SQRT

F325_FLT 16-bit integer → Floating point data E_INT_TO_REAL

F326_DFLT 32-bit integer → Floating point data E_DINT_TO_REAL

F329_FIX Floating point data → 16-bit integer
Rounding the first decimal point down

E_TRUNC_TO_INT

F330_DFIX Floating point data → 32-bit integer
Rounding the first decimal point down

E_TRUNC_TO_DINT

F331_ROFF Floating point data → 16-bit integer
Rounding the first decimal point off

E_REAL_TO_INT

F332_DROFF Floating point data → 32-bit integer
Rounding the first decimal point off

E_REAL_TO_DINT

F336_FABS Floating point data absolute E_ABS

F345_FCMP Floating point data compare E_GE, E_GT, E_EQ, E_LE,
E_LT, E_NE

F347_FLIMT Floating point data upper and lower limit control E_LIMIT

FPWIN Pro Programming

Appendix Programming Information

839

32.3 Relays, Memory Areas and Constants

32.3.1 Relays, Memory Areas and Constants for FP-Sigma

Memory area available for
use

Item

Number
of points

F/P IEC

Function

External input
relay (see note
1)

1184 X0-X73F %IX0.0-
%IX73.15

Turns on or off based on
external input.

External output
relay (see note
1)

1184

Y0-Y73F %QX0.0-
%QX73.15

Externally outputs on or off
state.

Internal relay
(see note 2)

1568

R0-R97F %MX0.0-
%MX0.97.15

Turns on or off only within a
program.

Link relay
(see note 2)

1024

L0-L63F %MX7.0.0-
%MX7.63.15

Shared relay used for PLC link.

Timer
(see notes 2
and 3)

1024 T0-T1007/
C1008-C1023

%MX1.0-
%MX1.1007/
%MX2.1008-
%MX2.1023

Goes on when the timer
reaches the specified time.
Corresponds to the timer
number.

Counter
(see notes 2
and 3)

1024 C1008-C1023/
T0-T1007

%MX2.1008-
%MX2.1023/
%MX1.0-
%MX1.1007

Goes on when the timer
increments.
Corresponds to the timer
number.

Relay

Special internal
relay

176

R9000-R910F %MX0.900.0-
%MX0.910.15

Turns on or off based on
specific conditions. Used as a
flag.

External input
relay (see note
1)

74 words

WX0-WX73 %IW0-
%IW73

Code for specifying 16 external
input points as one word (16
bits) of data.

External output
relay (see note
1)

74 words

WY0-WY73 %QW0-
%QW73

Code for specifying 16 external
output points as one word (16
bits) of data.

Internal relay
(see note 2)

98 words

WR0-WR97 %MW0.0-
%MW0.97

Code for specifying 16 internal
relay points as one word (16
bits) of data.

Link relay 64 words

WL0-WL63 %MW7.0-
%MW7.63

Code for specifying 16 link relay
points as one word (16 bits) of
data.

Data register
(see note 2)

32765
words

DT0-DT32764 %MW5.0-
%MW5.32764

Data memory used in a
program. Data is handled in 16-
bit units (one word).

Link data regis-
ter
(see note 2)

128 words

LD0-LD127 %MW8.0-
%MW8.127

A shared data memory which is
used within the PLC link. Data
is handled in 16-bit units (one
word).

Me-
mory
area
(words)

Timer/counter
set
value area
(see note 2)

1024 words

SV0-SV1023 %MW3.0-
%MW3.1023

Data memory for storing a
target value of a timer and an
initial value of a counter. Stores
by timer/counter number.

Appendix Programming Information

FPWIN Pro Programming

840

Memory area available for
use

Item

Number
of points

F/P IEC

Function

External input
relay (see note
1)

1184 X0-X73F %IX0.0-
%IX73.15

Turns on or off based on
external input.

Timer/counter
elapsed value
area (see note
2)

1024 words

EV0-EV1023 %MW4.0-
%MW4.1023

Data memory for storing the
elapsed value during operation
of a timer/counter. Stores by
timer/counter number.

Special data
register

260 words

DT90000-
DT90259

%MW5.90000-
%MW5.90259

Data memory for storing
specific data. Various settings
and error codes are stored.

Index register 14 words

I0-ID %MW6.0-
%MW6.14

Can be used as an address of
memory area and constants
modifier.

External input
relay (see note
1)

16 double
words

DWX0-DWX30 %ID0-
%ID30

Code for specifying 32 external
input points as a double word
(32 bits) of data.

External input
relay (see note
1)

37 double
words

DWX0-DWX73 %ID0-
%ID73

Code for specifying 32 external
input points as a double word
(32 bits) of data.

External output
relay (see note
1)

16 double
words

DWY0-DWY30 %QD0-
%QD30

Code for specifying 32 external
output points as double word
(32 bits) of data.

External output
relay (see note
1)

37 double
words

DWY0-DWY73 %QD0-
%QD73

Code for specifying 32 external
output points as double word
(32 bits) of data.

Internal relay
(see note 2)

49 double
words

DWR0-DWR96 %MD0.0-
%MD0.96

Code for specifying 32 internal
relay points as double word (32
bits) of data.

Link relay 32 double
words

DWL0-DWL62 %MD7.0-
%MD7.62

Code for specifying 32 link relay
points as double word (32 bits)
of data.

Data register
(see note 2)

16382
double
words

DDT0-
DDT32763

%MD5.0-
%MD5.32763

Data memory used in a
program. Data is handled in 32-
bit units (double word).

Link data
register
(see note 2)

64 double
words

DLD0-DLD126 %MD8.0-
%MD8.126

A shared data memory which is
used within the PLC link. Data
is handled in 32-bit units
(double word).

Timer/counter
set
value area
(see note 2)

512 double
words

DSV0-DSV1022 %MD3.0-
%MD3.1022

Data memory for storing a
target value of a timer and an
initial value of a counter. Stores
by timer/counter number.

Timer/counter
elapsed value
area (see note
2)

512 double
words

DEV0-DEV1022 %MD4.0-
%MD4.1022

Data memory for storing the
elapsed value during operation
of a timer/counter. Stores by
timer/counter number.

Memory
area
(double
word)
(see
note 4)

Special data
register

130 double
words

DDT90000-
DDT90258

%MD5.90000-
%MD5.90258

Data memory for storing
specific data. Various settings
and error codes are stored.

FPWIN Pro Programming

Appendix Programming Information

841

Memory area available for
use

Item

Number
of points

F/P IEC

Function

External input
relay (see note
1)

1184 X0-X73F %IX0.0-
%IX73.15

Turns on or off based on
external input.

 Index register 7 double
words

DI0-DIC %MD6.0-
%MD6.13

Can be used as an address of
memory area and constants
modifier.

Range available for use Item
F/P IEC

K-32768 to K32767 (for 16-bit
operation)

-32768 to 32767 (for 16-bit operation) Decimal con-
stants (integer
type) K-2147483648 to K2147483647

(for 32-bit operation)
-2147483648 to 2147483647
(for 32-bit operation)

H0 to HFFFF (for 16-bit operation) 16#0 to 16#FFFF (for 16-bit operation) Hexadecimal
constants H0 to HFFFFFFFF (for 32-bit operation) 16#0 to 16#FFFFFFFF (for 32-bit

operation)

F-3.402823 1038 to F-1.175494 10-38 -3.402823E38 to -1.17549410E-38

Con-
stant

Decimal con-
stants (monore-
fined real number) F1.175494 10-38 to F3.402823 1038 1.17549410E-38 to 3.402823E38

1. The number of points noted above is the number reserved as the

calculation memory. The actual number of points available for use is
determined by the hardware configuration.

2. If no battery is used, only the fixed area is backed up (counters 16 points:
C1008 to C1023, internal relays 128 points: R900 to R97F, data registers:
DT32710 to DT32764). When the optional battery is used, data can be
backed up. Areas to be held and not held can be specified using the system
registers.

3. The points for the timer and counter can be changed by the setting of
system register 5. The number given in the table are the numbers when
system register 5 is at its default setting.

Appendix Programming Information

FPWIN Pro Programming

842

32.3.2 Relays, Memory Areas and Constants for FP-X

Relays

Item Number of points available Function
External input (X)
(see note 1)

1760 points (X0 to X109F) Turns on or off based on external input.

External output (Y)
(see note 1)

1760 points (Y0 to Y109F) Externally outputs on or off state

Internal relay (R)
(see note 2)

4096 points (R0 to R255F) Relay which turns on or off only within
program.

Link relay (L)
(see note 2)

2048 points (L0 to L127F) This relay is a shared relay used for PLC
link.

Timer (T)
(see note 2)

This goes on when the timer reaches the
specified time. It corresponds to the timer
number.

Counter (C)
(see note 2)

1024 points (T0 to T1007/C1008 to
C1023)
(see note 3)

This goes on when the timer increments.
It corresponds to the timer number.

Special internal relay
(R)

192 points (R9000 to R911F) Relay which turns on or off based on
specific conditions and is used as a flag.

Memory areas

Item Range of memory area available
C14, C30/C60

Function

External input (WX)
(see note 1)

110 words (WX0 to WX109) Code for specifying 16 external input points as
one word (16 bits) of data.

External output (WY)
(see note 1)

110 words (WY0 to WY109) Code for specifying 16 external output points
as one word (16 bits) of data.

Internal relay (WR)
(see note 2)

256 words (WR0 to WR255) Code for specifying 16 internal relay points as
one word (16 bits) of data.

Link relay (WL) 128 words (WL0 to WL127) Code for specifying 16 link relay points as one
word (16 bits) of data.

Data register (DT)
(see note 2)

12285 words
(DT0 to
DT12284)

32765 words (DT0
to DT32764)

Data memory used in program. Data is
handled in 16-bit units (one word).

Link register (LD)
(see note 2)

256 words (LD0 to LD255) This is a shared data memory which is used
within the PLC link. Data is handled in 16-bit
units (one word).

Timer/Counter set
value area (SV)
(see note 2)

1024 words (SV0 to SV1023) Data memory for storing a target value of a
timer and setting value of a counter. Stores by
timer/counter number

Timer/Counter elapsed
value area (EV)
(see note 2)

1024 words (EV0 to EV1023) Data memory for storing the elapsed value
during operation of a timer/counter. Stores by
timer/counter number.

FPWIN Pro Programming

Appendix Programming Information

843

Item Range of memory area available
C14, C30/C60

Function

Special data register
(DT)

374 words (DT90000 to DT90373) Data memory for storing specific data. Various
settings and error codes are stored.

Index register (I) 14 words (I0 to ID) Register can be used as an address of
memory area and constants modifier.

Constants

Item Range of memory area available
K-32, 768 to K32, 767 (for 16-bit operation) Decimal constants

(Integer type) (K) K-2, 147, 483, 648 to K2, 147, 483, 647 (for 32-bit operation)

H0 to HFFFF (for 16-bit operation) Hexadecimal constants
(H) H0 to HFFFFFFFF (for 32-bit operation)

F-1.175494 x 10-38 to F-3.402823 x 1038 Decimal constants
(Floating point type) (F) F 1.175494 x 10-38 to F 3.402823 x 1038

1. The number of points noted is the number reserved for the calculation

memory. The actual number of points available for use depends on the
hardware configuration.

2. If no batter is used, only the fixed area is backed up (counters 16 points:
C1008 to C1023, internal relays 128 points: R2470 to R255F, data registers
55 words, C14: DT12230 to DT12284, C30/C60: DT32710 to DT32764).
Writing is available up to 10000 times. When the optional battery is used, all
area can be backed up. Areas to be held and not held can be specified using
the system registers. If an area is held and the backup battery is not
installed, the data may be corrupted as it is not cleared to 0 when the power
is turned on. If the battery goes dead, the data in the hold area may likewise
be corrupted.

3. The points for the timer and counter can be changed via system register 5.
The numbers given in the table are the default settings for system register 5.

Appendix Programming Information

FPWIN Pro Programming

844

32.4 System Registers
System registers are used to set values (parameters) which determine operation ranges and
functions used. Set values based on the use and specifications of your program. There is no
need to set system registers for functions which will not be used.

32.4.1 Precautions When Setting System Registers

System register settings are effective from the time they are set.

However, MEWNET-W0 PLC link settings, input settings, Tool and COM port communication
settings become effective when the mode is changed from PROG to RUN. With regard to the
modem connection setting, when the power is turned off and on or when the mode is changed
from PROG to RUN, the controller sends a command to the modem which enables it for
reception.

When the initialization operation is performed, all system register values (parameters) set will
be initialized.

32.4.2 Types of System Registers

Hold/non-hold type settings (system registers 5 to 8, 10, 12 and 14)
The values for the timer and counter can be specified by using system register no. 5 to specify
the first number of the counter. System registers no. 6 to no. 8, no. 10, no. 12, and no. 14 are
used to specify the area to be held when a battery is used.

Operation mode settings for errors (system registers 4, 20, 23 and 26)
Set the operation mode when errors such as battery error, duplicated use of output, I/O
verification error and operation error occur.

Time settings (system registers 31 to 34)
Set time-out error detection time and constant scan time.

MEWNET-W0 PLC link settings (system registers 40 to 45, and 47)
These settings are for using link relays and link registers in MEWNET-W0 PLC link
communication. Note that PLC link is not the default setting.

Input settings (system register 400 to 403)
When using the high-speed counter function, pulse catch function or interrupt function, set the
operation mode and the input number to be used for the function.

FPWIN Pro Programming

Appendix Programming Information

845

Tool and COM port communication settings (system registers 410 to 419)
Set these registers when the Tool port, and COM1 and COM2 ports are to be used for
computer link, general-purpose serial communication, PLC link, and modem communication.
Note that the default setting is computer link mode.

The default setting is computer link mode. With FPG-COM4, the transmission
speed setting for the RS485 port (COM2) set in the system registers and using
the DIP switch on the communication cassette must be the same.

32.4.3 Checking and Changing System Registers

1. Double-click “PLC” in the project navigator

2. Double-click “System Registers”

3. To change a set value, write the new value as indicated in the system
register table

4. Online → Online mode

5. Online → Download Program Code and PLC Configuration
This downloads the project and system registers.

To download system registers only: Online → PLC Configuration, select “System Registers”,
choose [Download to PLC].

Appendix Programming Information

FPWIN Pro Programming

846

32.4.4 Table of System Registers for FP-Sigma

Item No. Name Default
value

Descriptions

5 Starting number setting for counter 1008 0 to 1024

6 Hold type area starting number
setting for timer and counter

1008 0 to 1024

7 Hold type area starting number
setting for internal relays

90 0 to 98

8 Hold type area starting number
setting for data registers

32710 0 to 32765

Hold/
Non-
hold 1

14 Hold or non-hold setting for step
ladder process

Non-hold Hold/Non-hold

• These settings are
effective if the optional
backup battery is
installed
• If no backup battery is
used, do not change the
default settings.
Otherwise proper
functioning of hold/non-
hold values cannot be
guaranteed.

10 Hold type area starting number for
PLC link relays

64 0 to 64 Hold/
Non-
hold 2 12 Hold type area starting number for

PLC link registers
128 0 to 128

20 Disable or enable setting for
duplicated output

Yes Fixed

23 Operation setting when an I/O
verification error occurs

Stop Stop/Continuation of operation

26 Operation setting when an operation
error occurs

Stop Stop/Continuation of operation

Action
on
error

4 Alarm Battery Error
(Operating setting when battery error
occurs)

Disabled Disabled: When a battery error occurs, a
self-diagnostic error is not issued and the
ERROR/ALARM LED does not light.
Enabled: When a battery error occurs, a
self-diagnostic error is issued and the
ERROR/ALARM LED lights.

31 Wait time setting for multi-frame
communication

6500.0 ms 10 to 81900 ms Time
setting

34 Constant value settings for scan time 0.0 ms 0: Normal scan
0 to 350 ms: Scans once each specified
time interval.

40 Range of link relays used for PLC link 0 0 to 64 words

41 Range of link data registers used for
PLC link

0 0 to 128 words

42 Starting number for link relay
transmission

0 0 to 63

43 Link relay transmission size 0 0 to 64 words

44 Starting number for link data register
transmission

0 0 to 127

45 Link data register transmission size 0 0 to 127 words

PLC
link
setting

47 Maximum unit number setting for
MEWNET-W0 PLC link

16 1 to 16

FPWIN Pro Programming

Appendix Programming Information

847

Item No. Name Default
value

Descriptions

CH0:
Do not set
input X0 as
high-speed
counter

CH0 Do not set input X0 as high-
speed counter.
Two-phase input (X0, X1)
Two-phase input (X0, X1), reset
input (X2)
Incremental input (X0)
Incremental input (X0), reset
input (X2)
Decremental input (X0)
Decremental input (X0), reset
input (X2)
Incremental/decremental input
(X0, X1)
Incremental/decremental input
(X0, X1), reset input (X2)
Incremental/decremental control
input (X0, X1)
Incremental/decremental control
input (X0, X1), reset input (X2)

400 High-speed counter operation mode
settings (X0 to X2)
(see notes 1, 2, 4)

CH1:
Do not set
input X1 as
high-speed
counter

CH1 Do not set input X1 as high-
speed counter.
Incremental input (X1)
Incremental input (X1), reset
input (X2)
Decremental input (X1)
Decremental input (X1), reset
input (X2)

CH2:
Do not set
input X3 as
high-speed
counter

CH2 Do not set input X3 as high-
speed counter.
Two-phase input (X3, X4)
Two-phase input (X3, X4), reset
input (X5)
Incremental input (X3)
Incremental input (X3), reset
input (X5)
Decremental input (X3)
Decremental input (X3), reset
input (X5)
Incremental/decremental input
(X3, X4)
Incremental/decremental input
(X3, X4), reset input (X5)
Incremental/decremental control
input (X3, X4)
Incremental/decremental control
input (X3, X4), reset input (X5)

High-
speed
coun-
ter

401 High-speed counter operation mode
settings (X3 to X5)
(see notes 1, 2, 4)

CH3:
Do not set
input X4 as
high-speed
counter

CH3 Do not set input X4 as high-
speed counter.
Incremental input (X4)
Incremental input (X4), reset
input (X5)
Decremental input (X4)
Decremental input (X4), reset
input (X5)

Inter-
rupt
input

402 Pulse catch input settings
(see notes 3, 4)

Not set

Specify the input contacts used as pulse
catch input.

Appendix Programming Information

FPWIN Pro Programming

848

Item No. Name Default
value

Descriptions

 403 Interrupt input settings
(see notes 3, 4)

Not set

Specify the input contacts used as interrupt
input.

Specify the effective interrupt edge.
(When set: on → off is valid.)

410 Unit no. setting 1 1 to 99

412 Selection of modem connection Disabled Enabled/Disabled

413 Communication format setting Data length:
8 bits,
Parity check:
“with, odd”
Stop bit: 1 bit

Enter the settings for the various items.
Data length: 7bits/8bits
Parity check: none/with odd/with even
Stop bit: 1bit/2bits

Tool
port
setting

415 Communication speed (Baud rate)
setting

9600 bps 2400 bps
4800 bps
9600 bps
19200 bps
38400 bps
57600 bps
115200 bps

410 Unit no. setting 1 0 to 99

Communication mode setting MEWTO-
COL-COM
Slave

MEWTOCOL-COM Slave
Program controlled communication
PLC Link

412

Selection of modem connection Disabled Enabled/Disabled

413 Communication format setting Data length:
8 bits,
Parity check:
“with, odd”
Stop bit: 1 bit

Enter the settings for the various items.
Data length: 7bits/8bits
Parity check: none/with odd/with even
Stop bit: 1bit/2bits
The following setting is valid only when the
communication mode specified by system
register 412 has been set to "Program
controlled communication".
Terminator: CR/CR+LF/None
Header: STX not exist/STX exist

415 Communication speed (Baud rate)
setting

9600 bps 2400 bps
4800 bps
9600 bps
19200 bps
38400 bps
57600 bps
115200 bps

416 Starting address for received buffer of
program controlled
communication mode

0 0 to 32764

COM.1
port
setting

417 Buffer capacity setting for data
received of program controlled
communication mode

2048 0 to 2048

COM.2 411 Unit no. setting 1 1 to 99

FPWIN Pro Programming

Appendix Programming Information

849

Item No. Name Default
value

Descriptions

Communication mode setting MEWTO-
COL-COM
Slave

MEWTOCOL-COM Slave
Program controlled communication

412

Selection of modem connection Disabled Enabled/Disabled

414 Communication format setting Data length:
8 bits,
Parity check:
“with, odd”
Stop bit: 1 bit

Enter the settings for the various items.
Data length: 7bits/8bits
Parity check: none/with odd/with even
Stop bit: 1bit/2bits
The following setting is valid only when the
communication mode specified by system
register 412 has been set to "Program
controlled communication".
Terminator: CR/CR+LF/None
Header: STX not exist/STX exist

415 Communication speed (Baud rate)
setting

9600 bps 2400 bps
4800 bps
9600 bps
19200 bps
38400 bps
57600 bps
115200 bps

418 Starting address for received buffer of
program controlled
 communication mode

2048 0 to 32764

port
setting

419 Buffer capacity setting for data
received of program controlled
communication mode

2048 0 to 2048

1. If the operation mode is set to two-phase, incremental/decremental, or

incremental/decremental control, the setting for CH1 is invalid in part 2 of
system register 400 and the setting for CH3 is invalid in part 2 of system
register 401.

2. If reset input settings overlap, the CH1 setting takes precedence in system
register 400 and the CH3 setting takes precedence in system register 401.

3. The settings for pulse catch and interrupt input can only be specified in
system registers 402 and 403.

4. If system registers 400 to 403 have been set simultaneously for the same
input relay, the following precedence order is effective:
1. High-speed counter
2. Pulse catch
3. Interrupt input.
This means, the counter keeps counting even after an interrupt. However,
the response time of the high-speed counter is about 100 μs, that of the
pulse catch input is about 200 μs. Therefore, the interrupt is recognized
quickly enough.

Appendix Programming Information

FPWIN Pro Programming

850

5. The communication format in a PLC link is fixed at the following settings:
Data length 8 bits, odd parity, stop bit 1. The communication speed (baud
rate) is fixed at 115,200 bps. Other system register settings will be ignored.
With FPG-COM4, the transmission speed setting for the RS485 port (COM2)
set in the system registers and using the DIP switch on the communication
cassette must be the same.

32.4.5 Table of System Registers for FP-X

Hold/Non-hold

Address Name Default
value

Description

5 Starting number setting for counter 1008 0 to 1024

6 Hold type area starting number setting
for timer and counter

1008 0 to 1024

7 Hold type area starting number setting
for internal relays

248 0 to 256

8 Hold type area starting number setting
for data registers

C14: 12230
C30, C60:
32710

0 to 32765

14 Hold or non-hold setting for step
ladder process

Non-hold Hold/
Non-hold

4 Previous value is held for a leading
edge detection instruction (DF
instrucion) with MC

Hold Hold/
Non-hold

These settings are effective if
the optional backup battery
is installed.

If no backup battery is used,
do not change the default
settings. Otherwise proper
functioning of hold/non-hold
values cannot be
guaranteed.

10 Hold type area starting number for
PLC W0-0 link relays

64 0 to 64

11 Hold type area starting number for
PLC W0-1 link relays

128 64 to 128

12 Hold type area starting number for
PLC W0-0 link registers

128 0 to 128

13 Hold type area starting number for
PLC W0-1 link registers

256 128 to 256

Action on error

Address Name Default
value

Description

20 Disable or enable setting for
duplicated output

Disabled Disabled/Enabled

23 Operation setting when an I/O
verification error occurs

Stop Stop/Continuation of operation

26 Operation setting when an operation
error occurs

Stop Stop/Continuation of operation

4 Alarm battery error
(Operating setting when battery error
occurs)

Disabled Disabled: When a battery error occurs, a
self-diagnostic error is not issued
and the ERROR/ALARM LED
does not flash.

FPWIN Pro Programming

Appendix Programming Information

851

Address Name Default
value

Description

 Enabled: When a battery error occurs, a
self-diagnostic error is issued
and the ERROR/ALARM LED
flashes.

Time setting
Address Name Default

value
Description

31 Wait time setting for multi-frame
communication

6500.0ms 10 to 81900ms

32 Timeout setting for SEND/RECV,
RMRD/RMWT commands

10000.0ms 10 to 81900ms

34 Constant value settings for scan time Normal scan 0: Normal scan
0 to 350 ms: Scans once each specified time
interval

PLC W0-0 setting

Address Name Default
value

Description

40 Range of link relays used for PLC link 0 0 to 64 words

41 Range of link data registers used for PLC
link

0 0 to 128 words

42 Starting number for link relay transmission 0 0 to 63

43 Link relay transmission size 0 0 to 64 words

44 Starting number for link data register
transmission

0 0 to 127

45 Link data register transmission size 0 0 to 127 words

46 PLC link switch flag Normal Normal/reverse

47 Maximum unit number setting for
MEWNET-W0 PLC link

16 1 to 16

PLC W0-1 setting

Address Name Default
value

Description

50 Range of link relays used for PLC link 0 0 to 64 words

51 Range of link data registers used for PLC
link

0 0 to 128 words

52 Starting number for link relay transmission 64 64 to 127

53 Link relay transmission size 0 0 to 64 words

54 Starting number for link data register
transmission

128 128 to 255

55 Link data register transmission size 0 0 to 127 words

57 Maximum unit number setting for
MEWNET-W0 PC(PLC) link

16 1 to 16

Appendix Programming Information

FPWIN Pro Programming

852

Pulse I/O cassette (AFPX-PLS)

Address Name Default value Description
CH8:
Do not set input
X100 as high-speed
counter

CH8 Do not set input X100 as high-speed counter.
Two-phase input (X100, X101)
Two-phase input (X100, X101), Reset input
(X102)
Incremental input (X100)
Incremental input (X100), Reset input (X102)
Decremental input (X100)
Decremental input (X100), Reset input (X102)
Incremental/decremental input (X100, X101)
Incremental/decremental input (X100, X101),
Reset input (X102)
Incremental/decremental control input (X100,
X101)
Incremental/decremental control input (X100,
X101), Reset input (X102)

High-speed counter
operation mode
settings (X100 to
X102)

CH9:
Do not set input
X101 as high-speed
counter

CH9 Do not set input X101 as high-speed counter.
Incremental input (X101)
Incremental input (X101), Reset input (X102)
Decremental input (X101)
Decremental input (X101), Reset input (X102)

400

Pulse output
operation mode

CH0:
Use output as
normal output.

CH0 Use output as normal output.
Use output Y100 to Y102 as pulse output.
Use output Y100 as PWM output.

CHA:
Do not set input
X200 as high-speed
counter

CHA Do not set input X200 as high-speed counter.
Two-phase input (X200, X201)
Two-phase input (X200, X201), Reset input
(X202)
Incremental input (X200)
Incremental input (X200), Reset input (X202)
Decremental input (X202)
Decremental input (X202), Reset input (X202)
Incremental/decremental input (X200, X201)
Incremental/decremental input (X200, X201),
Reset input (X202)
Incremental/decremental control (X200, X201)
Incremental/decremental control (X200, X201),
Reset input (X202)

High-speed counter
operation mode
settings (X200 to
X202)

CHB:
Do not set input
X201 as high-speed
counter

CHB Does not set input X201 as high-speed
counter.
Incremental input (X201)
Incremental input (X201), Reset input (X202)
Decremental input (X201)
Decremental input (X201), Reset input (X202)

401

Pulse output
operation mode

CH1:
Use output as
normal output.

CH1 Use output as normal output.
Use output Y200 to Y202 as pulse output.
Use output Y200 as PWM output.

• If the operation mode is set to two-phase, incremental/decremental, or

incremental/decremental control, the setting for CH9 is invalid in system
register 400 and the setting for CHB is invalid in system register 401.

FPWIN Pro Programming

Appendix Programming Information

853

• If reset input settings overlap, the CH9 setting takes precedence in system
register 400 and the CHB setting takes precedence in system register 401.

• CHA, CHB and CH1 input signals in system register 401 are the signals
when the pulse I/O cassette (AFPX-PLS) is installed in the cassette
mounting part 2.

• If the operation mode setting for the pulse output CH0 and CH1 is carried
out, it cannot be used as normal output.
When the operation mode for the pulse output CH0 is set to 1, the reset
input setting for the high-speed counter CH8 and CH9 is invalid.
When the operation mode for the pulse output CH1 is set to 1, the reset
input setting for the high-speed counter CHA and CHB is invalid.

High-speed counter, interrupt inputs

Address Name Default value Description
CH0:
Do not set input X0
as high-speed
counter

CH0 Do not set input X0 as high-speed counter.
Incremental input (X0)
Decremental input (X0)
Two-phase input (X0, X1)

CH1:
Do not set input X1
as high-speed
counter

CH1 Do not set input X1 as high-speed counter.
Incremental input (X1)
Decremental input (X1)
Two-phase input (X0, X1)

CH2:
Do not set input X2
as high-speed
counter

CH2 Do not set input X2 as high-speed counter.
Incremental input (X2)
Decremental input (X2)
Two-phase input (X2, X3)

CH3:
Do not set input X3
as high-speed
counter

CH3 Do not set input X3 as high-speed counter.
Incremental input (X3)
Decremental input (X3)
Two-phase input (X2, X3)

CH4:
Do not set input X4
as high-speed
counter

CH4 Do not set input X4 as high-speed counter.
Incremental input (X4)
Decremental input (X4)
Two-phase input (X3 X4)

CH5:
Do not set input X5
as high-speed
counter

CH5 Do not set input X5 as high-speed counter.
Incremental input (X5)
Decremental input (X5)
Two-phase input (X4, X5)

CH6:
Do not set input X6
as high-speed
counter

CH6 Do not set input X6 as high-speed counter.
Incremental input (X6)
Decremental input (X6)
Two-phase input (X5, X6)

402 High-speed
counter
operation mode
settings

CH7:
Do not set input X7
as high-speed
counter

CH7 Do not set input X7 as high-speed counter.
Incremental input (X7)
Decremental input (X7)
Two-phase input (X6, X7)

Appendix Programming Information

FPWIN Pro Programming

854

Address Name Default value Description
403 Pulse catch

input settings
Not set

Select whether to enable the contact for pulse catch input.

404 Interrupt input
settings

Not set

Select whether to enable the contact for interrupt input.

405 Effective
interrupt edge
setting for
internal input

Leading edge

Select whether the input should be activated at a leading
edge, trailing edge or both.

406 Effective
interrupt edge
setting for
pulse I/O
cassette input

Leading edge

Select whether the input should be activated at a leading
edge, trailing edge or both.

• For counting two-phase input, only CH0, CH2, CH4 and CH6 can be used.

When two-phase input is specified for CH0, CH2, CH4 and CH6, the settings
for CH1, CH3, CH5 and CH7 corresponding to each CH no. are ignored.
However, specify the same setting for those channels.

• The settings for pulse catch and interrupt input can only be specified in
system registers 403 and 404.

• If system register 400 to 404 have been set simultaneously for the same
input relay, the following precedence order is effective:
1. High-speed counter
2. Pulse catch
3. Interrupt input
<Example>
When the high-speed counter is being used in the addition input mode,
even if input X0 is specified as an interrupt input or as pulse catch input,
those settings are invalid, and X0 functions as counter input for the high-
speed counter.

FPWIN Pro Programming

Appendix Programming Information

855

Tool port settings

Address Name Default value Description
410 Unit no. setting 1 1 to 99

Communication mode
setting

Computer link Computer link
General-purpose communications
Modbus RTU

412

Selection of modem
connection

Disabled Enabled/Disabled

413 Communication format
setting

Data length bit: 8
bits
Parity check: “with
odd”
Stop bit: 1 bit

Enter the settings for the various items.
Data length bit: 7 bits/8 bits
Parity check: none/with odd/with even
Stop bit: 1 bit/2 bits
The following setting is valid only when the
communication mode specified by system register
412 has been set to “General-purpose serial
communication”.
Terminator: CR/CR+LF/None
Header: No STX/STX

415 Communication speed
(baud rate) setting

9600 bps 2400 bps
4800 bps
9600 bps
19200 bps
38400 bps
57600 bps
115200 bps

420 Starting address for
received buffer of
general (serial data)
communication mode

0 0 to 32764

421 Buffer capacity setting
for data received of
general (serial data)
communication mode

2048 0 to 2048

COM 1 port settings

Address Name Default value Description
410 Unit no. setting 1 1 to 99

Communication mode
setting

Computer link Computer link
General-purpose serial communication
PC(PLC) link
Modbus RTU

412

Selection of modem
connection

Disabled Enabled/Disabled

Appendix Programming Information

FPWIN Pro Programming

856

Address Name Default value Description
413 Communication format

setting
Data length bit: 8
bits
Parity check: Odd
Stop bit: 1 bit

Enter the settings for the various items.
Data length bit: 7 bits/8 bits
Parity check: none/with odd/with even
Stop bit: 1 bit/2 bits
The following setting is valid only when the
communication mode specified by system register
412 has been set to “General-purpose serial
communication”.
Terminator: CR/CR+LF/None
Header: No STX/STX

415 Communication speed
(Baud rate) setting

9600 bps 2400 bps
4800 bps
9600 bps
19200 bps
38400 bps
57600 bps
115200 bps

416 Starting address for
received buffer of
general (serial data)
communication mode

0 0 to 32764

417 Buffer capacity setting
for data received of
general (serial data)
communication mode

2048 0 to 2048

The communication format for PLC link is fixed at: data length 8 bits, odd
parity, stop bit 1, communication speed (baud rate) 15200 bps.

COM 2 port settings

Address Name Default value Description
411 Unit no. setting 1 1 to 99

Communication mode
setting

Computer link Computer link
General-purpose serial communication
PLC link
Modbus RTU

Selection of modem
connection

Disabled Enabled/Disabled

412

Selection of port Built-in USB Built-in USB
Communication cassette

FPWIN Pro Programming

Appendix Programming Information

857

Address Name Default value Description
414 Communication format

setting
Data length bit: 8
bits
Parity check:
“with odd”
Stop bit: 1 bit

Enter the settings for the various items.
Data length bit: 7 bits/8 bits
Parity check: none/odd/even
Stop bit: 1 bit/2 bits
The following setting is valid only when the
communication mode specified by system register
412 has been set to “General-purpose serial
communication”.
Terminator: CR/CR+LF/None
Header: No STX/STX

415 Communication speed
(baud rate) setting

9600 bps 2400 bps
4800 bps
9600 bps
19200 bps
38400 bps
57600 bps
115200 bps

416 Starting address for
received buffer of
general (serial data)
communication mode

2048 0 to 32764

417 Buffer capacity setting
for data received of
general (serial data)
communication mode

2048 0 to 2048

• The communication format for PLC link is fixed at: data length 8 bits, odd

parity, stop bit 1, communication speed (baud rate) 15200 bps.

• Use the system registers to select the USB port for C30 and C60. The USB
port is the default setting for the COM2 port of C30 and C60. The
communication speed for the USB port is 115.2 kbps no matter what the
baud rate setting in system register 415 is.
The setting for no. 412 must be changed to communication cassette to use
the COM2 port of the communication cassette. The COM2 port of the USB
port and the communication cassette cannot be used at the same time.

Appendix Programming Information

FPWIN Pro Programming

858

32.5 Special Internal Relays

32.5.1 Special Internal Relays for FP-Sigma

The special internal relays turn on and off under special conditions. The ON and OFF states
are not output externally. Writing is not possible with a programming tool or an instruction.

Relay No.:
Matsushita
IEC

Name Description

R9000
%MX0.900.0

Self-diagnostic error flag Turns on when a self-diagnostic error occurs.
The content of self-diagnostic error is stored in DT90000.

R9001
%MX0.900.1

Not used

R9002
%MX0.900.2

Not used

R9003
%MX0.900.3

Not used

R9004
%MX0.900.4

I/O verification error flag Turns on when an I/O verification error occurs.

R9005
%MX0.900.5

Backup battery error flag
(non-hold)

Turns on for an instant when a backup battery error occurs.

R9006
%MX0.900.6

Backup battery error flag
(hold)

Turns on and keeps the on state when a backup battery error
occurs. Once a battery error has been detected, this is held even
after recovery has been made. It goes off if the power supply is
turned off, or if the system is initialized.

R9007
%MX0.900.7

Operation error flag
(hold)

Turns on and keeps the on state when an operation error occurs.
The address where the error occurred is stored in DT90017.
(Indicates the first operation error which occurred.)

R9008
%MX0.900.8

Operation error flag
(non-hold)

Turns on for an instant when an operation error occurs. The
address where the operation error occurred is stored in DT90018.
The contents change each time a new error occurs.

R9009
%MX0.900.9

Carry flag This is set if an overflow or underflow occurs in the calculation
results, and as a result of a shift system instruction being
executed.

R900A
%MX0.900.10

> flag Turns on for an instant when the compared results become larger
in the comparison instructions.

R900B
%MX0.900.11

= flag Turns on for an instant,
- when the compared results are equal in the comparison
instructions.
- when the calculated results become 0 in the arithmetic
instructions.

R900C
%MX0.900.12

< flag Turns on for an instant when the compared results become
smaller in the comparison instructions”.

R900D
%MX0.900.13

Auxiliary timer instruction flag Turns on when the set time elapses (set value reaches 0) in the
timing operation of the F137_STMR/F183_DSTM auxiliary timer
instruction.
This flag turns off when the trigger for auxiliary timer instruction
turns off.

R900E
%MX0.900.14

Tool port communication
error

Turns on when a communication error at the Tool port has
occurred.

FPWIN Pro Programming

Appendix Programming Information

859

Relay No.:
Matsushita
IEC

Name Description

R900F
%MX0.900.15

Constant scan error flag Turns on when the scan time exceeds the time specified in system
register 34 during constant scan execution.
This goes on if 0 has been set using system register 34.

R9010
%MX0.901.0

Always on relay Always on.

R9011
%MX0.901.1

Always off relay Always off.

R9012
%MX0.901.2

Scan pulse relay Turns on and off alternately at each scan

R9013
%MX0.901.3

Initial (on type) pulse relay Goes on for only the first scan after operation (RUN) has been
started, and goes off for the second and subsequent scans.

R9014
%MX0.901.4

Initial (off type) pulse relay Goes off for only the first scan after operation (RUN) has been
started, and goes on for the second and subsequent scans.

R9015
%MX0.901.5

Step ladder initial pulse relay
(on type)

Turns on for an instant only in the first scan of the process the
moment the step ladder process is opened.

R9016
%MX0.901.6

Not used

R9017
%MX0.901.7

Not used

R9018
%MX0.901.8

0.01 s clock pulse relay Repeats on/off operations in 0.01s cycles.
(ON : OFF = 0.005s : 0.005s)

R9019
%MX0.901.9

0.02 s clock pulse relay Repeats on/off operations in 0.02s cycles.
(ON : OFF = 0.01s : 0.01s)

R901A
%MX0.901.10

0.1 s clock pulse relay Repeats on/off operations in 0.1s cycles.
(ON : OFF = 0.05s : 0.05s)

R901B
%MX0.901.11

0.2 s clock pulse relay Repeats on/off operations in 0.2s cycles.
(ON : OFF = 0.1s : 0.1s)

R901C
%MX0.901.12

1 s clock pulse relay Repeats on/off operations in 1s cycles.
(ON : OFF = 0.5s : 0.5s)

R901D
%MX0.901.13

2 s clock pulse relay Repeats on/off operations in 2s cycles.
(ON : OFF = 1s : 1s)

R901E
%MX0.901.14

1 min clock pulse relay Repeats on/off operations in 1 min cycles.
(ON : OFF = 30s : 30s)

R901F
%MX0.901.15

Not used

R9020
%MX0.902.0

RUN mode flag Turns off while the mode selector is set to PROG.
Turns on while the mode selector is set to RUN.

Appendix Programming Information

FPWIN Pro Programming

860

Relay No.:
Matsushita
IEC

Name Description

R9021
%MX0.902.1

Not used

R9022
%MX0.902.2

Not used

R9023
%MX0.902.3

Not used

R9024
%MX0.902.4

Not used

R9025
%MX0.902.5

Not used

R9026
%MX0.902.6

Message flag Turns on while the F149_MSG instruction is executed.

R9027
%MX0.902.7

Not used

R9028
%MX0.902.8

Not used

R9029
%MX0.902.9

Forcing flag Turns on during forced on/off operation for input/output relay and
timer/counter contacts.

R902A
%MX0.902.10

Interrupt enable flag Turns on while the external interrupt trigger is enabled by the ICTL
instruction.

R902B
%MX0.902.11

Interrupt error flag Turns on when an interrupt error occurs.

R902C
%MX0.902.12

Not used

R902D
%MX0.902.13

Not used

R902E
%MX0.902.14

Not used

R902F
%MX0.902.15

Not used

R9030
%MX0.903.0

Not used

R9031
%MX0.903.1

Not used

R9032
%MX0.903.2

COM port 1 communication
mode flag

Turns on when program controlled communication is being used.
Goes off when MEWTOCOL-COM Slave or PLC Link function is
being used.

R9033
%MX0.903.3

Print instruction execution
flag

Off: Printing is not executed.
On: Execution is in progress.

R9034
%MX0.903.4

Run overwrite complete flag Goes on for only the first scan following completion of a rewrite
during RUN operation.

R9035
%MX0.903.5

Not used

R9036
%MX0.903.6

Not used

R9037
%MX0.903.7

COM port 1 communication
error flag

Goes on if a transmission error occurs during data communication.
Goes off when a request is made to send data, using the
F159_MTRN instruction.

R9038
%MX0.903.8

COM port 1 reception done
flag during general-purpose
serial communication

Turns on when the terminator is received during program
controlled communication.

FPWIN Pro Programming

Appendix Programming Information

861

Relay No.:
Matsushita
IEC

Name Description

R9039
%MX0.903.9

COM port 1 transmission
done flag during general-
purpose serial
communication

Goes on when transmission has been completed in program
controlled communication.
Goes off when transmission is requested in program controlled
communication.

R903A
%MX0.903.10

High-speed
counter control
flag

CH0 Turns on while the high-speed counter instructions F166_HC15,
F167_HC1R and the pulse output instructions F171_SPDH to
F176_PWMH are executed.

R903B
%MX0.903.11

High-speed
counter control
flag

CH1 Turns on while the high-speed counter instructions F166_HC15,
F167_HC1R and the pulse output instructions F171_SPDH to
F176_PWMH are executed.

R903C
%MX0.903.12

High-speed
counter control
flag

CH2 Turns on while the high-speed counter instructions F166_HC15,
F167_HC1R and the pulse output instructions F171_SPDH to
F176_PWMH are executed.

R903D
%MX0.903.13

High-speed
counter control
flag

CH3 Turns on while the high-speed counter instructions F166_HC15,
F167_HC1R and the pulse output instructions F171_SPDH to
F176_PWMH are executed.

R903E
%MX0.903.14

Not used

R903F
%MX0.903.15

Not used

R9040
%MX0.904.0

Not used

R9041
%MX0.904.1

COM port 1 PLC link flag Turns on while the PLC Link function is used.

R9042
%MX0.904.2

COM port 2 communication
mode flag

Goes on when program controlled communication is used.
Goes off when MEWTOCOL is used.

R9043 to
R9046
%MX0.904.3
to
%MX0.904.6

Not used

R9047
%MX0.904.7

COM port 2 communication
error flag

Goes on if a transmission error occurs during data communication.
Goes off when a request is made to send data using the
F159_MTRN instruction.

R9048
%MX0.904.8

COM port 2 reception done
flag during general purpose
communication

Turns on when the terminator is received during program
controlled communication.

R9049
%MX0.904.9

COM port 2 transmission
done flag during general
purpose communication

Goes on when transmission has been completed in program
controlled communication.
Goes off when transmission is requested in program controlled
communication.

R904A to
R904D
%MX0.904.10
to
%MX0.904.13

Not used

R904E
%MX0.904.14

Circular interpolation control
flag

This flag is set when circular interpolation instruction F176_PWMH
is run. This state is maintained until the target value is achieved.
While this flag is set, other positioning instructions (F171_SPDH to
F176_PWMH) cannot be run.

Appendix Programming Information

FPWIN Pro Programming

862

Relay No.:
Matsushita
IEC

Name Description

R904F
%MX0.904.15

Target value overwrite flag This flag is ON for one scan when the circular interpolation
instruction F176 starts. (When the circular interpolation instruction
F176 is executed in the regular interrupt program, the relay is ON
during the set time.)

R9050
%MX0.905.0

MEWNET-W0
PLC link transmission error
flag

When using MEWNET-W0
- turns on when a transmission error occurs in a PLC link.
- turns on when there is an error in the PLC link area settings.

R9051 to
R905F
%MX0.905.1
to
%MX0.905.15

Not used

R9060
%MX0.906.0

Unit no.
1

Turns on when unit no. 1 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

R9061
%MX0.906.1

Unit no.
2

Turns on when unit no. 2 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

R9062
%MX0.906.2

Unit no.
3

Turns on when unit no. 3 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

R9063
%MX0.906.3

Unit no.
4

Turns on when unit no. 4 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

R9064
%MX0.906.4

Unit no.
5

Turns on when unit no. 5 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

R9065
%MX0.906.5

Unit no.
6

Turns on when unit no. 6 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

R9066
%MX0.906.6

Unit no.
7

Turns on when unit no. 7 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

R9067
%MX0.906.7

Unit no.
8

Turns on when unit no. 8 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error is occurs, or when not in PLC Link mode.

R9068
%MX0.906.8

Unit no.
9

Turns on when unit no. 9 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

R9069
%MX0.906.9

Unit no.
10

Turns on when unit no. 10 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

R906A
%MX0.906.10

Unit no.
11

Turns on when unit no. 11 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

R906B
%MX0.906.11

Unit no.
12

Turns on when unit no. 12 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

R906C
%MX0.906.12

MEWNET-W0
PLC link
transmission
assurance relay

Unit no.
13

Turns on when unit no. 13 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

FPWIN Pro Programming

Appendix Programming Information

863

Relay No.:
Matsushita
IEC

Name Description

R906D
%MX0.906.13

Unit no.
14

Turns on when unit no. 14 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

R906E
%MX0.906.14

Unit no.
15

Turns on when unit no. 15 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

R906F
%MX0.906.15

Unit no.
16

Turns on when unit no. 16 is communicating properly in
PLC Link mode. Turns off when operation is stopped,
when an error occurs, or when not in PLC Link mode.

R9070
%MX0.907.0

Unit no.
1

Turns on when unit no. 1 is in RUN mode.
Turns off when unit no. 1 is in PROG mode.

R9071
%MX0.907.1

Unit no.
2

Turns on when unit no. 2 is in RUN mode.
Turns off when unit no. 2 is in PROG mode.

R9072
%MX0.907.2

Unit no.
3

Turns on when unit no. 3 is in RUN mode.
Turns off when unit no. 3 is in PROG mode.

R9073
%MX0.907.3

Unit no.
4

Turns on when unit no. 4 is in RUN mode.
Turns off when unit no. 4 is in PROG mode.

R9074
%MX0.907.4

Unit no.
5

Turns on when unit no. 5 is in RUN mode.
Turns off when unit no. 5 is in PROG mode.

R9075
%MX0.907.5

Unit no.
6

Turns on when unit no. 6 is in RUN mode.
Turns off when unit no. 6 is in PROG mode.

R9076
%MX0.907.6

Unit no.
7

Turns on when unit no. 7 is in RUN mode.
Turns off when unit no. 7 is in PROG mode.

R9077
%MX0.907.7

Unit no.
8

Turns on when unit no. 8 is in RUN mode.
Turns off when unit no. 8 is in PROG mode.

R9078
%MX0.907.8

Unit no.
9

Turns on when unit no. 9 is in RUN mode.
Turns off when unit no. 9 is in PROG mode.

R9079
%MX0.907.9

Unit no.
10

Turns on when unit no. 10 is in RUN mode.
Turns off when unit no. 10 is in PROG mode.

R907A
%MX0.907.10

Unit no.
11

Turns on when unit no. 11 is in RUN mode.
Turns off when unit no. 11 is in PROG mode.

R907B
%MX0.907.11

Unit no.
12

Turns on when unit no. 12 is in RUN mode.
Turns off when unit no. 12 is in PROG mode.

R907C
%MX0.907.12

Unit no.
13

Turns on when unit no. 13 is in RUN mode.
Turns off when unit no. 13 is in PROG mode.

R907D
%MX0.907.13

Unit no.
14

Turns on when unit no. 14 is in RUN mode.
Turns off when unit no. 14 is in PROG mode.

R907E
%MX0.907.14

Unit no.
15

Turns on when unit no. 15 is in RUN mode.
Turns off when unit no. 15 is in PROG mode.

R907F
%MX0.907.15

MEWNET-W0
PLC link operation mode
relay

Unit no.
16

Turns on when unit no. 16 is in RUN mode.
Turns off when unit no. 16 is in PROG mode.

Appendix Programming Information

FPWIN Pro Programming

864

32.5.2 Special Internal Relays for FP-X

The special internal relays turn on and off under special conditions. The ON and OFF states
are not output externally. Writing is not possible with a programming tool or an instruction.

WR900

Relay no.
FP address
IEC

Name Description

R9000
%MX0.900.0

Self-diagnostic error flag Turns on when a self-diagnostic error occurs.
The content of self-diagnostic error is stored in DT90000.

R9001
%MX0.900.1

Not used —

R9002
%MX0.900.2

Application cassette I/O error
flag

Turns on when an error is detected in the I/O type application
cassette.

R9003
%MX0.900.3

Application cassette
abnormal error flag

Turns on when an error is detected in the application cassette.

R9004
%MX0.900.4

I/O verification error flag Turns on when an I/O verification error occurs.

R9005
%MX0.900.5

Backup battery error flag
(non-hold)

Turns on for an instant when a backup battery error occurs.

R9006
%MX0.900.6

Backup battery error flag
(hold)

Turns on when a backup battery error occurs.
Once a battery error has been detected, this is held even after
recovery has been made.
It goes off if the power supply is turned off, or if the system is
initialized.

R9007
%MX0.900.7

Operation error flag (hold) Turns on and keeps the on state when an operation error occurs.
The address where the error occurred is stored in DT90017.
(indicates the first operation error which occurred).

R9008
%MX0.900.8

Operation error flag (non-
hold)

Turns on for an instant when an operation error occurs.
The address where the operation error occurred is stored in
DT90018. The contents change each time a new error occurs.

R9009
%MX0.900.9

Carry flag This is set if an overflow or underflow occurs in the calculation
results, and as a result of a shift system instruction being
executed.

R900A
%MX0.900.10

> Flag Turns on for an instant when the compared results become larger
in the comparison instructions.

R900B
%MX0.900.11

= Flag Turns on for an instant
when the compared results are equal in the comparison

instructions.
when the calculated results become 0 in the arithmetic

instructions.
R900C
%MX0.900.12

< Flag Turns on for an instant when the compared results become
smaller in the comparison instructions.

R900D
%MX0.900.13

Auxiliary timer instruction flag Turns on when the set time elapses (set value reaches 0) in the
timing operation of the F137_STMR/F183_DSTM auxiliary timer
instruction. The flag turns off when the trigger for auxiliary timer
instruction turns off.

R900E
%MX0.900.14

Tool port communication
error

Turns on when a communication error at Tool port has occurred.

FPWIN Pro Programming

Appendix Programming Information

865

Relay no.
FP address
IEC

Name Description

R900F
%MX0.900.15

Constant scan error flag Turns on when scan time exceeds the time specified in system
register 34 during constant scan execution.
This goes on if 0 has been set using system register 34.

WR901

Relay no.
FP address
IEC

Name Description

R9010
%MX0.901.0

Always on relay Always on.

R9011
%MX0.901.1

Always off relay Always off.

R9012
%MX0.901.2

Scan pulse relay Turns on and off alternately at each scan.

R9013
%MX0.901.3

Initial (on type) pulse relay Goes on for only the first scan after operation (RUN) has been
started, and goes off for the second and subsequent scans.

R9014
%MX0.901.4

Initial (off type) pulse relay Goes off for only the first scan after operation (RUN) has been
started, and goes on for the second and subsequent scans.

R9015
%MX0.901.5

Step ladder initial pulse relay
(on type)

Turns on for only the first scan of a process after the boot at the
step ladder control.

R9016
%MX0.901.6

Not used —

R9017
%MX0.901.7

Not used —

R9018
%MX0.901.8

0.01 s clock pulse relay Repeats on/off operations in 0.01 sec.
cycles.
(ON : OFF = 0.005s : =.005s)

R9019
%MX0.901.9

0.02 s clock pulse relay Repeats on/off operations in 0.02 s.
cycles.
(ON : OFF = 0.01s : 0.01s)

R901A
%MX0.901.10

0.1 s clock pulse relay Repeats on/off operations in 0.1 s.
cycles.
(ON : OFF = 0.05s : 0.05s)

R901B
%MX0.901.11

0.2 s clock pulse relay Repeats on/off operations in 0.2 s.
cycles.
(ON : OFF = 0.1s : 0.1s)

R901C
%MX0.901.12

1 s clock pulse relay Repeats on/off operations in 1 s. cycles.
(ON : OFF = 0.5s : 0.5s)

R901D
%MX0.901.13

2 s clock pulse relay Repeats on/off operations in 2 s. cycles.
(ON : OFF = 1s : 1s)

Appendix Programming Information

FPWIN Pro Programming

866

Relay no.
FP address
IEC

Name Description

R901E
%MX0.901.14

1 min clock pulse relay Repeats on/off operations in 1 min.
cycles.
(ON : OFF = 30s : 30s)

R901F
%MX0.901.15

Not used —

WR902

Relay no.
FP address
IEC

Name Description

R9020
%MX0.902.0

RUN mode flag Turns off while the mode selector is set to PROG.
Turns on while the mode selector is set to RUN.

R9021
%MX0.902.1

Not used —

R9022
%MX0.902.2

Not used —

R9023
%MX0.902.3

Not used —

R9024
%MX0.902.4

Not used —

R9025
%MX0.902.5

Not used —

R9026
%MX0.902.6

Message flag Turns on while the F149_MSG instruction is executed.

R9027
%MX0.902.7

Not used —

R9028
%MX0.902.8

Not used —

R9029
%MX0.902.9

Forcing flag Turns on during forced on/off operation for input/output relay
timer/counter contacts.

R902A
%MX0.902.10

Interrupt enable flag Turns on while the external interrupt trigger is enabled by the
ICTL instruction.

R902B
%MX0.902.11

Interrupt error flag Turns on when an interrupt error occurs.

R902C
%MX0.902.12

Not used —

R902E
%MX0.902.14

Not used —

R902F
%MX0.902.15

Not used —

WR903

Relay no.
FP address
IEC

Name Description

R9030
%MX0.903.0

Not used —

FPWIN Pro Programming

Appendix Programming Information

867

Relay no.
FP address
IEC

Name Description

R9031
%MX0.903.1

Not used —

R9032
%MX0.903.2

COM1 port mode flag Turns on when the general purpose communication function is
being used
Goes off when any function other than the general purpose
communication function is being used.

R9033
%MX0.903.3

PR instruction flag Off: Printing is not executed.
On: Execution is in progress.

R9034
%MX0.903.4

Editing in RUN mode flag Goes on for only the first scan following completion of a rewrite
during the RUN operation.

R9035
%MX0.903.5

Not used —

R9036
%MX0.903.6

Not used —

R9037
%MX0.903.7

COM1 port communication
error flag

Goes on if a transmission error occurs during data
communication.
Goes off when a request is made to send data, using the
F159_MTRN instruction.

R9038
%MX0.903.8

COM1 port reception done
flag during general- purpose
serial communication

Turns on when the terminator is received during general -
purpose serial communication.

R9039
%MX0.903.9

COM1 port transmission
done flag during general
purpose serial
communication

Goes on when transmission has been completed in general
purpose serial communication.
Goes off when transmission is requested in general purpose
serial communication.

R903A
%MX0.903.10

Not used —

R903B
%MX0.903.11

Not used —

R903C
%MX0.903.12

Not used —

R903D
%MX0.903.13

Not used —

R903E
%MX0.903.14

TOOL port reception done
flag during general purpose
communication

Turns on when the terminator is received during general purpose
serial communication.

R903F
%MX0.903.15

TOOL port transmission done
flag during general purpose
serial communication

Goes on when transmission has been completed in general
purpose serial communication.
Goes off when transmission is requested in general purpose
serial communication.

R9030 to R903F can change during 1 scan.

Appendix Programming Information

FPWIN Pro Programming

868

WR904

Relay no.
FP address
IEC

Name Description

R9040
%MX0.904.0

TOOL port mode flag Goes on when the general purpose serial communication is
used.
Goes off when the MEWTOCOL is used.

R9041
%MX0.904.1

COM1 port PLC link flag Turns on while the PLC link function is used.

R9042
%MX0.904.2

COM2 port communication
mode flag

Goes on when the general purpose serial communication is
used.
Goes off when the MEWTOCOL is used.

R9043
%MX0.904.3

Not used —

R9044
%MX0.904.4

COM1 port SEND/RECV
instruction execution flag

Monitors whether the F145_SEND or F146_RECV instructions
can be executed or not for the COM1 port.
Off: Neither of the instructions can be executed, i.e. one is

already being executed.
On: One of the above mentioned instructions can be executed.

R9045
%MX0.904.5

COM1 port SEND/RECV
instruction execution end flag

Monitors if an abnormality has been detected during the
execution of the F145_SEND or F146_RECV instructions for the
COM1 port:
Off: No abnormality detected.
On: An abnormality detected. (communication error). The error

code is stored in DT90124.
R9046
%MX0.904.6

Not used —

R9047
%MX0.904.7

COM2 port communication
error flag

Goes on if a transmission error occurs during data
communication.
Goes off when a request is made to send data, using the
F159_MTRN instruction.

R9048
%MX0.904.8

COM2 port reception done
flag during general purpose
communication

Turns on when the terminator is received during general purpose
serial communication.

R9049
%MX0.904.9

COM2 port
transmission done flag during
general purpose
communication

Goes on when transmission has been completed in general
purpose serial communication.
Goes off when transmission is requested in general purpose
communication.

R904A
%MX0.904.10

COM2 port SEND/RECV
instruction execution flag

Monitors whether the F145_SEND or F146_RECV instructions
can be executed or not for the COM2 port.
Off: Neither of the instructions can be executed, i.e. one is

already being executed.
On: One of the above mentioned instructions can be executed.

R904B
%MX0.904.11

COM2 port SEND/RECV
instruction execution end flag

Monitors if an abnormality has been detected during the
execution of the F145_SEND or F146_RECV instructions for the
COM2 port:
Off: No abnormality detected.
On: An abnormality detected. (communication error). The error

code is stored in DT90125.
R904C to
R904F
%MX0.904.12
to
%MX0.904.15

Not used —

FPWIN Pro Programming

Appendix Programming Information

869

R9040 to R904F can change during 1 scan.

WR905

Relay no.
FP address
IEC

Name Description

R9050
%MX0.905.0

MEWNET-W0
PLC link transmission error
flag

When using MEWNET-W0
Turns on when a transmission error occurs at PLC link.
Turns on when there is an error in the PLC link area settings.

R9051 to
R905F
%MX0.905.1 to
%MX0.905.15

Not used —

Appendix Programming Information

FPWIN Pro Programming

870

WR906: MEWNET-W0 PLC link 0 transmission assurance relays

Relay no.
FP address
IEC

Unit no. Description

R9060
%MX0.906.0

Unit no. 1

R9061
%MX0.906.1

Unit no. 2

R9062
%MX0.906.2

Unit no. 3

R9063
%MX0.906.3

Unit no. 4

R9064
%MX0.906.4

Unit no. 5

R9065
%MX0.906.5

Unit no. 6

R9066
%MX0.906.6

Unit no. 7

R9067
%MX0.906.7

Unit no. 8

R9068
%MX0.906.8

Unit no. 9

R9069
%MX0.906.9

Unit no. 10

R906A
%MX0.906.10

Unit no. 11

R906B
%MX0.906.11

Unit no. 12

R906C
%MX0.906.12

Unit no. 13

R906D
%MX0.906.13

Unit no. 14

R906E
%MX0.906.14

Unit no. 15

R906F
%MX0.906.15

Unit no. 16

Turns on when the unit no. is communicating properly in PLC link mode.
Turns off when operation is stopped, when an error occurs, or when not in the
PLC link mode.

FPWIN Pro Programming

Appendix Programming Information

871

WR907: MEWNET-W0 PLC link 0 operation mode relays

Relay no.
FP address
IEC

Unit no. Description

R9070
%MX0.907.0

Unit no. 1

R9071
%MX0.907.1

Unit no. 2

R9072
%MX0.907.2

Unit no. 3

R9073
%MX0.907.3

Unit no. 4

R9074
%MX0.907.4

Unit no. 5

R9075
%MX0.907.5

Unit no. 6

R9076
%MX0.907.6

Unit no. 7

R9077
%MX0.907.7

Unit no. 8

R9078
%MX0.907.8

Unit no. 9

R9079
%MX0.907.9

Unit no. 10

R907A
%MX0.907.10

Unit no. 11

R907B
%MX0.907.11

Unit no. 12

R907C
%MX0.907.12

Unit no. 13

R907D
%MX0.907.13

Unit no. 14

R907E
%MX0.907.14

Unit no. 15

R907F
%MX0.907.15

Unit no. 16

Turns on when the unit no. is in RUN mode.
Turns off when the unit no. is in PROG. mode.

Appendix Programming Information

FPWIN Pro Programming

872

WR908: MEWNET-W0 PLC link 1 transmission assurance relays

Relay no.
FP address
IEC

Unit no. Description

R9080
%MX0.908.0

Unit no. 1

R9081
%MX0.908.1

Unit no. 2

R9082
%MX0.908.2

Unit no. 3

R9083
%MX0.908.3

Unit no. 4

R9084
%MX0.908.4

Unit no. 5

R9085
%MX0.908.5

Unit no. 6

R9086
%MX0.908.6

Unit no. 7

R9087
%MX0.908.7

Unit no. 8

R9088
%MX0.908.8

Unit no. 9

R9089
%MX0.908.9

Unit no. 10

R908A
%MX0.908.10

Unit no. 11

R908B
%MX0.908.11

Unit no. 12

R908C
%MX0.908.12

Unit no. 13

R908D
%MX0.908.13

Unit no. 14

R908E
%MX0.908.14

Unit no. 15

R908F
%MX0.908.15

Unit no. 16

Turns on when the unit no. is communicating properly in PLC link mode.
Turns off when operation is stopped, when an error occurs, or when not in the
PLC link mode.

FPWIN Pro Programming

Appendix Programming Information

873

WR909: MEWNET-W0 PLC link 1 operation mode relays

Relay no.
FP address
IEC

Unit no. Description

R9090
%MX0.909.0

Unit no. 1

R9091
%MX0.909.1

Unit no. 2

R9092
%MX0.909.2

Unit no. 3

R9093
%MX0.909.3

Unit no. 4

R9094
%MX0.909.4

Unit no. 5

R9095
%MX0.909.5

Unit no. 6

R9096
%MX0.909.6

Unit no. 7

R9097
%MX0.909.7

Unit no. 8

R9098
%MX0.909.8

Unit no. 9

R9099
%MX0.909.9

Unit no. 10

R909A
%MX0.909.10

Unit no. 11

R909B
%MX0.909.11

Unit no. 12

R909C
%MX0.909.12

Unit no. 13

R909D
%MX0.909.13

Unit no. 14

R909E
%MX0.909.14

Unit no. 15

R909F
%MX0.909.15

Unit no. 16

Turns on when the unit no. is in RUN mode.
Turns off when the unit no. is in PROG. mode.

Appendix Programming Information

FPWIN Pro Programming

874

WR910

Relay no.
FP address
IEC

Name Description

R9100 to
R910F
%MX0.910.0 to
%MX0.910.15

Not used —

WR911

Relay no.
FP address
IEC

Control flag name Description

R9110
%MX0.911.0

HSC-CH0

R9111
%MX0.911.1

HSC-CH1

R9112
%MX0.911.2

HSC-CH2

R9113
%MX0.911.3

HSC-CH3

R9114
%MX0.911.4

HSC-CH4

R9115
%MX0.911.5

HSC-CH5

R9116
%MX0.911.6

HSC-CH6

R9117
%MX0.911.7

HSC-CH7

R9118
%MX0.911.8

HSC-CH8

R9119
%MX0.911.9

HSC-CH9

R911A
%MX0.911.10

HSC-CHA

R911B
%MX0.911.11

HSC-CHB

Turns on while the F166_HC1S and F167_HC1R instructions are
executed.
Turns off when the F166_HC1S and F167_HC1R instructions are
completed.

R911C
%MX0.911.12

PLS-CH0

R911D
%MX0.911.13

PLS-CH1

Turns on while pulses are being output by the F171_SPDH,
F172_PLSH, F173_PWMH and F174_SP0H instructions.

R911E
%MX0.911.14

Not used —

R911F
%MX0.911.15

Not used —

FPWIN Pro Programming

Appendix Programming Information

875

32.6 Special Data Registers

32.6.1 Special Data Registers for FP-Sigma

The special data registers are one word (16-bit) memory areas which store specific
information.
(A: Available, N/A: Not available)

FP Address
IEC Address

Name Description Read Write

DT90000
%MW5.90000

Self-diagnostic error code The self-diagnostic error code is stored here
when a self-diagnostic error occurs.

A N/A

DT90001
%MW5.90001

Not used N/A N/A

DT90002
%MW5.90002

Position of abnormal I/O
unit for FPΣ left side
expansion

When an error occurs at an FPΣ expansion I/O
unit, the bit corresponding to the unit no. will
turn on. Monitor using binary display.

A N/A

DT90003
%MW5.90003

Not used

 N/A N/A

DT90004
%MW5.90004

Not used

 N/A N/A

DT90005
%MW5.90005

Not used N/A N/A

DT90006
%MW5.90006

Position of abnormal
intelligent unit for FPΣ left
side expansion

When an error condition is detected in an
intelligent unit, the bit corresponding to the unit
no. will turn on. Monitor using binary display.

A N/A

DT90007
%MW5.90007

Not used N/A N/A

DT90008
%MW5.90008

Not used N/A N/A

DT90009
%MW5.90009

Communication error flag
for COM 2

Stores the error contents when using COM
port 2.
Bit 0: Overrun error
Bit 1: Framing error
Bit 2: Parity error

A N/A

Appendix Programming Information

FPWIN Pro Programming

876

FP Address
IEC Address

Name Description Read Write

DT90010
%MW5.90010

Position of I/O verify error
unit for FP0 right side
expansion

When the state of installation of an FP0
expansion I/O unit has changed since the
power was turned on, the bit corresponding to
the unit no. will turn on. Monitor using binary
display.

A N/A

DT90011
%MW5.90011

Position of I/O verify error
unit for FPΣ left side
expansion

When the state of installation of an FP0
expansion I/O unit has changed since the
power was turned on, the bit corresponding to
the unit no. will turn on. Monitor using binary
display.

A N/A

DT90012
%MW5.90012

Not used N/A N/A

DT90013
%MW5.90013

Not used N/A N/A

DT90014
%MW5.90014

Operation auxiliary register
for data shift instruction

One shift-out hexadecimal digit is stored in bit
positions 0 to 3 when the data shift instruction
F105_BSR or F106_BSL is executed.
The value can be read and written by
executing the F0_MV instruction.

A N/A

DT90015
%MW5.90015

Operation auxiliary register
for division instruction

The divided remainder (16-bit) is stored in
DT90015 when the division instruction F32_%
or F52_B% instruction is executed.
The divided remainder (32-bit) is stored in
DT90015 and DT90016 when the division
instruction F33_D% or F53_DB% is executed.
The value can be read and written by
executing the F0_MV instruction.

A N/A

DT90016
%MW5.90016

Operation auxiliary register
for division instruction

The divided remainder (16-bit) is stored in
DT90015 when the division instruction F32_%
or F52_B% instruction is executed.
The divided remainder (32-bit) is stored in
DT90015 and DT90016 when the division
instruction F33_D% or F53_DB% is executed.
The value can be read and written by
executing the F0_MV instruction.

A N/A

DT90017
%MW5.90017

Operation error address
(hold type)

After commencing operation, the address
where the first operation error occurred is
stored. Monitor the address using decimal
display.

A N/A

DT90018
%MW5.90018

Operation error address
(non-hold type)

The address where an operation error
occurred is stored. Each time an error occurs,
the new address overwrites the previous
address. At the beginning of a scan, the
address is 0. Monitor the address using
decimal display.

A N/A

FPWIN Pro Programming

Appendix Programming Information

877

FP Address
IEC Address

Name Description Read Write

DT90019
%MW5.90019

2.5ms ring counter The data stored here is increased by one every
2.5ms. (16#0 to 16#FFFF)
Difference between the values of the two
points (absolute value) × 2.5ms = elapsed time
between the two points.

A N/A

DT90020
%MW5.90020

Not used

 N/A N/A

DT90021
%MW5.90021

Not used N/A N/A

DT90022
%MW5.90022

Scan time (current value)
(see note)

The current scan time is stored here. The scan
time is calculated using the formula:
Scan time (ms) = stored data (decimal) ×
0.1ms
Example: 50 indicates 5ms.

A N/A

DT90023
%MW5.90023

Scan time (minimum
value) (see note)

The minimum scan time is stored here. The
scan time is calculated using the formula:
Scan time (ms) = stored data (decimal) ×
0.1ms
Example: 50 indicates 5ms.

A N/A

DT90024
%MW5.90024

Scan time (maximum
value) (see note)

The maximum scan time is stored here. The
scan time is calculated using the formula:
Scan time (ms) = stored data (decimal) ×
0.1ms
Example: 125 indicates 12.5ms.

A N/A

 Scan time display is only possible in RUN mode and shows the operation cycle time. (In PROG
mode, the scan time for the operation is not displayed.) The maximum and minimum values are
cleared each time the mode is switched from RUN to PROG.

DT90025
%MW5.90025

Mask condition monitoring
register for interrupts
(INT 0 to 7)

The mask conditions of interrupts using the
ICTL instruction is stored here. Monitor using
binary display.

A N/A

DT90026
%MW5.90026

Not used N/A N/A

DT90027
%MW5.90027

Periodical interrupt
interval (INT 24)

The value set by the ICTL instruction is stored.
0: periodical interrupt is not used
1 to 3000: 0.5ms to 1.5s or 10ms to 30s

A N/A

DT90028
%MW5.90028

Not used N/A N/A

DT90029
%MW5.90029

Not used N/A N/A

DT90030
%MW5.90030

Message 0 The contents of the specified message are
stored in these special data registers when the
F149_MSG instruction is executed.

A N/A

DT90031
%MW5.90031

Message 1

The contents of the specified message are
stored in these special data registers when the
F149_MSG instruction is executed.

A N/A

Appendix Programming Information

FPWIN Pro Programming

878

FP Address
IEC Address

Name Description Read Write

DT90032
%MW5.90032

Message 2 The contents of the specified message are
stored in these special data registers when the
F149_MSG instruction is executed.

A N/A

DT90033
%MW5.90033

Message 3 The contents of the specified message are
stored in these special data registers when the
F149_MSG instruction is executed.

A N/A

DT90034
%MW5.90034

Message 4 The contents of the specified message are
stored in these special data registers when the
F149_MSG instruction is executed.

A N/A

DT90035
%MW5.90035

Message 5 The contents of the specified message are
stored in these special data registers when the
F149_MSG instruction is executed.

A N/A

DT90036
%MW5.90036

Not used N/A N/A

DT90037
%MW5.90037

Operation auxiliary
register for search
instruction F96_SRC

The number of data that match the searched
data is stored here when the F96_SRC
instruction is executed.

A N/A

DT90038
%MW5.90038

Operation auxiliary
register for search
instruction F96_SRC

The position of the first matching data is stored
here when the F96_SRC instruction is
executed.

A N/A

DT90039
%MW5.90039

Not used N/A N/A

DT90040
%MW5.90040

Potentiometer (volume)
input V0

The potentiometer value (0 to 1000) is stored
here. This value can be used in analog timers
and other applications by using the program to
read this value to a data register.
V0→DT90040
V1→DT90041

A N/A

DT90041
%MW5.90041

Potentiometer (volume)
input V1

The potentiometer value (0 to 1000) is stored
here. This value can be used in analog timers
and other applications by using the program to
read this value to a data register.
V0→DT90040
V1→DT90041

A N/A

DT90042
%MW5.90042 Used by the system. N/A N/A

DT90043
%MW5.90043 Used by the system. N/A N/A

DT90044
%MW5.90044

High-speed counter
elapsed value

For
CH0

The elapsed value (32-bit data) for the high-
speed counter is stored here. The value can be
read and written by executing an instruction.

A A

DT90045
%MW5.90045

High-speed counter
elapsed value

For
CH0

The elapsed value (32-bit data) for the high-
speed counter is stored here. The value can be
read and written by executing an instruction.

A A

DT90046
%MW5.90046

High-speed counter
target value

For
CH0

The target value (32-bit data) of the high-speed
counter specified by the high-speed counter
instruction is stored here.
Target values have been preset for the various
instructions to be used when the high-speed
counter related instruction F166_HC1S,
F167_HC1R, F171_SPDH, F172_SPSH,
F174_SP0H, F175_SPSH, or F176_SPCH is
executed. The value can be read by executing
an instruction.

A N/A

FPWIN Pro Programming

Appendix Programming Information

879

FP Address
IEC Address

Name Description Read Write

DT90047
%MW5.90047

High-speed counter
target value

For
CH0

The target value (32-bit data) of the high-speed
counter specified by the high-speed counter
instruction is stored here.
Target values have been preset for the various
instructions to be used when the high-speed
counter related instruction F166_HC1S,
F167_HC1R, F171_SPDH, F172_SPSH,
F174_SP0H, F175_SPSH, or F176_SPCH is
executed. The value can be read by executing
an instruction.

A N/A

DT90048
%MW5.90048

High-speed counter
elapsed value area

For
CH1

The elapsed value (32-bit data) for the high-
speed counter is stored here. The value can be
read and written by executing an instruction.

A A

DT90049
%MW5.90049

High-speed counter
elapsed value area

For
CH1

The elapsed value (32-bit data) for the high-
speed counter is stored here. The value can be
read and written by executing an instruction.

A A

DT90050
%MW5.90050

High-speed counter
target value area

For
CH1

The target value (32-bit data) of the high-speed
counter specified by the high-speed counter
instruction is stored here.
Target values have been preset for the various
instructions to be used when the high-speed
counter related instruction F166_HC1S or
F167_HC1R is executed. The value can be
read by executing an instruction.

A N/A

DT90051
%MW5.90051

High-speed counter
target value area

For
CH1

The target value (32-bit data) of the high-speed
counter specified by the high-speed counter
instruction is stored here.
Target values have been preset for the various
instructions to be used when the high-speed
counter related instruction F166_HC1S or
F167_HC1R is executed. The value can be
read by executing an instruction.

A N/A

DT90052
%MW5.90052

High-speed counter and
pulse output control flag

Used to reset the high-speed counter, disable
counting, continue or clear the high-speed
counter instruction. This register can be set by
executing an instruction
Control code setting:

N/A A

Appendix Programming Information

FPWIN Pro Programming

880

FP Address
IEC Address

Name Description Read Write

DT90053
%MW5.90053

Clock/calendar monitor
(hour/minute)

Hour and minute data of the clock/calendar are
stored here. This data is read-only data, it
cannot be overwritten.

A N/A

DT90054
%MW5.90054

Clock/calendar setting
(minute/second)

A A

DT90055
%MW5.90055

Clock/calendar setting
(day/hour)

A A

DT90056
%MW5.90056

Clock/calendar setting
(year/month)

A A

DT90057
%MW5.90057

Clock/calendar setting
(day-of-the-week)

The year, month, day, hour, minute, second,
and day-of-the-week data for the calendar
timer is stored. The built-in calendar timer will
operate correctly through the year 2099 and
supports leap years. The calendar timer can be
set by writing a value using a programming tool
software or a programming instruction (see
example for DT90058).

DT90054

DT90055

DT90056

DT90057

Higher byte Lower byte

Minute data
16#00 to 16#59

Second data
16#00 to 16#59

Day data
16#01 to 16#31

Hour data
16#00 to 16#23

Day-of-the-week
data
16#00 to 16#06

Year data
16#00 to 16#99

Month data
16#01 to 16#12

A A

DT90058
%MW5.90058

Clock/calendar time setting By setting the highest bit of DT90058 to 1, time
and date become that written to DT90054 to
DT90057. After the time has been set,
DT90058 is cleared to 0.
Example:
Set the time to 12:00:00 on day 5 when X0
turns ON.

If you changed the values of DT90054 to
DT90057 using the programming tool, it is not
necessary to set DT90058.
Please refer to the section on time setting for
more information.

A A

DT90059
%MW5.90059

Serial
communication error code

Error code is stored here when a
communication error
occurs.

N/A N/A

FPWIN Pro Programming

Appendix Programming Information

881

FP Address
IEC Address

Name Description Read Write

DT90060 to
DT90122
%MW5.90060
to
%MW5.90122

Step ladder
process
(0 to 999)

Indicates the startup condition of the step
ladder process. When the process starts, the
bit corresponding to the process number turns
on. Monitor using binary display.
Example:

A A

DT90123 to
DT90125
%MW5.90123
to
%MW5.90125

Not used N/A N/A

DT90126
%MW5.90126

Forced Input/
Output unit no.

Used by the system. N/A N/A

DT90127 to
DT90139
%MW5.90127
to
%MW5.90139

Not used N/A N/A

DT90140
%MW5.90140

MEWNET-W0
PLC link status

The number of times the receiving operation is
performed.

A N/A

DT90141
%MW5.90141

MEWNET-W0
PLC link status

The current interval between two receiving
operations:
value in the register × 2.5ms

A N/A

DT90142
%MW5.90142

MEWNET-W0
PLC link status

The minimum interval between two receiving
operations: value in the register × 2.5ms

A N/A

DT90143
%MW5.90143

MEWNET-W0
PLC link status

The maximum interval between two receiving
operations: value in the register × 2.5ms

A N/A

DT90144
%MW5.90144

MEWNET-W0
PLC link status

The number of times the sending operation is
performed.

A N/A

DT90145
%MW5.90145

MEWNET-W0
PLC link status

The current interval between two sending
operations:
value in the register × 2.5ms

A N/A

DT90146
%MW5.90146

MEWNET-W0
PLC link status

The minimum interval between two sending
operations: value in the register × 2.5ms

A N/A

DT90147
%MW5.90147

MEWNET-W0
PLC link status

The maximum interval between two sending
operations: value in the register × 2.5ms

A N/A

DT90148 to
DT90155
%MW5.90148
to
%MW5.90155

Not used N/A N/A

DT90156
%MW5.90156

MEWNET-W0
PLC link status

Area used for measurement of receiving
interval.

A N/A

DT90157
%MW5.90157

MEWNET-W0
PLC link status

Area used for measurement of sending
interval.

A N/A

DT90158
%MW5.90158

Not used N/A N/A

Appendix Programming Information

FPWIN Pro Programming

882

FP Address
IEC Address

Name Description Read Write

DT90159
%MW5.90159

Not used N/A N/A

DT90160
%MW5.90160

MEWNET-W0
PLC link unit no.

Stores the unit no. of a PLC link A N/A

DT90161
%MW5.90161

MEWNET-W0
PLC link error flag

Stores the error contents of a PLC link A N/A

DT90162 to
DT90169
%MW5.90162
to
%MW5.90169

Not used N/A N/A

DT90170
%MW5.90170

MEWNET-W0
PLC link status

Duplicated destination for PLC inter-link
address

A N/A

DT90171
%MW5.90171

MEWNET-W0
PLC link status

Counts how many times a token is lost. A N/A

DT90172
%MW5.90172

MEWNET-W0
PLC link status

Counts how many times two or more tokens
are detected.

A N/A

DT90173
%MW5.90173

MEWNET-W0
PLC link status

Counts how many times a signal is lost. A N/A

DT90174
%MW5.90174

MEWNET-W0
PLC link status

No. of times undefined commands have been
received

A N/A

DT90175
%MW5.90175

MEWNET-W0
PLC link status

No. of times sum check errors have occurred
during reception

A N/A

DT90176
%MW5.90176

MEWNET-W0
PLC link status

No. of times format errors have occurred in
received data

A N/A

DT90177
%MW5.90177

MEWNET-W0
PLC link status

No. of times transmission errors have occurred A N/A

DT90178
%MW5.90178

MEWNET-W0
PLC link status

No. of times procedural errors have occurred A N/A

DT90179
%MW5.90179

MEWNET-W0
PLC link status

No. of times overlapping master units have
occurred

A N/A

DT90180 to
DT90189
%MW5.90180 to
%MW5.90189

Not used N/A N/A

DT90190
%MW5.90190

High-speed counter control
code monitor for CH0

This monitors the data specified in DT90052.
01234

0: Enable/1: Disable

0: Continue/1: Clear
Pulse output

Near home input 0: Off/1: On

HSC instruction
0: Continue/1: Stop

Software reset

Reset input setting
Count

0: Enable/1: Disable

0: No/1: Yes

A N/A

FPWIN Pro Programming

Appendix Programming Information

883

FP Address
IEC Address

Name Description Read Write

DT90191
%MW5.90191

High-speed counter control
code monitor for CH1

This monitors the data specified in DT90052.
01234

0: Enable/1: Disable

0: Continue/1: Clear
Pulse output

Near home input 0: Off/1: On

HSC instruction
0: Continue/1: Stop

Software reset

Reset input setting
Count

0: Enable/1: Disable

0: No/1: Yes

DT90192
%MW5.90192

High-speed counter control
code monitor for CH2

This monitors the data specified in DT90052.
01234

0: Enable/1: Disable

0: Continue/1: Clear
Pulse output

Near home input 0: Off/1: On

HSC instruction
0: Continue/1: Stop

Software reset

Reset input setting
Count

0: Enable/1: Disable

0: No/1: Yes

DT90193
%MW5.90193

High-speed counter control
code monitor for CH3

This monitors the data specified in DT90052.
01234

0: Enable/1: Disable

0: Continue/1: Clear
Pulse output

Near home input 0: Off/1: On

HSC instruction
0: Continue/1: Stop

Software reset

Reset input setting
Count

0: Enable/1: Disable

0: No/1: Yes

DT90194 to
DT90199
%MW5.90194 to
%MW5.90199

Not used N/A N/A

DT90200
%MW5.90200

High-speed counter
elapsed value

For
CH2

The elapsed value (32-bit data) for the high-
speed counter is stored here. The value can be
read and written by executing an instruction.

A A

DT90201
%MW5.90201

High-speed counter
elapsed value

For
CH2

The elapsed value (32-bit data) for the high-
speed counter is stored here. The value can be
read and written by executing an instruction.

A A

Appendix Programming Information

FPWIN Pro Programming

884

FP Address
IEC Address

Name Description Read Write

DT90202
%MW5.90202

High-speed counter
target value

For
CH2

The target value (32-bit data) of the high-speed
counter specified by the high-speed counter
instruction is stored here.
Target values have been preset for the various
instructions, to be used when the high-speed
counter related instruction F166_HC1S,
F167_HC1R, F171_SPDH, F172_SPSH,
F174_SP0H, F175_SPSH, or F176_SPCH is
executed. The value can be read by executing
an instruction.

A N/A

DT90203
%MW5.90203

High-speed counter
target value

For
CH2

The target value (32-bit data) of the high-speed
counter specified by the high-speed counter
instruction is stored here.
Target values have been preset for the various
instructions, to be used when the high-speed
counter related instruction F166_HC1S,
F167_HC1R, F171_SPDH, F172_SPSH,
F174_SP0H, F175_SPSH, or F176_SPCH is
executed. The value can be read by executing
an instruction.

A N/A

DT90204
%MW5.90204

High-speed counter
elapsed value

For
CH3

The elapsed value (32-bit data) for the high-
speed counter is stored here. The value can be
read and written by executing an instruction.

A A

DT90205
%MW5.90205

High-speed counter
elapsed value

For
CH3

The elapsed value (32-bit data) for the high-
speed counter is stored here. The value can be
read and written by executing an instruction.

A A

DT90206
%MW5.90206

High-speed counter
target value

For
CH3

The target value (32-bit data) of the high-speed
counter specified by the high-speed counter
instruction is stored here.
Target values have been preset for the various
instructions, to be used when the high-speed
counter related instruction F166_HC1S or
F167_HC1R is executed. The value can be
read by executing an instruction.

A N/A

DT90207
%MW5.90207

High-speed counter
target value

For
CH3

The target value (32-bit data) of the high-speed
counter specified by the high-speed counter
instruction is stored here.
Target values have been preset for the various
instructions, to be used when the high-speed
counter related instruction F166_HC1S or
F167_HC1R is executed. The value can be
read by executing an instruction.

A N/A

DT90208 to
DT90218
%MW5.90208
to
%MW5.90218

Not used

 N/A N/A

DT90219
%MW5.90219

Unit no. (station no.)
selection for DT90220 to
DT90251

0: Unit no. (station no.) 1 to 8,
1: Unit no. (station no.) 9 to 16

A N/A

FPWIN Pro Programming

Appendix Programming Information

885

FP Address
IEC Address

Name Description Read Write

DT90220
%MW5.90220

PLC link
unit (station) no.
1 or 9

System
register
40 and
41

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90221
%MW5.90221

PLC link
unit (station) no.
1 or 9

System
register
42 and
43

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90222
%MW5.90222

PLC link
unit (station) no.
1 or 9

System
register
44 and
45

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

Appendix Programming Information

FPWIN Pro Programming

886

FP Address
IEC Address

Name Description Read Write

DT90223
%MW5.90223

PLC link
unit (station) no.
1 or 9

System
register
46 and
47

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90224
%MW5.90224

PLC link
unit (station) no.
2 or 10

System
register
40 and
41

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90225
%MW5.90225

PLC link
unit (station) no.
2 or 10

System
register
42 and
43

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

FPWIN Pro Programming

Appendix Programming Information

887

FP Address
IEC Address

Name Description Read Write

DT90226
%MW5.90226

PLC link
unit (station) no.
2 or 10

System
register
44 and
45

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90227
%MW5.90227

PLC link
unit (station) no.
2 or 10

System
register
46 and
47

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90228
%MW5.90228

PLC link
unit (station) no.
3 or 11

System
register
40 and
41

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

Appendix Programming Information

FPWIN Pro Programming

888

FP Address
IEC Address

Name Description Read Write

DT90229
%MW5.90229

PLC link
unit (station) no.
3 or 11

System
register
42 and
43

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90230
%MW5.90230

PLC link
unit (station) no.
3 or 11

System
register
44 and
45

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90231
%MW5.90231

PLC link
unit (station) no.
3 or 11

System
register
46 and
47

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

FPWIN Pro Programming

Appendix Programming Information

889

FP Address
IEC Address

Name Description Read Write

DT90232
%MW5.90232

PLC link
unit (station) no.
4 or 12

System
register
40 and
41

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90233
%MW5.90233

PLC link
unit (station) no.
4 or 12

System
register
42 and
43

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90234
%MW5.90234

PLC link
unit (station) no.
4 or 12

System
register
44 and
45

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

Appendix Programming Information

FPWIN Pro Programming

890

FP Address
IEC Address

Name Description Read Write

DT90235
%MW5.90235

PLC link
unit (station) no.
4 or 12

System
register
46 and
47

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90236
%MW5.90236

PLC link
unit (station) no.
5 or 13

System
register
40 and
41

The contents of the system register settings
pertaining to the PLC inter-link function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90237
%MW5.90237

PLC link
unit (station) no.
5 or 13

System
register
42 and
43

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

FPWIN Pro Programming

Appendix Programming Information

891

FP Address
IEC Address

Name Description Read Write

DT90238
%MW5.90238

PLC link
unit (station) no.
5 or 13

System
register
44 and
45

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90239
%MW5.90239

PLC link
unit (station) no.
5 or 13

System
register
46 and
47

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

Appendix Programming Information

FPWIN Pro Programming

892

FP Address
IEC Address

Name Description Read Write

DT90240
%MW5.90240

PLC link
unit (station) no.
6 or 14

System
register
40 and
41

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90241
%MW5.90241

PLC link
unit (station) no.
6 or 14

System
register
42 and
43

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

FPWIN Pro Programming

Appendix Programming Information

893

FP Address
IEC Address

Name Description Read Write

DT90242
%MW5.90242

PLC link
unit (station) no.
6 or 14

System
register
44 and
45

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90243
%MW5.90243

PLC link
unit (station) no.
6 or 14

System
register
46 and
47

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

Appendix Programming Information

FPWIN Pro Programming

894

FP Address
IEC Address

Name Description Read Write

DT90244
%MW5.90244

PLC link
unit (station) no.
7 or 15

System
register
40 and
41

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90245
%MW5.90245

PLC link
unit (station) no.
7 or 15

System
register
42 and
43

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

FPWIN Pro Programming

Appendix Programming Information

895

FP Address
IEC Address

Name Description Read Write

DT90246
%MW5.90246

PLC link
unit (station) no.
7 or 15

System
register
44 and
45

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90247
%MW5.90247

PLC link
unit (station) no.
7 or 15

System
register
46 and
47

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

Appendix Programming Information

FPWIN Pro Programming

896

FP Address
IEC Address

Name Description Read Write

DT90248
%MW5.90248

PLC link
unit (station) no.
8 or 16

System
register
40 and
41

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90249
%MW5.90249

PLC link
unit (station) no.
8 or 16

System
register
42 and
43

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

FPWIN Pro Programming

Appendix Programming Information

897

FP Address
IEC Address

Name Description Read Write

DT90250
%MW5.90250

PLC link
unit (station) no.
8 or 16

System
register
44 and
45

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90251
%MW5.90251

PLC link
unit (station) no.
8 or 16

System
register
46 and
47

The contents of the system register settings
pertaining to the PLC interlink function for the
various unit numbers are stored as shown
below.
Example:
When DT90219 is 0

A N/A

DT90252
to DT90255
%MW5.90252
to
%MW5.90255

Not used N/A N/A

DT90256
%MW5.90256

Unit no. (station no.) switch
monitor for COM port

Used by the system. N/A N/A

Appendix Programming Information

FPWIN Pro Programming

898

32.6.2 Special Data Registers for FP-X

Special data registers are one word (16-bit) memory areas which store specific information.
(A: Available, N/A: Not available)

FP Address
IEC Address

Name Description Read Write

DT90000
%MW5.90000

Self-diagnostic error
code

The self-diagnostic error code is stored here when a
self-diagnostic error occurs.

A N/A

DT90001
%MW5.90001

Not used — N/A N/A

DT90002
%MW5.90002

Position of abnormal
I/O board for
application cassette

When an error occurs at the I/O board for the
application cassette, the bit corresponding to the
board will turn on.

15 11 7 3 2 1 0

3 2 1 0

(bit no.)

(expansion no.)
on: error, off: normal

A N/A

DT90003
%MW5.90003

Not used — N/A N/A

DT90004
%MW5.90004

Not used — N/A N/A

DT90005
%MW5.90005

Not used — N/A N/A

DT90006
%MW5.90006

Position of abnormal
application cassette

When an error occurs at the intelligent board for the
application cassette, the bit corresponding to the
board will turn on.

15 11 7 3 2 1 0

3 2 1 0

(bit no.)

(expansion no.)
on: error, off: normal

A N/A

DT90007
%MW5.90007

Not used — N/A N/A

DT90008
%MW5.90008

Not used — N/A N/A

DT90009
%MW5.90009

Communication error
flag for COM 2

Stores the error contents when using COM 2 port. A N/A

DT90010
%MW5.90010

Extension I/O verify
error unit

When the state of installation of FP-X expansion I/O
unit has changed since the power was turned on, the
bit corresponding to the unit no. will turn on. Monitor
using binary display.

15 11

3 2 1 07 6 5 4

3 2 1 07 6 5 4 (bit no.)

(unit no.)
on: error, off: normal

A N/A

FPWIN Pro Programming

Appendix Programming Information

899

FP Address
IEC Address

Name Description Read Write

DT90011
%MW5.90011

Add-on cassette verify
error unit

When the state of installation of an FP-X add-on
cassette has changed since the power was turned
on, the bit corresponding to the unit no. will turn on.
Monitor using binary display.

15 11 7 3 2 1 0

3 2 1 0

(bit no.)

(expansion no.)
on: error, off: normal

A N/A

DT90012
%MW5.90012

Not used — N/A N/A

DT90013
%MW5.90013

Not used — N/A N/A

DT90014
%MW5.90014

Operation auxiliary
register for data shift
instruction

One shift-out hexadecimal digit is stored in bit
positions 0 to 3 when the data shift instruction,
F105_BSR or F106_BSL is executed. The value can
be read and written by executing F0_MV instruction.

A A

DT90015
%MW5.90015

A A

DT90016
%MW5.90016

Operation auxiliary
register for division
instruction

The divided remainder (16-bit) is stored in DT90015
when the division instruction F32_% or F52_B%
instruction is executed.
The divided remainder (32-bit) is stored in DT90015
and DT90016 when the division instruction F33_D%
or F53_DB% is executed. The value can be read and
written by executing the F0_MV instruction.

A A

DT90017
%MW5.90017

Operation error
address (hold type)

After commencing operation, the address where the
first operation error occurred is stored. Monitor the
address using decimal display.

A N/A

DT90018
%MW5.90018

Operation error
address (non-hold
type)

The address where an operation error occurred is
stored. Each time an error occurs, the new address
overwrites the previous address. At the beginning of
a scan, the address is 0. Monitor the address using
decimal display.

A N/A

DT90019
%MW5.90019

2.5ms ring counter
(see note)

The data stored here is increased by one every
2.5ms. (H0 to HFFFF)
Difference between the values of the two points
(absolute value) x 2.5ms = elapsed time between the
two points.

A N/A

DT90020
%MW5.90020

10μs ring counter
(see note)

The data stored here is increased by one every
10.24μs. (H0 to HFFFF)
Difference between the values of the two points
(absolute value) x 10.24μs = elapsed time between
the two points.
Note: The exact value is 10.24μs.

A N/A

DT90021
%MW5.90021

Not used — N/A N/A

It is renewed once at the beginning of each one scan.

Appendix Programming Information

FPWIN Pro Programming

900

(A: Available, N/A: Not available)

FP Address
IEC Address

Name Description Read Write

DT90022
%MW5.90022

Scan time (current
value)
(see note)

The current scan time is stored here. The scan time
is calculated using the formula:
Scan time (ms) = stored data (decimal) x 0.1ms
Example: 50 indicates 5ms.

A N/A

DT90023
%MW5.90023

Scan time (minimum
value)
(see note)

The minimum scan time is stored here. Scan time is
calculated using the formula:
Scan time (ms) = stored data (decimal) x 0.1 ms
Example: K50 indicates 5 ms.

A N/A

DT90024
%MW5.90024

Scan time (maximum
value)
(see note)

The maximum scan time is stored here. The scan
time is calculated using the formula:
Scan time (ms) = stored data (decimal) x 0.1ms
Example: 125 indicates 12.5ms.

A N/A

DT90025
%MW5.90025

Mask condition
monitoring register for
interrupts
(INT 0 to 13)

The mask conditions of interrupts using the ICTL
instruction is stored here. Monitor using binary
display.

15 11 7 3

7 311

13

13

0

0

0: interrupt disabled (masked)
1: interrupt enabled (unmasked)

(INT no.)

(Bit no.)

A N/A

DT90026
%MW5.90026

Not used — N/A N/A

DT90027
%MW5.90027

Periodical interrupt
interval (INT24)

The value set by the ICTL instruction is stored.
0: periodical interrupt is not used
1 to 3000: 0.5ms to 1.5s or 10ms to 30s

A N/A

DT90028
%MW5.90028

Not used — N/A N/A

DT90029
%MW5.90029

Not used — N/A N/A

DT90030
%MW5.90030

Message 0

DT90031
%MW5.90031

Message 1

DT90032
%MW5.90032

Message 2

DT90033
%MW5.90033

Message 3

DT90034
%MW5.90034

Message 4

DT90035
%MW5.90035

Message 5

The contents of the specified message are stored in
these special data registers when the F149_MSG
instruction is executed.

A N/A

DT90036
%MW5.90036

Not used — N/A N/A

Scan time display is only possible in RUN mode and shows the operation cycle
time. (In PROG mode, the scan time for the operation is not displayed.) The

FPWIN Pro Programming

Appendix Programming Information

901

maximum and minimum values are cleared each time the mode is switched
from RUN to PROG.

(A: Available, N/A: Not available)

FP Address
IEC Address

Name Description Read Write

DT90037
%MW5.90037

Operation auxiliary
register for search
instruction
F96_SRC

The number of data that match the searched data is
stored here when the F96_SRC instruction is
executed.

A N/A

DT90038
%MW5.90038

Operation auxiliary
register for search
instruction
F96_SRC

The position of the first matching data is stored here
when the F96_SRC instruction is executed.

A N/A

DT90039
%MW5.90039

Not used — N/A N/A

DT90040
%MW5.90040

Potentiometer
(volume) input V0

DT90041
%MW5.90041

Potentiometer
(volume) input V1

The potentiometer value (0 to 1000) is stored here.
This value can be used in analog timers and other
applications by using the program to read this value
to a data register.
V0→DT90040
V1→DT90041

A N/A

DT90042
%MW5.90042

Potentiometer
(volume) input V2

DT90043
%MW5.90043

Potentiometer
(volume) input V3

For C60 only:
The potentiometer value (0 to 1000) is stored here.
This value can be used in analog timers and other
applications by using the program to read this value
to a data register.
V0→DT90042
V1→DT90043

A N/A

DT90044
%MW5.90044

Used by system Used by the system. A A

DT90045
%MW5.90045

Not used — N/A N/A

DT90046
%MW5.90046

Not used — N/A N/A

DT90047
%MW5.90047

Not used — N/A N/A

DT90048
%MW5.90048

Not used — N/A N/A

DT90049
%MW5.90049

Not used — N/A N/A

DT90050
%MW5.90050

Not used — N/A N/A

DT90051
%MW5.90051

Not used — N/A N/A

Appendix Programming Information

FPWIN Pro Programming

902

(A: Available, N/A: Not available)

FP Address
IEC Address

Name Description Read Write

DT90052
%MW5.90052

High-speed counter
and pulse output
control flag

Used to reset the high-speed counter, disable
counting, continue or clear high-speed counter
instruction.
High-speed counter control code setting
Pulse output control code setting

N/A A

DT90053
%MW5.90053

Clock/calendar
monitor
(hour/minute)

Hour and minute data of the clock/calendar are
stored here. This data is read-only data. It cannot be
overwritten.

H00 - H23 H00 - H59
Hour data

Lower byteHigher byte

Minute data

A N/A

DT90054
%MW5.90054

Clock/calendar
setting
(minute/second)

DT90055
%MW5.90055

Clock/calendar
setting (day/hour)

DT90056
%MW5.90056

Clock/calendar
setting (year/month)

DT90057
%MW5.90057

Clock/calendar
setting (day-of-the-
week)

The year, month, day, hour, minute, second, and
day-of-the-week data for the calendar timer is
stored. The built-in calendar timer will operate
correctly through the year 2099 and supports leap
years. The calendar timer can be set by writing a
value using a programming tool software or a
programming instruction (see example for
DT90058).

DT90054

DT90055

DT90056

DT90057

H00 - H59 H00 - H59

H01 - H31 H00 - H23

H00 - H06

H00 - H99 H01 - H12

Higher byte Lower byte

Minute Second

Day Hour

Day-of-the-week

Year Month

A A

FPWIN Pro Programming

Appendix Programming Information

903

(A: Available, N/A: Not available)

FP Address
IEC Address

Name Description Read Write

DT90058
%MW5.90058

Clock/calendar time
setting and 30
seconds correction
register

By setting the highest bit of DT90058 to 1, the time
will be set according to the values written to DT90054
to DT90057. After the time is set, DT90058 is cleared
to 0.
FPWIN Pro:
You can conveniently set the real-time clock using
the SET_RTC_DTBCD instruction (see online help).
FPWIN GR:
Use the F0 (MV) instruction to set the corresponding
data registers.
Example: Set the time to 12:00:00 on the 5th day
when X0 turns on.

Note: If the values of DT90054 to DT90057 are
changed with the programming tool software, the time
will be set when the new values are written.
Therefore, it is unnecessary to write to DT90058.
When correcting times of less than 30 seconds
By setting the lowest bit of DT90058 to 1, the
"seconds" value will be rounded off to the nearest
minute.

A A

DT90059
%MW5.90059

Serial
communication error
code

Error code is stored here when a communication
error occurs.

N/A N/A

DT90060 to
DT90122
%MW5.90060 to
%MW5.90122

Step ladder
process
(0 to 999)

Indicates the startup condition of the step ladder
process. When the process starts, the bit
corresponding to the process number turns on.
Monitor using binary display.
Example:

DT90123
%MW5.90123

Not used — N/A N/A

Appendix Programming Information

FPWIN Pro Programming

904

(A: Available, N/A: Not available)

FP Address
IEC Address

Name Description Read Write

DT90124
%MW5.90124

SEND/RECV end
code for COM1 port

For details, refer to the programming manual or
online help for the F145 and F146 instructions.

N/A N/A

DT90125
%MW5.90125

SEND/RECV end
code for COM2 port

For details, refer to the programming manual or
online help for the F145 and F146 instructions.

N/A N/A

DT90126
%MW5.90126

Forced ON/OFF
operating station
display

Used by the system N/A N/A

DT90127 to
DT90139
%MW5.90127 to
%MW5.90139

Not used — N/A N/A

DT90140
%MW5.90140

MEWNET-W0 PLC
link 0 status

The number of times the receiving operation is
performed.

A N/A

DT90141
%MW5.90141

MEWNET-W0
PLC link 0 status

The current interval between two receiving
operations:
value in the register × 2.5ms

A N/A

DT90142
%MW5.90142

MEWNET-W0 PLC
link 0 status

The minimum interval between two receiving
operations: value in the register × 2.5ms

A N/A

DT90143
%MW5.90143

MEWNET-W0 PLC
link 0 status

The maximum interval between two receiving
operations: value in the register × 2.5ms

A N/A

DT90144
%MW5.90144

MEWNET-W0 PLC
link 0 status

The number of times the sending operation is
performed.

A N/A

DT90145
%MW5.90145

MEWNET-W0 PLC
link 0 status

The current interval between two sending
operations:
value in the register × 2.5ms

A N/A

DT90146
%MW5.90146

MEWNET-W0 PLC
link 0 status

The minimum interval between two sending
operations: value in the register × 2.5ms

A N/A

DT90147
%MW5.90147

MEWNET-W0
PLC link 0 status

The maximum interval between two sending
operations: value in the register × 2.5ms

A N/A

DT90148
%MW5.90148

MEWNET-W0 PLC
link 1 status

The number of times the receiving operation is
performed.

A N/A

DT90149
%MW5.90149

MEWNET-W0 PLC
link 1 status

The current interval between two receiving
operations: value in the register × 2.5ms

A N/A

DT90150
%MW5.90150

MEWNET-W0 PLC
link 1 status

The minimum interval between two receiving
operations: value in the register × 2.5ms

A N/A

DT90151
%MW5.90151

MEWNET-W0 PLC
link 1 status

The maximum interval between two receiving
operations: value in the register × 2.5ms

A N/A

DT90152
%MW5.90152

MEWNET-W0 PLC
link 1 status

The number of times the sending operation is
performed.

A N/A

DT90153
%MW5.90153

MEWNET-W0 PLC
link 1 status

The current interval between two sending
operations: value in the register × 2.5ms

A N/A

DT90154
%MW5.90154

MEWNET-W0 PLC
link 1 status

The minimum interval between two sending
operations: value in the register × 2.5ms

A N/A

DT90155
%MW5.90155

MEWNET-W0 PLC
link 1 status

The maximum interval between two sending
operations: value in the register × 2.5ms

A N/A

DT90156
%MW5.90156

MEWNET-W0
PLC link 0 status

Area used for measurement of receiving interval. A N/A

FPWIN Pro Programming

Appendix Programming Information

905

FP Address
IEC Address

Name Description Read Write

DT90157
%MW5.90157

MEWNET-W0 PLC
link 0 status

Area used for measurement of sending interval. A N/A

DT90158
%MW5.90158

MEWNET-W0 PLC
link 1 status

Area used for measurement of receiving interval. A N/A

DT90159
%MW5.90159

MEWNET-W0 PLC
link 1 status

Area used for measurement of sending interval. A N/A

DT90160
%MW5.90160

MEWNET-W0 PLC
link 0 unit no.

Stores the unit no. of a PLC link A N/A

DT90161
%MW5.90161

MEWNET-W0 PLC
link 0 error flag

Stores the error contents of a PLC link A N/A

DT90162 to
DT90169
%MW5.90162 to
%MW5.90169

Not used — N/A N/A

DT90170
%MW5.90170

MEWNET-W0 PLC
link 1 status

Duplicated destination for PLC inter-link address. A N/A

DT90171
%MW5.90171

MEWNET-W0 PLC
link 1 status

Counts how many times a token is lost. A N/A

DT90172
%MW5.90172

MEWNET-W0 PLC
link 1 status

Counts how many times two or more tokens are
detected.

A N/A

DT90173
%MW5.90173

MEWNET-W0 PLC
link 1 status

Counts how many times a signal is lost. A N/A

DT90174
%MW5.90174

MEWNET-W0 PLC
link 1 status

No. of times undefined commands have been
received

A N/A

DT90175
%MW5.90175

MEWNET-W0 PLC
link 1 status

No. of times sum check errors have occurred during
reception.

A N/A

DT90176
%MW5.90176

MEWNET-W0 PLC
link 1 status

No. of times format errors have occurred in received
data.

A N/A

DT90177
%MW5.90177

MEWNET-W0 PLC
link 1 status

No. of times transmission errors have occurred. A N/A

DT90178
%MW5.90178

MEWNET-W0 PLC
link 1 status

No. of times procedural errors have occurred. A N/A

DT90179
%MW5.90179

MEWNET-W0 PLC
link 1 status

No. of times overlapping master units have
occurred.

A N/A

DT90180 to
DT90218
%MW5.90180 to
%MW5.90218

Not used — N/A N/A

Appendix Programming Information

FPWIN Pro Programming

906

(A: Available, N/A: Not available)

FP Address
IEC Address

Name Description Read Write

DT90219
%MW5.90219

Unit no. (station no.) selection for
DT90220 to DT90251

0: Unit no. (station no.) 1 to 8,
1: Unit no. (station no.) 9 to 16

A N/A

DT90220
%MW5.90220

System registers
40 and 41

DT90221
%MW5.90221

System registers
42 and 43

DT90222
%MW5.90222

System registers
44 and 45

DT90223
%MW5.90223

PLC link unit
(station) no. 1
or 9

System registers
46 and 47

DT90224
%MW5.90224

System registers
40 and 41

DT90225
%MW5.90225

System registers
42 and 43

DT90226
%MW5.90226

System registers
44 and 45

DT90227
%MW5.90227

PLC link unit
(station) no. 2
or 10

System registers
46 and 47

DT90228
%MW5.90228

System registers
40 and 41

DT90229
%MW5.90229

System registers
42 and 43

DT90230
%MW5.90230

System registers
44 and 45

DT90231
%MW5.90231

PLC link unit
(station) no. 3
or 11

System registers
46 and 47

DT90232
%MW5.90232

System registers
40 and 41

DT90233
%MW5.90233

System registers
42 and 43

DT90234
%MW5.90234

System registers
44 and 45

DT90235
%MW5.90235

PLC link unit
(station) no. 4
or 12

System registers
46 and 47

DT90236
%MW5.90236

System registers
40 and 41

DT90237
%MW5.90237

System registers
42 and 43

DT90238
%MW5.90238

System registers
44 and 45

DT90239
%MW5.90239

PLC link unit
(station) no. 5
or 13

System registers
46 and 47

The contents of the system register
settings pertaining to the PLC inter-
link function for the various unit
numbers are stored as shown below.
Example:
When DT90219 is 0

DT90220 to
DT90223
Unit (station)
no. 1

Higher byte Lower byte

Setting contents of
system registers 40,
42, 44 and 46

Setting contents of
system registers
41, 43, 45 and 47

System register 46 (see "Table of
System Registers for FP-X" on page
850) of each respective station
determines which block of data is
transferred:
Normal: PLC link 0, as defined by

system registers 40 - 45 and 47.
Reverse: PLC link 1, as defined by

system registers 50 - 55 and 57.

A A

FPWIN Pro Programming

Appendix Programming Information

907

(A: Available, N/A: Not available)

FP Address
IEC Address

Name Description Read Write

DT90240
%MW5.90240

System registers 40
and 41

DT90241
%MW5.90241

System registers 42
and 43

DT90242
%MW5.90242

System registers 44
and 45

DT90243
%MW5.90243

PLC link unit
(station) no. 6 or
14

System registers 46
and 47

DT90244
%MW5.90244

System registers 40
and 41

DT90245
%MW5.90245

System registers 42
and 43

DT90246
%MW5.90246

System registers 44
and 45

DT90247
%MW5.90247

PLC link unit
(station) no. 5 or
15

System registers 46
and 47

DT90248
%MW5.90248

System registers 40
and 41

DT90249
%MW5.90249

System registers 42
and 43

DT90250
%MW5.90250

System registers 44
and 45

DT90251
%MW5.90251

PLC link unit
(station) no. 8 or
16

System registers 46
and 47

See previous table. A A

DT90252 to
DT90256
%MW5.90252 to
%MW5.90256

Not used — N/A N/A

Concerning the special data registers for high-speed counting, DT90300 to DT90347
and pulse I/O, DT90348 to DT90355.

• They are all available for reading and writing.

• In FPWIN Pro, you have several convenient programming methods available to
access the target or elapsed value areas, including assignment operation with system
variables. Please refer to the online help for details.

• For FPWIN GR, use the F1 (DMV) instruction to write to the elapsed value. Use the
F166 (HC1S) and F167 (HC1R) instructions to write to the target value area.

FP Address
IEC Address

Name Description

DT90300
%MW5.90300

Lower words

DT90301
%MW5.90301

Elapsed
value area

Higher words

Counting area for input (X0) or (X0, X1) of the
main unit.

DT90302
%MW5.90302

Target Lower words

HSC-CH0

The target value is set when instructions

Appendix Programming Information

FPWIN Pro Programming

908

FP Address
IEC Address

Name Description

DT90303
%MW5.90303

value area Higher words F166_HC1S and F167_HC1R are executed.

DT90304
%MW5.90304

Lower words

DT90305
%MW5.90305

Elapsed
value area

Higher words

Counting area for input (X1) of the main unit.

DT90306
%MW5.90306

Lower words

DT90307
%MW5.90307

Target
value area

Higher words

HSC-CH1

The target value is set when instructions
F166_HC1S and F167_HC1R are executed.

DT90308
%MW5.90308

Lower words

DT90309
%MW5.90309

Elapsed
value area

Higher words

Counting area for input (X2) or (X2, X3) of the
main unit.

DT90310
%MW5.90310

Lower words

DT90311
%MW5.90311

Target
value area

Higher words

HSC-CH2

The target value is set when instructions
F166_HC1S and F167_HC1R are executed.

DT90312
%MW5.90312

Lower words

DT90313
%MW5.90313

Elapsed
value area

Higher words

Counting area for input (X3) of the main unit.

DT90314
%MW5.90314

Lower words

DT90315
%MW5.90315

Target
value area

Higher words

HSC-CH3

The target value is set when instructions
F166_HC1S and F167_HC1R are executed.

DT90316
%MW5.90316

Lower words

DT90317
%MW5.90317

Elapsed
value area

Higher words

Counting area for input (X4) or (X4, X5) of the
main unit.

DT90318
%MW5.90318

Lower words

DT90319
%MW5.90319

Target
value area

Higher words

HSC-CH4

The target value is set when instructions
F166_HC1S and F167_HC1R are executed.

FPWIN Pro Programming

Appendix Programming Information

909

FP Address
IEC Address

Name Description

DT90320
%MW5.90320

Lower words

DT90321
%MW5.90321

Elapsed
value area

Higher words

Counting area for input (X5) of the main unit.

DT90322
%MW5.90322

Lower words

DT90323
%MW5.90323

Target
value area

Higher words

HSC-CH5

The target value is set when instructions
F166_HC1S and F167_HC1R are executed.

DT90324
%MW5.90324

Lower words

DT90325
%MW5.90325

Elapsed
value area

Higher words

Counting area for input (X6) or (X6, X7) of the
main unit.

DT90326
%MW5.90326

Lower words

DT90327
%MW5.90327

Target
value area

Higher words

HSC-CH6

The target value is set when instructions
F166_HC1S and F167_HC1R are executed.

DT90328
%MW5.90328

Lower words

DT90329
%MW5.90329

Elapsed
value area

Higher words

Counting area for input (X7) of the main unit.

DT90330
%MW5.90330

Lower words

DT90331
%MW5.90331

Target
value area

Higher words

HSC-CH7

The target value is set when instructions
F166_HC1S and F167_HC1R are executed.

DT90332
%MW5.90332

Lower words

DT90333
%MW5.90333

Elapsed
value area

Higher words

Counting area for input (X0) or (X0, X1) of the
main unit.

DT90334
%MW5.90334

Lower words

DT90335
%MW5.90335

Target
value area

Higher words

HSC-CH8

The target value is set when instructions
F166_HC1S and F167_HC1R are executed.

DT90336
%MW5.90336

Lower words

DT90337
%MW5.90337

Elapsed
value area

Higher words

Counting area for input (X1 of the pulse I/O
cassette.

DT90338
%MW5.90338

Lower words

DT90339
%MW5.90339

Target
value area

Higher words

HSC-CH9

The target value is set when instructions
F166_HC1S and F167_HC1R are executed.

DT90340
%MW5.90340

Lower words

DT90341
%MW5.90341

Elapsed
value area

Higher words

Counting area for input (X3) or (X3, X4) of the
pulse I/O cassette.

DT90342
%MW5.90342

Lower words

DT90343
%MW5.90343

Target
value area

Higher words

HSC-CHA

The target value is set when instructions
F166_HC1S and F167_HC1R are executed.

Appendix Programming Information

FPWIN Pro Programming

910

FP Address
IEC Address

Name Description

DT90344
%MW5.90344

Lower words

DT90345
%MW5.90345

Elapsed
value area

Higher words

Counting area for input (X4) of the pulse I/O
cassette.

DT90346
%MW5.90346

Lower words

DT90347
%MW5.90347

Target
value area

Higher words

HSC-CHB

The target value is set when instructions
F166_HC1S and F167_HC1R are executed.

DT90348
%MW5.90348

Lower words

DT90349
%MW5.90349

Elapsed
value area

Higher words

Counting area for output (Y0, Y1) of the pulse
I/O cassette.

DT90350
%MW5.90350

Lower words

DT90351
%MW5.90351

Target
value area

Higher words

PLS-CH0

The target value is set when instructions
F171_SPDH, F172_PLSH, F174_SP0H and
F175_SPSH are executed.

DT90352
%MW5.90352

Lower words

DT90353
%MW5.90353

Elapsed
value area

Higher words

Counting area for output (Y3, Y4) of the pulse
I/O cassette.

DT90354
%MW5.90354

Lower words

DT90355
%MW5.90355

Target
value area

Higher words

PLS-CH1

The target value is set when instructions
F171_SPDH, F172_PLSH, F174_SP0H and
F175_SPSH are executed.

FPWIN Pro Programming

Appendix Programming Information

911

(A: Available, N/A: Not available)

FP Address
IEC Address

Name Description Read Write

DT90356 to
DT90359
%MW5.90356
to
%MW5.90359

Not used.

— N/A N/A

DT90360
%MW5.90360

HSC-CH0

DT90361
%MW5.90361

HSC-CH1

DT90362
%MW5.90362

HSC-CH2

DT90363
%MW5.90363

HSC-CH3

DT90364
%MW5.90364

HSC-CH4

DT90365
%MW5.90365

HSC-CH5

DT90366
%MW5.90366

HSC-CH6

DT90367
%MW5.90367

HSC-CH7

DT90368
%MW5.90368

HSC-CH8

DT90369
%MW5.90369

HSC-CH9

DT90370
%MW5.90370

HSC-CHA

DT90371
%MW5.90371

HSC-CHB

DT90372
%MW5.90372

PLS-CH0

DT90373
%MW5.90373

Control flag monitor area

PLS-CH1

When HSC control is executed
and data is written to DT90052,
the setting value for the target CH
is stored in each CH.

A N/A

Appendix Programming Information

FPWIN Pro Programming

912

32.7 Error Codes

32.7.1 General Information about Errors

32.7.1.1 FP-Series PLCs and ERROR Display

FP-Series PLCs' LEDs display errors in different ways.

Model Display Behavior
FP1, FP-M, FP2, FP3,
FP10SH

LED ERROR. Continually lit

FP , FP0, FP-X LED ERROR/ALARM Flashes/continually lit

FP-e Screen display ERR. Continually lit

32.7.1.2 MEWTOCOL-COM Transmission Errors

These are error codes from a PC or other computer device that occur during an abnormal
response when communicating with a PLC using MEWTOCOL-COM.

32.7.2 Table of Syntax Check Error

In FPWIN Pro, syntax errors are detected by the compiler and are therefore not critical.

Error
code

Name Operation
status

Description and steps to take

E1 Syntax error Stops A program with a syntax error has been written.
Change to PROG. mode and correct the error.

E2
(* Note)

Duplicated output
error

Stops Two or more OT(Out) instructions and KP(Keep) instructions
are programmed using the same relay.
Change to PROG. mode and correct the program so that one
relay is not used for two or more OT instructions and KP
instructions. Or, set the duplicated output to “enable (K1)” in
system register 20.

E3 Not paired error Stops For instructions which must be used in a pair such as jump (JP
and LBL), one instruction is either missing or in an incorrect
position.
Change to PROG. mode and enter the two instructions which
must be used in a pair in the correct positions.

E4 Parameter
mismatch error

Stops An instruction has been written which does not agree with
system register settings. For example, the number setting in a
program does not agree with the timer/counter range setting.
Change to PROG. mode, check the system register settings,
and change so that the settings and the instruction agree.

FPWIN Pro Programming

Appendix Programming Information

913

Error
code

Name Operation
status

Description and steps to take

E5
(* Note)

Program area error Stops An instruction which must be written to a specific area (main
program area or subprogram area) has been written to a
different area (for example, a subroutine SUB to RET is placed
before an ED instruction).
Change to PROG. mode and enter the instruction into the
correct area.

E6 Compile memory
full error
(Available PLC:
FPΣ/FP-X/
FP2SH/FP10SH)

Stops The program stored in the FPΣ/FP2SH/FP10SH is too large to
compile in the program memory.
Change to PROG. mode and reduce the total number of steps
for the program.

E7 High-level
instruction type
error
(Available PLC:
FPΣ/FP-X/
FP2/FP2SH/FP3/
FP10SH)

Stops In the program, high-level instructions, which execute in every
scan and at the leading edge of the trigger, are programmed to
be triggered by one contact [e.g., F0 (MV) and P0 (PMV) are
programmed using the same trigger continuously].
Correct the program so that the high-level instructions executed
in every scan and only at the leading edge are triggered
separately.

E8 High-level
instruction operand
error

Stops There is an incorrect operand in an instruction which requires a
specific combination operands (for example, the operands must
all be of a certain type).
Enter the correct combination of operands.

E9 No program error
(Available PLC:
FP2SH/FP10SH)

Stops Program may be damaged.
Try to send the program again.

E10 Rewrite during
RUN syntax error

Continues When inputting with the programming tool software, a deletion,
addition or change of order of an instruction (ED, LBL, SUB,
RET, INT, IRET, SSTP, and STPE) that cannot perform a
rewrite during RUN is being attempted. Nothing is written to the
CPU.

This error is also detected if you attempt to execute a rewrite containing a
syntax error during RUN. In this case, nothing will be written to the CPU and
operation will continue.

Appendix Programming Information

FPWIN Pro Programming

914

32.7.3 Table of Self-Diagnostic Errors

Not all errors apply to all PLCs.

E20 - E39

Error
code

Name Operation
status

Description and steps to take

E20 CPU error Stops Probably a hardware abnormality.
Please contact your dealer.

E21
E22
E23
E24
E25

RAM error Stops Probably an abnormality in the internal RAM.
Please contact your dealer.

FP2, FP2SH, FP3, FP10SH:
ROM is not installed.
There may be a problem with the installed ROM.

- ROM contents are damaged
- Program size stored on the ROM is larger

than the capacity of the ROM
Check the contents of the ROM

FP-X:
If the master memory cassette is mounted, the master memor
cassette may be damaged. Remove the master memory, and
check whether the ERROR turns off.
If the ERROR turned off, rewrite the master memory as its
contents are damaged, and use it again.
If the ERROR does not turn off, please contact your dealer.
FP0, FP-e, FPΣ, FP1 C14, C16:
Probably an abnormality in the built-in ROM.
Please contact your dealer.

E26 User’s ROM error Stops

All FP-Ms and FP1 C24, C40, C56, and C72:
Probably an abnormality in the memory unit or master memory
unit.
Program the memory unit or master memory unit again and try
to operate. If the same error is detected, try to operate with
another memory unit or master memory unit.

E27 Intelligent unit
installation error

Stops Intelligent units installed exceed the limitations (i.e. 4 or more
link units).
Turn off the power and re-configure intelligent units referring to
the hardware manual.

E28 System register
error

Stops Probably an abnormality in the system register.
Check the system register setting or initialize the system
registers.

E29 Configuration
parameter error

Stops A parameter error was detected in the MEWNET-W2
configuration area. Set a correct parameter.

E30 Interrupt error 0 Stops Probably a hardware abnormality.
Please contact your dealer.

FPWIN Pro Programming

Appendix Programming Information

915

Error
code

Name Operation
status

Description and steps to take

E31 Interrupt error 1 Stops An interrupt occurred without an interrupt request.
A hardware problem or error due to noise is possible.
Turn off the power and check the noise conditions.
An interrupt occurred without an interrupt request.
A hardware problem or error due to noise is possible.
Turn off the power and check the noise conditions.

E32 Interrupt error 2 Stops

There is no interrupt program for an interrupt which occurred.
Check the number of the interrupt program and change it to
agree with the interrupt request.

E33 Multi-CPU data
unmatch error

CPU2 stops This error occurs when a FP3/FP10SH is used as CPU2 for a
multi-CPU system.
Please contact your dealer.

E34 I/O status error Stops An abnormal unit is installed.
Check the contents of special data register DT9036/DT90036
and locate the abnormal unit. Then turn off the power and
replace the unit with a new one.

E35 MEWNET-F
(remote I/O) slave
illegal unit error

Stops A unit, which cannot be installed on the slave station of the
MEWNET-F link system, is installed on the slave station.
Remove the illegal unit from the slave station.

E36 MEWNET-F
limitation error

Stops The number of slots or I/O points used for MEWNET-F exceeds
the limitation.
Re-configure the system so that the number of slots and I/O
points is within the specified range.

E37 MEWNET-F I/O
mapping error

Stops I/O overlap or I/O setting that is over the range is detected in
the allocated I/O and MEWNET-F I/O map.
Re-configure the I/O map correctly.

E38 MEWNET-F slave
I/O mapping error

Stops I/O mapping for remote I/O terminal boards, remote I/O terminal
units and I/O link unit is not correct.
Re-configure the I/O map for slave stations according to the I/O
points of the slave stations.

E39 IC memory card
read error

Stops When reading in the program from the IC memory card (due to
automatic reading because of the dip switch 3 setting or
program switching due to F14 (PGRD) instruction):

- IC memory card is not installed.
- There is no program file or it is damaged.
- Writing is disabled.
- There is an abnormality in the

AUTOEXEC.SPG file.
- Program size stored on the card is larger

than the capacity of the CPU.
Install an IC memory card that has the program properly
recorded and execute the read once again.

Appendix Programming Information

FPWIN Pro Programming

916

E40 and above

Error
code

Name Operation
status

Description and steps to take

E40 I/O error Selectable With FP3/FP10SH, communication error in the MEWNET-TR
system has occurred.
For all other PLCs an abnormality in an I/O unit has been
detected.
Check the contents of special data registers DT9002 and
DT9003/DT90002 and DT90003 and the erroneous MEWNET-
TR master unit or abnormal I/O unit (also expansion unit or
application cassette). Then check the unit.
Selection of operation status using system register 21:

- to continue operation, set K1 (CONT)
- to stop operation, set K0 (STOP)

E41 Intelligent unit error Selectable An abnormality in an intelligent unit.
Check the contents of special data registers DT9006 and
DT9007/DT90006 and DT90007 and locate the abnormal
intelligent unit. Then check the unit referring to its manual.
Selection of operation status using system register 22:

- to continue operation, set K1 (CONT)
- to stop operation, set K0 (STOP)

E42 I/O unit verify error Selectable I/O unit wiring condition has changed compared to that at time
of power-up.
Check the contents of special data registers DT9010 and
DT9011/DT90010 and DT90011 and locate the erroneous unit.
Then check the unit and correct the wiring.
Selection of operation status using system register 23:

- to continue operation, set K1 (CONT)
- to stop operation, set K0 (STOP)

E43 System watching
dog timer error

Selectable Scan time required for program execution exceeds the setting
of the system watchdog timer.
Check the program and modify it so that FP2SH/FP10SH can
execute a scan within the specified time.
Selection of operation status using system register 24:

- to continue operation, set K1 (CONT)
- to stop operation, set K0 (STOP)

E44 Slave station
connecting time
error for MEWNET-
F system

Selectable The time required for slave station connection exceeds the
setting of the system register 35.
Selection of operation status using system register 25:

- to continue operation, set K1 (CONT)
- to stop operation, set K0 (STOP)

FPWIN Pro Programming

Appendix Programming Information

917

Error
code

Name Operation
status

Description and steps to take

E45 Operation error Selectable Operation became impossible when a high-level instruction was
executed.
Check the contents of special data registers DT9017 and
DT9018/DT90017 and DT90018 to find the program address
where the operation error occurred. Then correct the program.
Refer to the explanation of operation error and the instruction.
Selection of operation status using system register 26:

- to continue operation, set K1 (CONT)
- to stop operation, set K0 (STOP)

E46 Remote I/O
communication
error

Selectable MEWNET-F communication error:
A communication abnormally was caused by a transmission
cable or during the power-down of a slave station.
Check the contents of special data registers DT9131 to
DT9137/DT90131 to DT90137 and locate the abnormal slave
station and recover the slave condition.
Selection of operation status using system register 27:

- to continue operation, set K1 (CONT)
- to stop operation, set K0 (STOP)

S-Link communication error (with FP0-SL1 unit only):
When one of the S-LINK errors (ERR1, 3 or 4) has been
deteced,error code E46 (remote I/O (S-LINK) communication
error) is stored.
Selection of operation status using system register 27:

- to continue operation, set K1 (CONT)
- to stop operation, set K0 (STOP)

E47 MEWNET-F
attribute error

Selectable MEWNET-F communication error
A communication abnormally was caused by a transmission
cable or during the power-down of a slave station.
Check the contents of special data registers DT9131 to
DT9137/DT90131 to DT90137 and locate the abnormal slave
station and recover the communication condition.
Selection of operation status using system register27:

- to continue operation,set K1
- to stop operation, set K0

E50 Backup battery
error

Continues The voltage of the backup battery lowered or the backup battery
of CPU is not installed.
Check the installation of the backup battery and then replace
battery if necessary.
By setting the system register 4 in K0 (NO), you can disregard
this error. However, the BATT. LED turns on.

E51 MEWNET-F
terminal station
error

Continues Terminal station settings were not properly performed.Check
stations at both ends of the communication path, and set them
in the terminal station using the dip switches.

E52 MEWNET-F I/O
update
synchronous error

Continues Set the INITIALIZE/TEST selector to the INITIALIZE position
while keeping the mode selector in the RUN position. If the
same error occurs after this, please contact your dealer.

E53 Multi-CPU
registration error

Continues Abnormality was detected when the multi-CPU system was
used. Please contact your dealer.

Appendix Programming Information

FPWIN Pro Programming

918

Error
code

Name Operation
status

Description and steps to take

E54 IC memory card
backup battery
error

Continues The voltage of the backup battery for the IC memory card is
getting low. The BATT. LED does not turn on.
Charge or replace the backup battery of IC memory card. (The
contents of the IC memory card cannot be guaranteed.)

E55 IC memory card
backup battery
error

Continues The voltage of the backup battery for IC memory card is getting
low. The BATT. LED does not turn on.
Charge or replace the backup battery of IC memory card. (The
contents of the IC memory card cannot be guaranteed.)

E56 Incompatible IC
memory card error

Continues The IC memory card installed is not compatible with
FP2SH/FP10SH. Replace the IC memory card compatible with
FP2SH/FP10SH.

E57 No unit for the
configuration

Continues MEWNET-W2
The MEWNET-W2 link unit is not installed in the slot specified
using the configuration data.
Either install a unit in the specified slot or change the
parameter.

E100
to
E199

Stops

E200
to
E299

Self- diagnostic
error set by
F148 (ERR)/
P148 (PERR)
instruction Continues

The self-diagnostic error specified by the F148 (ERR)/P148
(PERR) instruction is occurred.
Take steps to clear the error condition according to the
specification you chose.

32.7.4 MEWTOCOL-COM Error Codes

Error
code

Name Description

!21 NACK error Link system error

!22 WACK error Link system error

!23 Unit no. overlap Link system error

!24 Transmission format
error

Link system error

!25 Link unit hardware error Link system error

!26 Unit no. setting error Link system error

!27 No support error Link system error

!28 No response error Link system error

!29 Buffer closed error Link system error

!30 Time-out error Link system error

!32 Transmission
impossible error

Link system error

!33 Communication stop Link system error

!36 No destination error Link system error

!38 Other communication
error

Link system error

!40 BCC error A transfer error occurred in the data received.

FPWIN Pro Programming

Appendix Programming Information

919

Error
code

Name Description

!41 Format error A formatting error in the command received was detected.

!42 No support error A non-supported command was received.

!43 Multiple frames
procedure error

A different command was received when processing multiple frames.

!50 Link setting error A non-existing route number was specified. Verify the route number by
designating the transmission station.

!51 Transmission time-out
error

Transmission to another device is not possible because the transmission
buffer is full.

!52 Transmit disable error Transmission processing to another device is not possible (link unit runaway,
etc.).

!53 Busy error Processing of command received is not possible because of multiple frame
processing or because command being processed is congested.

!60 Parameter error Content of specified parameter does not exist or cannot be used.

!61 Data error There was a mistake in the contact, data area, data number designation, size
designation, range, or format designation.

!62 Registration over error Operation was done when number of registrations was exceeded or when
there was no registration.

!63 PC mode error PC command that cannot be processed was executed during RUN mode.

!64 External memory error An abnormality occurred when loading RAM to ROM/IC memory card. There
may be a problem with the ROM or IC memory card. When loading, the
specified contents exceeded the capacity. Write error occurs.
-ROM or IC memory card is not installed.
-ROM or IC memory card does not conform to specifications
-ROM or IC memory card board is not installed.

!65 Protect error A program or system register write operation was executed when the protect
mode (password setting or DIP switch, etc.) or ROM operation mode was
being used.

!66 Address error There was an error in the code format of the address data. Also, when
exceeded or insufficient address data, there was a mistake in the range
designation.

!67 No program error and
no data error

Cannot be read because there is no program in the program area or the
memory contains an error. Or, reading of non-registered data was attempted.

!68 Rewrite during RUN
error

When inputting with programming tool software, editing of an instruction (ED,
SUB, RET, INT, IRET, SSTP, and STPE) that cannot perform a rewrite during
RUN is being attempted. Nothing is written to the CPU.

!70 SIM over error Program area was exceeded during a program write process.

!71 Exclusive access
control error

A command that cannot be processed was executed at the same time as a
command being processed.

Appendix Programming Information

FPWIN Pro Programming

920

32.8 MEWTOCOL-COM Communication Commands

Command name Code Description
Read contact area RC

(RCS)
(RCP)
(RCC)

Reads the on and off status of contacts.
Specifies only one point.
Specifies multiple contacts.
Specifies a range in word units.

Write contact area WC
(WCS)
(WCP)
(WCC)

Turns contacts on and off.
Specifies only one point.
Specifies multiple contacts.
Specifies a range in word units.

Read data area RD Reads the contents of a data area.

Write data area WD Writes data to a data area.

Read timer/counter set value area RS Reads the value set for a timer/counter.

Write timer/counter set value area WS Writes a timer/counter setting value.

Read timer/counter elapsed value area RK Reads the timer/counter elapsed value.

Write timer/counter elapsed value area WK Writes the timer/counter elapsed value.

Register or Reset contacts monitored MC Registers the contact to be monitored.

Register or Reset data monitored MD Registers the data to be monitored.

Monitoring start MG Monitors a registered contact or data.

Preset contact area
(fill command)

SC Embeds the area of a specified range in a 16-point on and
off pattern.

Preset data area
(fill command)

SD Writes the same contents to the data area of a specified
range.

Read system register RR Reads the contents of a system register.

Write system register WR Specifies the contents of a system register.

Read the status of PLC RT Reads the specifications of the programmable controller and
error codes if an error occurs.

Remote control RM Switches the operation mode of the programmable
controller.

Abort AB Aborts communication.

FPWIN Pro Programming

Appendix Programming Information

921

32.9 Hexadecimal/Binary/BCD

Decimal Hexadecimal Binary data BCD data
(Binary Coded Decimal)

0
1
2
3
4
5
6
7

0000
0001
0002
0003
0004
0005
0006
0007

0000 0000 0000 0000
0000 0000 0000 0001
0000 0000 0000 0010
0000 0000 0000 0011
0000 0000 0000 0100
0000 0000 0000 0101
0000 0000 0000 0110
0000 0000 0000 0111

0000 0000 0000 0000
0000 0000 0000 0001
0000 0000 0000 0010
0000 0000 0000 0011
0000 0000 0000 0100
0000 0000 0000 0101
0000 0000 0000 0110
0000 0000 0000 0111

8
9
10
11
12
13
14
15

0008
0009
000A
000B
000C
000D
000E
000F

0000 0000 0000 1000
0000 0000 0000 1001
0000 0000 0000 1010
0000 0000 0000 1011
0000 0000 0000 1100
0000 0000 0000 1101
0000 0000 0000 1110
0000 0000 0000 1111

0000 0000 0000 1000
0000 0000 0000 1001
0000 0000 0001 0000
0000 0000 0001 0001
0000 0000 0001 0010
0000 0000 0001 0011
0000 0000 0001 0100
0000 0000 0001 0101

16
17
18
19
20
21
22
23

0010
0011
0012
0013
0014
0015
0016
0017

0000 0000 0001 0000
0000 0000 0001 0001
0000 0000 0001 0010
0000 0000 0001 0011
0000 0000 0001 0100
0000 0000 0001 0101
0000 0000 0001 0110
0000 0000 0001 0111

0000 0000 0001 0110
0000 0000 0001 0111
0000 0000 0001 1000
0000 0000 0001 1001
0000 0000 0010 0000
0000 0000 0010 0001
0000 0000 0010 0010
0000 0000 0010 0011

24
25
26
27
28
29
30
31

0018
0019
001A
001B
001C
001D
001E
001F

0000 0000 0001 1000
0000 0000 0001 1001
0000 0000 0001 1010
0000 0000 0001 1011
0000 0000 0001 1100
0000 0000 0001 1101
0000 0000 0001 1110
0000 0000 0001 1111

0000 0000 0010 0100
0000 0000 0010 0101
0000 0000 0010 0110
0000 0000 0010 0111
0000 0000 0010 1000
0000 0000 0010 1001
0000 0000 0011 0000
0000 0000 0011 0001

·
·
·
63
·
·
·
255
·
·
·
9999

·
·
·
003F
·
·
·
00FF
·
·
·
270F

 ·
 ·
 ·
0000 0000 0011 1111
 ·
 ·
 ·
0000 0000 1111 1111
 ·
 ·
 ·
0010 0111 0000 1111

 ·
 ·
 ·
0000 0000 0110 0011
 ·
 ·
 ·
0000 0010 0101 0101
 ·
 ·
 ·
1001 1001 1001 1001

Appendix Programming Information

FPWIN Pro Programming

922

32.10 ASCII Codes

HT

BS

BEL

ACK

ENQ

EOT

ETX

STX

SOH

DELNUL0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

b3 b2 b1 b0b6 b5 b4

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

ASCII

b4

b5

b6

SPACE

�

DEL

LF

VT

FF

CR

SO

SI

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

~

}

{

!

”

#

$

%

&

’

(

)

*

+

,

–

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

b7

b7

Most significant digit

si
gn

ifi
ca

nt
di

gi
t

Le
as

t

HEX code

FPWIN Pro Programming

Appendix Programming Information

923

32.11 Availability of All Instructions on All PLC Types

Instruction
x available
- not available

ABS x x x x

ACOS x x x x

ActivateStepsOfStoppedSfc x x x x

ADD x x x x

ADD_TIME x x x x

Adr_Of_Var x x x x

Adr_Of_VarOffs x x x x

AdrDT_Of_Offs x x x x

AdrFL_Of_Offs x x x x

AdrLast_Of_Var x x x x

AllSfcsStopped x x x x

ALT x x x x

AND x x x x

AreaOffs_OfVar x x x x

AreaOffs_ToVar x x x x

ASIN x x x x

ATAN x x x x

BCD_TO_DINT x x x x

BCD_TO_INT x x x x

BOOL_TO_DINT x x x x

BOOL_TO_DWORD x x x x

BOOL_TO_INT x x x x

BOOL_TO_STRING x x x x

BOOL_TO_WORD x x x x

BOOL16_TO_INT x x x x

BOOL16_TO_WORD x x x x

BOOL32_TO_DINT x x x x

BOOL32_TO_DWORD x x x x

BOOLS_TO_DINT x x x x

BOOLS_TO_DWORD x x x x

BOOLS_TO_INT x x x x

BOOLS_TO_WORD x x x x

BRK - - - - 1

CONCAT x x x x

ControlSfc x x x x

Appendix Programming Information

FPWIN Pro Programming

924

Instruction
x available
- not available

ControlSfcAndData x x x x

COS x x x x

CRC16 x x x x

CT x x x x

CT_FB x x x x 3

CTD x x x x 31

CTU x x x x 31

CTUD x x x x 66

DELETE x x x x 19

DF x x x x 1

DFI x x x x 1

DFN x x x x 1

DINT_TO_BCD x x x x

DINT_TO_BOOL x x x x

DINT_TO_BOOL32 x x x x

DINT_TO_BOOLS x x x x

DINT_TO_DWORD x x x x

DINT_TO_INT x x x x

DINT_TO_REAL x x x x

DINT_TO_SDDT x x x x

DINT_TO_STRING x x x x

DINT_TO_STRING
_LEADING_ZEROS

x x x x

DINT_TO_TIME x x x x

DINT_TO_WORD x x x x

DIV x x x x

DIV_TIME_DINT x x x x

DIV_TIME_INT x x x x

DIV_TIME_REAL x x x x

DWORD_TO_BOOL x x x x

DWORD_TO_BOOL32 x x x x

DWORD_TO_BOOLS x x x x

DWORD_TO_DINT x x x x

DWORD_TO_INT x x x x

DWORD_TO_SDDT x x x x

DWORD_TO_STRING x x x x

DWORD_TO_TIME x x x x

DWORD_TO_WORD x x x x

Elem_OfArray1D x x x x

FPWIN Pro Programming

Appendix Programming Information

925

Instruction
x available
- not available

Elem_OfArray2D x x x x

Elem_OfArray3D x x x x

EQ x x x x

ETLANADDR_TO_
STRING_NO_LEADING_
ZEROS

x x x x

ETLANADDR_TO_STRING x x x x

EXP x x x x

EXPT x x x x

F0_MV x x x x 5

F1_DMV x x x x 7

F2_MVN x x x x 5

F3_DMVN x x x x 7

F4_GETS - - - -

F5_BTM x x x x 7

F6_DGT x x x x 7

F7_MV2 x x x x 7

F8_DMV2 x x x x 11

F10_BKMV x x x x 7

F10_BKMV_NUMBER x x x x 7

F10_BKMV_NUMBER_OFF
SET

x x x x 7

F10_BKMV_OFFSET x x x x 7

F11_COPY x x x x 7

F12_ICRD - - - - 11

F12_EPRD x x x x 11

F13_ICWT - - - - 11

F14_PGRD - - - - 3

F15_XCH x x x x 5

F16_DXCH x x x x 5

F17_SWAP x x x x 3

F18_BXCH x x x x 7

F19_SJP - - - - 3

F20_ADD x x x x 5

F21_DADD x x x x 7

F22_ADD2 x x x x 7

F23_DADD2 x x x x 11

F25_SUB x x x x 5

Appendix Programming Information

FPWIN Pro Programming

926

Instruction
x available
- not available

F26_DSUB x x x x 7

F27_SUB2 x x x x 7

F28_DSUB2 x x x x 11

F30_MUL x x x x 7

F31_DMUL x x x x 11

F32_DIV x x x x 7

F33_DDIV x x x x 11

F34_MULW x x x x 7

F35_INC x x x x 3

F36_DINC x x x x 3

F37_DEC x x x x 3

F38_DDEC x x x x 3

F39_DMULD x x x x 11

F40_BADD x x x x 5

F41_DBADD x x x x 7

F42_BADD2 x x x x 7

F43_DBADD2 x x x x 11

F45_BSUB x x x x 5

F46_DBSUB x x x x 5

F47_BSUB2 x x x x 7

F48_DBSUB2 x x x x 11

F50_BMUL x x x x 7

F51_DBMUL x x x x 11

F52_BDIV x x x x 7

F53_DBDIV x x x x 11

F55_BINC x x x x 3

F56_DBINC x x x x 3

F57_BDEC x x x x 3

F58_DBDEC x x x x 3

F60_CMP x x x x 5

F61_DCMP x x x x 9

F62_WIN x x x x 7

F63_DWIN x x x x 13

F64_BCMP x x x x 7

F65_WAN x x x x 7

F66_WOR x x x x 7

F67_XOR x x x x 7

F68_XNR x x x x 7

FPWIN Pro Programming

Appendix Programming Information

927

Instruction
x available
- not available

F69_WUNI x x x x 9

F70_BCC x x x x 9

F71_HEX2A x x x x 7

F72_A2HEX x x x x 7

F73_BCD2A x x x x 7

F74_A2BCD x x x x 9

F75_BIN2A x x x x 7

F76_A2BIN x x x x 7

F77_DBIN2A x x x x 11

F78_DA2BIN x x x x 11

F80_BCD x x x x 5

F81_BIN x x x x 5

F82_DBCD x x x x 7

F83_DBIN x x x x 7

F84_INV x x x x 5

F85_NEG x x x x 3

F86_DNEG x x x x 3

F87_ABS x x x x 3

F88_DABS x x x x 3

F89_EXT x x x x 3

F90_DECO x x x x 7

F91_SEGT x x x x 3

F92_ENCO x x x x 7

F93_UNIT x x x x 7

F94_DIST x x x x 7

F95_ASC x x x x 15

F96_SRC x x x x 7

F97_DSRC x x x x 9

F98_CMPR x x x x 7

F99_CMPW x x x x 7

F100_SHR x x x x 5

F101_SHL x x x x 5

F102_DSHR x x x x 5

F103_DSHL x x x x 5

F105_BSR x x x x 3

F106_BSL x x x x 3

F108_BITR x x x x 7

F109_BITL x x x x 7

Appendix Programming Information

FPWIN Pro Programming

928

Instruction
x available
- not available

F110_WSHR x x x x 5

F111_WSHL x x x x 5

F112_WBSR x x x x 5

F113_WBSL x x x x 5

F115_FIFT x x x x 5

F116_FIFR x x x x 5

F117_FIFW x x x x 5

F118_UDC x x x x 5

F119_LRSR x x x x 5

F120_ROR x x x x 5

F121_ROL x x x x 5

F122_RCR x x x x 5

F123_RCL x x x x 5

F125_DROR x x x x 5

F126_DROL x x x x 5

F127_DRCR x x x x 5

F128_DRCL x x x x 5

F130_BTS x x x x 5

F131_BTR x x x x 5

F132_BTI x x x x 5

F133_BTT x x x x 5

F135_BCU x x x x 5

F136_DBCU x x x x 7

F137_STMR x x x x 5

F138_TIMEBCD_TO_SECB
CD

x x x x 7

F139_SECBCD_TO_TIMEB
CD

x x x x 5

F140_STC x x x x 1

F141_CLC x x x x 1

F142_WDT - - 3

F143_IORF x x x x 5

F144_TRNS x x x x

F145_SEND - - - - 9

F145_MODBUS_WRITE_DA
TA

x x - x

F146_MODBUS_READ_DAT
A

x x - x

F146_RECV - - - - 9

FPWIN Pro Programming

Appendix Programming Information

929

Instruction
x available
- not available

F147_PR x x x x 5

F148_ERR x x x x 3

F149_MSG x x x x 13

F150_READ x x x x 9

F151_WRT x x x x 9

F152_RMRD - - - - 9

F153_RMWT - - - - 9

F154_MCAL - - - - 3

F154_MCAL_DUT - - - -

F155_SMPL - - - - 1

F156_STRG - - - - 1

F157_ADD_DTBCD_TIMEB
CD

x x x x 9

F158_SUB_DTBCD_TIMEB
CD

x x x x 9

F159_MTRN
explicitly supported by FP-
Sigma and FP2/FP2SH Ver.
1.40 or later
for other PLCs: F159_MTRN
will be compiled to
F144_TRNS

x x x x 7

F159_MWRT_PARA
for FP2/FP2SH Ver. 1.40 or
later

- - - - 7

F160_DSQR x x x x 7

F161_MRCV
for FP2/FP2SH Ver. 1.40 or
later
for other PLCs: F161_MRCV
will be ignored by the
compiler

- x x x 7

F161_MRD_PARA
for FP2/FP2SH Ver. 1.40 or
later

- - - - 7

F161_MRD_STATUS
for FP2/FP2SH Ver. 1.40 or
later

- - - - 7

F162_HC0S - - - - 7

F163_HC0R - - - - 7

F164_SPD0 - - - - 3

Appendix Programming Information

FPWIN Pro Programming

930

Instruction
x available
- not available

F165_CAM0 - - - - 3

F166_HC1S x x x x 11

F167_HC1R x x x x 11

F168_SPD1 - - - - 5

F169_PLS - - - - 5

F170_PWM - - - - 5

F171_SPDH x x x x 5

F172_PLSH x x x x 5

F173_PWMH x x x x 5

F174_SP0H x x x x 5

F175_SPSH_LINEAR x x x x 5

F176_SPCH_CENTER x - x x 5

F176_SPCH_PASS x - x x

F180_SCR - - - - 9

F180_SCR_DUT - - - - 9

F181_DSP - - - - 3

F183_DSTM x x x x 7

F190_MV3 x x x x 10

F191_DMV3 x x x x 16

F215_DAND x x x x 12

F216_DOR x x x x 12

F217_DXOR x x x x 12

F218_DXNR x x x x 12

F219_DUNI x x x x 16

F230_DTBCD_TO_SEC - x - -

F231_SEC_TO_DTBCD - x - -

F235_GRY x x x x 6

F236_DGRY x x x x 8

F237_GBIN x x x x 6

F238_DGBIN x x x x 8

F240_COLM x x x x 8

F241_LINE x x x x 8

F270_MAX x x x x 8

F271_DMAX x x x x 8

F272_MIN x x x x 8

F273_DMIN x x x x 8

F275_MEAN x x x x 8

FPWIN Pro Programming

Appendix Programming Information

931

Instruction
x available
- not available

F276_DMEAN x x x x 8

F277_SORT x x x x 8

F278_DSORT x x x x 8

F282_SCAL
FP2: only from CPU version
1.06 onwards
FP2SH/10SH: only from CPU
version 3.04 onwards

x x x x 8

F283_DSCAL x x x x 8

F285_LIMT x x x x 10

F286_DLIMT x x x x 10

F287_BAND x x x x 10

F288_DBAND x x x x 10

F289_ZONE x x x x 10

F290_DZONE x x x x 10

F300_BSIN - - - - 6

F301_BCOS - - - - 6

F302_BTAN - - - - 6

F303_BASIN - - - - 6

F304_BACOS - - - - 6

F305_BATAN - - - - 6

F309_FMV x x x x 8

F310_FADD x x x x 14

F311_FSUB x x x x 14

F312_FMUL x x x x 14

F313_FDIV x x x x 14

F314_SIN x x x x 10

F315_COS x x x x 10

F316_TAN x x x x 10

F317_ASIN x x x x 10

F318_ACOS x x x x 10

F319_ATAN x x x x 10

F320_LN x x x x 10

F321_EXP x x x x 10

F322_LOG x x x x 10

F323_PWR x x x x 14

F324_FSQR x x x x 10

F325_FLT x x x x 6

Appendix Programming Information

FPWIN Pro Programming

932

Instruction
x available
- not available

F326_DFLT x x x x 8

F327_INT x x x x 8

F328_DINT x x x x 8

F329_FIX x x x x 8

F330_DFIX x x x x 8

F331_ROFF x x x x 8

F332_DROFF x x x x 8

F333_FINT x x x x 8

F334_FRINT x x x x 8

F335_FSIGN x x x x 8

F336_FABS x x x x 8

F337_RAD x x x x 8

F338_DEG x x x x 8

F345_FCMP x x x x 10

F346_FWIN x x x x 14

F347_FLIMT x x x x 17

F348_FBAND x x x x 17

F349_FZONE x x x x 17

F350_FMAX - - - - 8

F351_FMIN - - - - 8

F352_FMEAN - - - - 8

F353_FSORT - - - - 8

F354_FSCAL x x - x

F355_PID_DUT x x x x 4

F356_PID_PWM x x - x 10

F373_DTR x x x x 6

F374_DDTR x x x x 6

F_TRIG x x x x

FIND x x x x

GE x x x x

GET_RTC_DTBCD x x x x

GT x x x x

ICTL x x x x

INSERT x x x x 19

INT_TO_BCD x x x x

INT_TO_BOOL x x x x

INT_TO_BOOL16 x x x x

INT_TO_BOOLS x x x x

FPWIN Pro Programming

Appendix Programming Information

933

Instruction
x available
- not available

INT_TO_DINT x x x x

INT_TO_DWORD x x x x

INT_TO_REAL x x x x

INT_TO_SDT x x x x

INT_TO_STRING x x x x

INT_TO_STRING
_LEADING_ZEROS

x x x x

INT_TO_TIME x x x x

INT_TO_WORD x x x x

IPADDR_TO_STRING x x x x

IPADDR_TO_STRING_ NO
_LEADING_ZEROS

x x x x

Is_AreaDT x x x x

Is_AreaFL x x x x

IsCommunicationError x x x x

IsModbusError x x x x

IsModbusNotActive x x x x

IsPlcLink x x x x

IsProgramControlled x x x x

IsReceptionDone x x x x

IsReceptionDoneByTimeOut x x x x

IsTransmissionDone x x x x

JP x x x x 2

KEEP x x x x 1

LBL x x x x 1

LE x x x x

LEFT x x x x 8

LEN x x x x

LIMIT x x x x

LN x x x x

LOG x x x x

LOOP x x x x 4

LSR x x x x 1

LT x x x x

MAX x x x x

MC x x x x 2

MCE x x x x 2

MID x x x x 10

Appendix Programming Information

FPWIN Pro Programming

934

Instruction
x available
- not available

MIN x x x x

MOD x x x x

MOVE x x x x

MUL x x x x

MUL_TIME_DINT x x x x

MUL_TIME_INT x x x x

MUL_TIME_REAL x x x x

MUX x x x x

NE x x x x

NOT x x x x

OR x x x x

P13_EPWT x x x x 11

PID_FB x x x x

PID_FB_DUT x x x x

R_TRIG x x x x

REAL_TO_DINT x x x x

REAL_TO_INT x x x x

REAL_TO_STRING x x x x

REAL_TO_TIME x x x x

REPLACE x x x x 26

RIGHT x x x x 8

ROL x x x x

ROR x x x x

RS x x x x

SDDT_TO_DINT x x x x

SDDT_TO_DWORD x x x x

SDT_TO_INT x x x x

SDT_TO_WORD x x x x

SEL x x x x

SET_RTC_DTBCD x x x x 3

SfcOutputsReset x x x x

SfcRunning x x x x

SfcStopped x x x x

SfcTransitionsInhibited x x x x

SHL x x x x

SHR x x x x

SIN x x x x

Size_Of_Var x x x x

FPWIN Pro Programming

Appendix Programming Information

935

Instruction
x available
- not available

SQRT x x x x

SR x x x x

StartStopAllSfcs x x x x

StartStopAllSfcsAndInitData x x x x

StartStopSfc x x x x

StartStopSfcAndInitData x x x x

STRING_TO_DINT x x x x

STRING_TO_DINT_
STEPSAVER

x x x x

STRING_TO_DWORD x x x x

STRING_TO_DWORD_
STEPSAVER

x x x x

STRING_TO_ETLANADDR x x x x

STRING_TO_ETLANADDR
_STEPSAVER

x x x x

STRING_TO_INT x x x x

STRING_TO_INT_
STEPSAVER

x x x x

STRING_TO_IPADDR x x x x

STRING_TO_IPADDR_
STEPSAVER

x x x x

STRING_TO_REAL x x x x

STRING_TO_WORD x x x x

STRING_TO_WORD_
STEPSAVER

x x x x

SUB x x x x

SUB_TIME x x x x

SYS1 x x x x 13

SYS2 x x x x 7

TAN x x x x

TIME_TO_DINT x x x x

TIME_TO_DWORD x x x x

TIME_TO_INT x x x x

TIME_TO_REAL x x x x

TIME_TO_STRING x x x x

TIME_TO_WORD x x x x

TM_1ms x x x x 3-4

TM_1ms_FB x x x x 3-4

TM_1s x x x x 4-5

TM_1s_FB x x x x 4-5

Appendix Programming Information

FPWIN Pro Programming

936

Instruction
x available
- not available

TM_10ms x x x x 3-4

TM_10ms_FB x x x x 3-4

TM_100ms x x x x 3-4

TM_100ms_FB x x x x 3-4

TOF x x x x 23

TON x x x x 7

TP x x x x 14

TRUNC_TO_DINT x x x x

TRUNC_TO_INT x x x x

Var_ToAreaOffs x x x x

WORD_TO_BOOL x x x x

WORD_TO_BOOL16 x x x x

WORD_TO_BOOLS x x x x

WORD_TO_DINT x x x x

WORD_TO_DWORD x x x x

WORD_TO_INT x x x x

WORD_TO_SDT x x x x

WORD_TO_STRING x x x x

WORD_TO_TIME x x x x

XOR x x x x

 937

Index
A

ABS...37
ACOS..47
ADD ..30
ADD_TIME..224
ALT ...690
AND ..64
ARRAY20, 21, 22, 24
ASIN..43
ATAN ..51

B

BCD_TO_DINT.....................................139
BCD_TO_INT125
BOOL..13
BOOL_TO_DINT134
BOOL_TO_DWORD.............................110
BOOL_TO_INT120
BOOL_TO_STRING156
BOOL_TO_WORD100
BOOL16_TO_INT.................................121
BOOL16_TO_WORD101
BOOL32_TO_DINT135
BOOL32_TO_DWORD.........................111
BOOLS_TO_DINT................................136
BOOLS_TO_DWORD112
BOOLS_TO_INT...................................122
BOOLS_TO_WORD.............................102

C

Communication Modes.........................307
CONCAT...212
COS ..45
CRC16 ..61
CT ...695
CT_FB ..692
CTD...246
CTU...244
CTUD..249

D

Data Type STRING.................................14
DELETE..214
DF ...686
DFI ..688
DFN...687
DINT..14

DINT_TO_BCD.....................................187
DINT_TO_BOOL99
DINT_TO_BOOL32179
DINT_TO_BOOLS................................184
DINT_TO_DWORD116
DINT_TO_INT.......................................127
DINT_TO_REAL...................................148
DINT_TO_STRING...............................165
DINT_TO_STRING_LEADING_ZEROS

..167
DINT_TO_TIME....................................154
DINT_TO_WORD.................................106
DIV..35
DIV_TIME_DINT...................................230
DIV_TIME_INT229
DIV_TIME_REAL..................................231
DWORD..20
DWORD_TO_BOOL...............................97
DWORD_TO_BOOL32.........................178
DWORD_TO_BOOLS181
DWORD_TO_DINT140
DWORD_TO_INT.................................126
DWORD_TO_STRING160
DWORD_TO_TIME152
DWORD_TO_WORD104

E

EQ...86
ETLANADDR_TO_STRING174
ETLANADDR_TO_STRING_NO_LEADIN

G_ZEROS...175
EXP...57
EXPT ..59

F

F_TRIG ...241
F0_MV ..263, 702
F0_MV / High-speed counter control....702
F1_DMV..265
F10_BKMV ...277
F10_BKMV_NUMBER..........................279
F10_BKMV_NUMBER_OFFSET282
F10_BKMV_OFFSET281
F100_SHR ..535
F101_SHL...537
F102_DSHR ...539
F103_DSHL..541
F105_BSR ..543
F106_BSL...545
F108_BITR ...547
F109_BITL ..549

Index

FPWIN Pro Programming

938

F11_COPY..284
F110_WSHR...551
F111_WSHL ...553
F112_WBSR...555
F113_WBSL..557
F115_FIFT ..474
F116_FIFR..477
F117_FIFW...480
F118_UDC..698
F119_LRSR ..559
F120_ROR..562
F121_ROL ..564
F122_RCR..566
F123_RCL...568
F125_DROR ...570
F126_DROL..572
F127_DRCR ...574
F128_DRCL..576
F130_BTS...520
F131_BTR...521
F132_BTI ..522
F133_BTT...523
F135_BCU ..525
F136_DBCU..526
F137_STMR..780
F138_TIMEBCD_TO_SECBCD672
F139_SECBCD_TO_TIMEBCD673
F140_STC...822
F141_CLC...823
F143_IORF ...296
F145_MODBUS_WRITE_DATA...........333
F146_MODBUS_READ_DATA343
F147_PR...292
F148_ERR ..824
F149_MSG..826
F15_XCH ..286
F150_READ..301
F151_WRT..304
F157_ADD_DTBCD_TIMEBCD674
F158_SUB_DTBCD_TIMEBCD............675
F159_MTRN ...324
F16_DXCH..287
F160_DSQR ...429
F161_MRCV ...330
F162_HC0S ..711
F163_HC0R..713
F164_SPD0 ..715
F165_CAM0..716
F166_HC1S ..717
F167_HC1R..720
F17_SWAP ...288
F171_SPDH..723

F172_PLSH ..732
F173_PWMH ..736
F174_SP0H ..739
F175_SPSH_LINEAR...........................746
F176_SPCH_CENTER.........................750
F176_SPCH_PASS755
F18_BXCH..290
F183_DSTM..781
F190_MV3 ..274
F191_DMV3..276
F2_MVN..267
F20_ADD ..356
F21_DADD..358
F215_DAND..510
F216_DOR..512
F217_DXOR ...514
F218_DXNR..516
F219_DUNI ...518
F22_ADD2 ..360
F23_DADD2..362
F235_GRY..643
F236_DGRY ...644
F237_GBIN...645
F238_DGBIN ..646
F240_COLM ...647
F241_LINE..649
F25_SUB ..380
F26_DSUB..382
F27_SUB2 ..384
F270_MAX..450
F271_DMAX ...452
F272_MIN ...454
F273_DMIN...456
F275_MEAN ...458
F276_DMEAN.......................................460
F277_SORT..489
F278_DSORT491
F28_DSUB2..386
F282_SCAL ..462
F283_DSCAL..465
F285_LIMT..666
F286_DLIMT...668
F287_BAND..434
F288_DBAND436
F289_ZONE..440
F290_DZONE442
F3_DMVN ...269
F30_MUL ..404
F309_FMV ..838
F31_DMUL..406
F310_FADD..838
F311_FSUB ..838

FPWIN Pro Programming

Index

939

F312_FMUL..838
F313_FDIV424, 838
F317_ASIN ...838
F318_ACOS ...838
F319_ATAN ..838
F32_DIV..416
F320_LN ...838
F321_EXP ..838
F322_LOG..838
F323_PWR ...838
F324_FSQR..838
F325_FLT ...838
F326_DFLT...838
F327_INT..651
F328_DINT ...653
F329_FIX ..838
F33_DDIV ...418
F330_DFIX ...838
F331_ROFF..838
F332_DROFF838
F333_FINT..655
F334_FRINT ...657
F335_FSIGN...659
F336_FABS ..838
F337_RAD ..661
F338_DEG..663
F34_MULW...408
F345_FCMP ...838
F346_FWIN ..590
F347_FLIMT ...838
F348_FBAND438
F349_FZONE444
F35_INC ...372
F355_PID_DUT788
F36_DINC...374
F37_DEC ..396
F373_DTR ..592
F374_DDTR..594
F38_DDEC ...398
F39_DMULD...410
F40_BADD..364
F41_DBADD ...366
F42_BADD2..368
F43_DBADD2370
F45_BSUB..388
F46_DBSUB ...390
F47_BSUB2..392
F48_DBSUB2394
F5_BTM ..494
F50_BMUL..412
F51_DBMUL...414
F52_BDIV ...420

F53_DBDIV...422
F55_BINC ...376
F56_DBINC ..378
F57_BDEC..400
F58_DBDEC...402
F6_DGT ..496
F60_CMP..580
F61_DCMP...582
F62_WIN...584
F63_DWIN ..586
F64_BCMP ...588
F65_WAN ...500
F66_WOR...502
F67_XOR..504
F68_XNR ..506
F69_WUNI ..508
F7_MV2 ..271
F70_BCC ..426
F71_HEX2A..598
F72_A2HEX..602
F73_BCD2A..605
F74_A2BCD..608
F75_BIN2A ...612
F76_A2BIN ...616
F77_DBIN2A...619
F78_DA2BIN...622
F8_DMV2..272
F80_BCD ..625
F81_BIN..627
F82_DBCD ...629
F83_DBIN ...631
F84_INV..527
F85_NEG..446
F86_DNEG ...448
F87_ABS ..431
F88_DABS..433
F89_EXT...633
F90_DECO ...635
F91_SEGT..637
F92_ENCO ...638
F93_UNIT ...529
F94_DIST ...531
F95_ASC ..640
F96_SRC ..469
F97_DSRC ...471
F98_CMPR...484
F99_CMPW ..487
Find...216

G

GE...84
GET_RTC_DTBCD...............................676

Index

FPWIN Pro Programming

940

GT ...82

H

HSC, High Speed Counter Instructions 701

I

ICTL ..833
INSERT...218
INT ..13
INT_TO_BCD..186
INT_TO_BOOL98
INT_TO_BOOL16177
INT_TO_BOOLS...................................183
INT_TO_DINT.......................................141
INT_TO_DWORD115
INT_TO_REAL......................................147
INT_TO_STRING..................................162
INT_TO_STRING_LEADING_ZEROS .164
INT_TO_TIME.......................................153
INT_TO_WORD....................................105
IPADDR_TO_STRING..........................172
IPADDR_TO_STRING_NO_LEADING_ZE

ROS...173
IsReceptionDone312
IsTransmissionDone311

J

JP..830

K

KEEP ..680

L

LBL..832
LE..88
LEFT ...206
LEN ...204
LIMIT...196
LN ...53
LOG ..55
LOOP ..831
LSR ...534
LT..90

M

MAX ..194
MC ..828
MCE ..829
MID ...210
MIN ...195

MOD..38
MOVE ...28
MUL ..33
MUL_TIME_DINT227
MUL_TIME_INT....................................226
MUL_TIME_REAL228
MUX ..198

N

NE ...92
NOT ..70

O

OR...66

P

P0_MV ..263
P1_DMV..265
P10_BKMV ...277
P100_SHR..535
P101_SHL...537
P102_DSHR ...539
P103_DSHL..541
P105_BSR ..543
P106_BSL...545
P108_BITR ...547
P109_BITL..549
P11_COPY ...284
P110_WSHR...551
P111_WSHL ...553
P112_WBSR...555
P113_WBSL ...557
P115_FIFT..474
P116_FIFR..477
P117_FIFW...480
P120_ROR..562
P121_ROL ..564
P122_RCR..566
P123_RCL ..568
P125_DROR...570
P126_DROL..572
P127_DRCR ...574
P130_BTS...520
P131_BTR ..521
P132_BTI ..522
P133_BTT...523
P135_BCU..525
P136_DBCU ...526
P138_TIMEBCD_TO_SECBCD672
P139_SECBCD_TO_TIMEBCD673
P140_STC ..822

FPWIN Pro Programming

Index

941

P141_CLC ..823
P143_IORF...296
P148_ERR..824
P149_MSG ...826
P15_XCH..286
P157_ADD_DTBDC_TIMEBCD674
P158_SUB_DTBCD_TIMEBCD675
P16_DXCH ...287
P160_DSQR ...429
P161_MRCV...330
P190_MV3 ..274
P191_DMV3 ...276
P2_MVN ...267
P20_ADD..356
P21_DADD ...358
P215_DAND ...510
P216_DOR ...512
P217_DXOR ...514
P218_DXNR ...516
P219_DUNI...518
P235_GRY..643
P236_DGRY...644
P237_GBIN...645
P238_DGBIN ..646
P240_COLM...647
P241_LINE ...649
P25_SUB ..380
P26_DSUB ...382
P270_MAX..450
P271_DMAX...452
P272_MIN...454
P273_DMIN ..456
P275_MEAN ...458
P276_DMEAN460
P277_SORT ...489
P278_DSORT.......................................491
P282_SCAL ..462
P283_DSCAL465
P285_LIMT ...666
P286_DLIMT...668
P287_BAND ...434
P289_ZONE ...440
P3_DMVN...269
P335_FSIGN ..659
P34_MULW ..408
P346_FWIN ..590
P35_INC ...372
P36_DINC...374
P37_DEC..396
P373_DTR ..592
P374_DDTR ...594
P38_DDEC ...398

P39_DMULD...410
P41_DBADD...366
P45_BSUB..388
P46_DBSUB...390
P5_BTM..494
P55_BINC...376
P56_DBINC ..378
P57_BDEC ...400
P58_DBDEC...402
P6_DGT..496
P60_CMP ...580
P61_DCMP...582
P62_WIN ..584
P63_DWIN..586
P64_BCMP...588
P65_WAN ...500
P66_WOR...502
P67_XOR..504
P68_XNR..506
P69_WUNI..508
P7_MV2 ..271
P71_HEX2A..598
P72_A2HEX..602
P73_BCD2A ...605
P78_DA2BIN ..622
P8_DMV2 ...272
P82_DBCD ...629
P87_ABS ..431
P88_DABS..433
P89_EXT ..633
P91_SEGT..637
P92_ENCO...638
P93_UNIT ...529
P94_DIST ...531
P95_ASC ..640
P96_SRC..469
P97_DSRC ...471
P98_CMPR...484
P99_CMPW..487
PID_FB ...799
PID_FB_DUT..802

R

R_TRIG...240
REAL ..25
REAL_TO_DINT...................................142
REAL_TO_INT......................................128
REAL_TO_STRING..............................168
REAL_TO_TIME...................................155
Reception..327
Replace...220
RIGHT...208

Index

FPWIN Pro Programming

942

ROL...78
ROR ..76
RS ...236
RST...681
RTU Master/Slave.................................308

S

SEL ...200
SET ...681
SET_RTC_DTBCD677
SHL ...74
SHR ..72
SIN ..41
SQRT ..39
SR ...234
STRING ..14
STRING_TO_DINT...............................145
STRING_TO_DINT_STEPSAVER146
STRING_TO_DWORD118
STRING_TO_DWORD_STEPSAVER..119
STRING_TO_ETLANADDR190
STRING_TO_ETLANADDR_STEPSAVER

..191
STRING_TO_INT..................................132
STRING_TO_INT_STEPSAVER..........133
STRING_TO_IPADDR..........................188
STRING_TO_IPADDR_STEPSAVER..189
STRING_TO_REAL..............................150
STRING_TO_WORD............................108
STRING_TO_WORD_STEPSAVER109
Strings general..14
SUB...31
SUB_TIME..225
SYS1...806
SYS2...818
System Variables for Special Relays or

Special Data Registers..........................4

T

TAN...49
TIME_TO_DINT....................................144
TIME_TO_DWORD117
TIME_TO_INT.......................................131
TIME_TO_REAL...................................149
TIME_TO_STRING...............................170
TIME_TO_WORD.................................107
TM_100ms..776
TM_100ms_FB766
TM_10ms ..774
TM_10ms_FB763
TM_1ms ..772

TM_1ms_FB ...760
TM_1s ...778
TM_1s_FB ..769
TOF...258
TON ..256
TP ...254
Transmission...321
TRUNC_TO_DINT................................143
TRUNC_TO_INT...................................129

W

WORD...20
WORD_TO_BOOL..................................96
WORD_TO_BOOL16176
WORD_TO_BOOLS180
WORD_TO_DINT138
WORD_TO_DWORD114
WORD_TO_INT....................................124
WORD_TO_STRING............................158
WORD_TO_TIME.................................151

X

XOR ..68

Record of Changes

Manual No. Date Description of Changes
ACGM0132V1.0END NOV. 2001 First edition
ACGM0132V1.1END APR. 2002 Matsushita instructions for FP-Sigma added (F174, F175,

F176) and SYS1, SYS2 updated.
ACGM0132V1.2END JULY 2002 Chapter "High-Speed-Counter Special Instructions" updated

and corrected
Appendix "Programming Information" updated

ACGM0132V2.0 MAR. 2006 Update for release of FPWIN Pro V5.2
Company name change
New PLC types: FP-Sigma 32k, FP-X
Grafical explanations completed

COPYRIGHT � 2006 All Rights Reserved ARCT1F0000ABC V1.x 12/99

Specifications are subject to change without notice. Printed in Europe

JapanChinaAsia PacificEuropeNorth America

����������	
���

� Headquarters Panasonic Electric Works Europe AG
Rudolf-Diesel-Ring 2, 83607 Holzkirchen, Germany, Tel. (08024) 648-0, Fax (08024) 648-111, www.panasonic-electric-works.com

� Austria Panasonic Electric Works Austria GmbH
Josef Madersperger Straße 2, A-2362 Biedermannsdorf, Austria, Tel. (02236) 26846, Fax (02236) 46133, www.panasonic-electric-works.at

� Benelux Panasonic Electric Works Sales Western Europe B. V.
De Rijn 4, (Postbus 211), 5684 PJ Best, (5680 AE Best), Netherlands, Tel. (0499) 37 27 27, Fax (0499) 37 21 85,
www.panasonic-electric-works.nl

� Czech Republic Panasonic Electric Works Czech s.r.o
Prumyslová 1, 34815 Planá, Tel. (0374) 79 99 90, Fax (0374) 79 99 99, www.panasonic-electric-works.cz

� France Panasonic Electric Works Sales Western Europe B. V. French Branch Office
B.P. 44, F-91371 Verrières le Buisson CEDEX, France, Tél. 01 60 13 57 57, Fax 01 60 13 57 58, www.panasonic-electric-works.fr

� Germany Panasonic Electric Works Deutschland GmbH
Rudolf-Diesel-Ring 2, 83607 Holzkirchen, Germany, Tel. (08024) 648-0, Fax (08024) 648-555, www.panasonic-electric-works.de

� Ireland Panasonic Electric Works UK Ltd. Irish Branch Office
Dublin, Republic of Ireland, Tel. (01) 4600969, Fax (01) 4601131, www.panasonic-electric-works.ie

� Italy Panasonic Electric Works Italia s.r.l.
Via del Commercio 3-5 (Z.I. Ferlina), I-37012 Bussolengo (VR), Italy, Tel. (045) 675 27 11, Fax (045) 6 70 04 44,
www.panasonic-electric-works.it

� Nordic Panasonic Electric Works Nordic AB
 Countries Sjöängsvägen 10, 19272 Sollentuna, Sweden, Tel. (+46) 8 59 47 66 80, Fax (+46) 8 59 47 66 90,

www.panasonic-electric-works.se

� Portugal Panasonic Electric Works Portugal España S.A. Portuguese Branch Office
Avda Adelino Amaro da Costa 728 R/C J, 2750-277 Cascais, Portugal, Tel. (351) 21 481 25 20, Fax (351) 21 481 25 29,
www.panasonic-electric-works.es

� Spain Panasonic Electric Works España S.A.
Parque Empresarial Barajas, San Severo, 20, 28042 Madrid, Spain, Tel. (91) 329 38 75, Fax (91) 329 29 76,
www.panasonic-electric-works.es

� Switzerland Panasonic Electric Works Schweiz AG
Grundstrasse 8, CH-6343 Rotkreuz, Switzerland, Tel. (041) 799 70 50, Fax (041) 799 70 55, www.panasonic-electric-works.ch

� UK Panasonic Electric Works UK Ltd.
Sunrise Parkway, Linford Wood East, Milton Keynes, MK14 6LF, England, Tel. (01908) 231 555, Fax (01908) 231 599,
www.panasonic-electric-works.co.uk

� USA PEW Corporation of America Head Office USA
629 Central Avenue, New Providence, N.J. 07974, USA, Tel. 1-908-464-3550, Fax 1-908-464-8513

� China Panasonic Electric Works (China) Co., Ltd.
2013, Beijing Fortune, Building 5, Dong San Huan Bei Lu, Chaoyang District, Beijing, China, Tel. 86-10-6590-8646,
Fax 86-10-6590-8647

� Hong Kong Panasonic Electric Works (Hong Kong) Co., Ltd.
Rm1601, 16/F, Tower 2, The Gateway, 25 Canton Road, Tsimshatsui, Kowloon, Hong Kong, Tel. (852) 2956-3118, Fax (852) 2956-0398

� Japan Matsushita Electric Works, Ltd.
1048 Kadoma, Kadoma-shi, Osaka 571-8686, Japan, Tel. 06-6908-1050, Fax 06-6908-5781, www.mew.co.jp/e-acg/

� Singapore Panasonic Electric Works Asia Pacific Pte. Ltd.
101 Thomson Road, #25-03/05, United Square, Singapore 307591,Tel. (65) 6255-5473, Fax (65) 6253-5689

Europe

North & South America

Asia

	Cover
	BEFORE BEGINNING
	LIMITED WARRANTY
	Important Symbols
	Table of Contents
	Part I Basics
	1.1 Operands
	1.1.1 Inputs/Outputs
	1.1.2 Internal Relays
	1.1.3 Special Internal Relays
	1.1.4 Timers and Counters
	1.1.5 Data Registers (DT)
	1.1.6 Special Data Registers (DT)
	Data Transfer To and From Special Data Registers

	1.1.7 File Registers (FL)
	1.1.8 Link Relays and Registers (L/LD)

	1.2 Addresses
	1.2.1 FP Addresses
	1.2.2 IEC Addresses
	1.2.3 Specifying Relay Addresses
	1.2.4 Timer Contacts (T) and Counter Contacts (C)
	1.2.5 External Input (X) and Output Relays (Y)
	1.2.6 Word Representation of Relays (WX, WY, WR, and WL)

	1.3 Constants
	1.3.1 Decimal Constants
	1.3.2 Hexadecimal Constants
	1.3.3 BCD Constants

	1.4 Data Types
	BOOL
	INT
	DINT
	STRING
	1.4.4.1 Strings as Constants
	1.4.4.2 Transfer of Character Strings to Functions or Function Blocks
	1.4.4.3 String with EN/ENO

	WORD
	DWORD
	ARRAY and Data Unit Type
	One dimensional ARRAY
	Two dimensional ARRAY
	Three dimensional ARRAY

	REAL

	Part II IEC Instructions
	2 Data Transfer Instructions
	MOVE

	3 Arithmetic Instructions
	ADD
	SUB
	MUL
	DIV
	ABS
	MOD
	SQRT
	SIN
	ASIN
	COS
	ACOS
	TAN
	ATAN
	LN
	LOG
	EXP
	EXPT
	CRC16

	4 Bitwise Boolean Instructions
	AND
	OR
	XOR
	NOT

	5 Bitshift Instructions
	SHR
	SHL
	ROR
	ROL

	6 Comparison Instructions
	GT
	GE
	EQ
	LE
	LT
	NE

	7 Conversion Instructions
	WORD_TO_BOOL
	DWORD_TO_BOOL
	INT_TO_BOOL
	DINT_TO_BOOL
	BOOL_TO_WORD
	BOOL16_TO_WORD
	BOOLS_TO_WORD
	DWORD_TO_WORD
	INT_TO_WORD
	DINT_TO_WORD
	TIME_TO_WORD
	STRING_TO_WORD
	STRING_TO_WORD_STEPSAVER
	BOOL_TO_DWORD
	BOOL32_TO_DWORD
	BOOLS_TO_DWORD
	WORD_TO_DWORD
	INT_TO_DWORD
	DINT_TO_DWORD
	TIME_TO_DWORD
	STRING_TO_DWORD
	STRING_TO_DWORD_STEPSAVER
	BOOL_TO_INT
	BOOL16_TO_INT
	BOOLS_TO_INT
	WORD_TO_INT
	BCD_TO_INT
	DWORD_TO_INT
	DINT_TO_INT
	REAL_TO_INT
	TRUNC_TO_INT
	TIME_TO_INT
	STRING_TO_INT
	STRING_TO_INT_STEPSAVER
	BOOL_TO_DINT
	BOOL32_TO_DINT
	BOOLS_TO_DINT
	WORD_TO_DINT
	BCD_TO_DINT
	DWORD_TO_DINT
	INT_TO_DINT
	REAL_TO_DINT
	TRUNC_TO_DINT
	TIME_TO_DINT
	STRING_TO_DINT
	STRING_TO_DINT_STEPSAVER
	INT_TO_REAL
	DINT_TO_REAL
	TIME_TO_REAL
	STRING_TO_REAL
	WORD_TO_TIME
	DWORD_TO_TIME
	INT_TO_TIME
	DINT_TO_TIME
	REAL_TO_TIME
	BOOL_TO_STRING
	WORD_TO_STRING
	DWORD_TO_STRING
	INT_TO_STRING
	INT_TO_STRING_LEADING_ZEROS
	DINT_TO_STRING
	DINT_TO_STRING_LEADING_ZEROS
	REAL_TO_STRING
	TIME_TO_STRING
	IPADDR_TO_STRING
	IPADDR_TO_STRING_NO_LEADING_ZEROS
	ETLANADDR_TO_STRING
	ETLANADDR_TO_STRING_NO_LEADING_ZEROS
	WORD_TO_BOOL16
	INT_TO_BOOL16
	DWORD_TO_BOOL32
	DINT_TO_BOOL32
	WORD_TO_BOOLS
	DWORD_TO_BOOLS
	INT_TO_BOOLS
	DINT_TO_BOOLS
	INT_TO_BCD
	DINT_TO_BCD
	STRING_TO_IPADDR
	STRING_TO_IPADDR_STEPSAVER
	STRING_TO_ETLANADDR
	STRING_TO_ETLANADDR_STEPSAVER

	8 Selection Instructions
	MAX
	MIN
	LIMIT
	MUX
	SEL

	9 String Instructions
	LEN
	LEFT
	RIGHT
	MID
	CONCAT
	DELETE
	FIND
	INSERT
	REPLACE

	10 Date and Time Instructions
	ADD_TIME
	SUB_TIME
	MUL_TIME_INT
	MUL_TIME_DINT
	MUL_TIME_REAL
	DIV_TIME_INT
	DIV_TIME_DINT
	DIV_TIME_REAL

	11 Bistable Instructions
	SR
	RS

	12 Edge Detection Instructions
	R_TRIG
	F_TRIG

	13 Counter Instructions
	CTU
	CTD
	CTUD

	14 Timer Instructions
	TP
	TON
	TOF

	Part III F/P Instructions
	15 Data Transfer Instructions
	15.1 Data Transfer Within the PLC
	F0_MV
	F1_DMV
	F2_MVN
	F3_DMVN
	F7_MV2
	F8_DMV2
	F190_MV3
	F191_DMV3
	F10_BKMV
	F10_BKMV_NUMBER
	F10_BKMV_OFFSET
	F10_BKMV_NUMBER_OFFSET
	F11_COPY
	F15_XCH
	F16_DXCH
	F17_SWAP
	F18_BXCH
	F147_PR

	15.2 Data Transfer Between PLCs and Modules
	F143_IORF
	F12_EPRD
	P13_EPWT
	F150_READ
	F151_WRT

	15.3 Data Transfer Between PLCs and Other Devices (via COM Port or Network)
	15.3.1 Transmission and Reception of Data via COM Ports
	15.3.1.1 Description of the Communication Modes
	15.3.1.2 Setting the Communication Parameters
	15.3.1.3 Getting the Communication Parameters and Statuses
	IsTransmissionDone
	IsReceptionDone
	IsReceptionDoneByTimeout
	IsCommunicationError
	IsPlcLink
	IsProgramControlled
	IsModbusNotActive
	IsModbusError

	15.3.1.4 Getting the Communication Parameters and Statuses in RUN Mode via Special Relays and Special Data Registers from the CPU's COM Ports
	15.3.1.5 Data Transfer in Program Controlled Mode
	Transmission
	F159_MTRN
	Reception
	F161_MRCV

	15.3.1.6 Data Transfer via Modbus RTU Master/Slave Mode (FP-X)
	F145_MODBUS_WRITE_DATA
	Command for Function Code 05
	Command for Function Code 06
	Command for Function Code 15
	Command for Function Code 16

	F146_MODBUS_READ_DATA
	Command for Function Code 01
	Command for Function Code 01_x
	Command for Function Code 02
	Command for Function Code 02_x
	Command for Function Code 03
	Command for Function Code 04
	Command for Function Code 04

	16 Arithmetic Instructions
	F20_ADD
	F21_DADD
	F22_ADD2
	F23_DADD2
	F40_BADD
	F41_DBADD
	F42_BADD2
	F43_DBADD2
	F35_INC
	F36_DINC
	F55_BINC
	F56_DBINC
	F25_SUB
	F26_DSUB
	F27_SUB2
	F28_DSUB2
	F45_BSUB
	F46_DBSUB
	F47_BSUB2
	F48_DBSUB2
	F37_DEC
	F38_DDEC
	F57_BDEC
	F58_DBDEC
	F30_MUL
	F31_DMUL
	F34_MULW
	F39_DMULD
	F50_BMUL
	F51_DBMUL
	F32_DIV
	F33_DDIV
	F52_BDIV
	F53_DBDIV
	F313_FDIV
	F70_BCC
	F160_DSQR
	F87_ABS
	F88_DABS
	F287_BAND
	F288_DBAND
	F348_FBAND
	F289_ZONE
	F290_DZONE
	F349_FZONE
	F85_NEG
	F86_DNEG
	F270_MAX
	F271_DMAX
	F272_MIN
	F273_DMIN
	F275_MEAN
	F276_DMEAN
	F282_SCAL
	F283_DSCAL
	F96_SRC
	F97_DSRC
	16.1 Introduction into the FIFO Buffer
	F115_FIFT
	F116_FIFR
	F117_FIFW
	F98_CMPR
	F99_CMPW
	F277_SORT
	F278_DSORT

	17 Bitwise Boolean Instructions
	F5_BTM
	F6_DGT
	F65_WAN
	F66_WOR
	F67_XOR
	F68_XNR
	F69_WUNI
	F215_DAND
	F216_DOR
	F217_DXOR
	F218_DXNR
	F219_DUNI
	F130_BTS
	F131_BTR
	F132_BTI
	F133_BTT
	F135_BCU
	F136_DBCU
	F84_INV
	F93_UNIT
	F94_DIST

	18 Bitshift Instructions
	LSR
	F100_SHR
	F101_SHL
	F102_DSHR
	F103_DSHL
	F105_BSR
	F106_BSL
	F108_BITR
	F109_BITL
	F110_WSHR
	F111_WSHL
	F112_WBSR
	F113_WBSL
	F119_LRSR
	F120_ROR
	F121_ROL
	F122_RCR
	F123_RCL
	F125_DROR
	F126_DROL
	F127_DRCR
	F128_DRCL

	19 Comparison Instructions
	F60_CMP
	F61_DCMP
	F62_WIN
	F63_DWIN
	F64_BCMP
	F346_FWIN
	F373_DTR
	F374_DDTR
	19.1 Further Comparison Instructions

	20 Conversion Instructions
	F71_HEX2A
	F72_A2HEX
	F73_BCD2A
	F74_A2BCD
	F75_BIN2A
	F76_A2BIN
	F77_DBIN2A
	F78_DA2BIN
	F80_BCD
	F81_BIN
	F82_DBCD
	F83_DBIN
	F89_EXT
	F90_DECO
	F91_SEGT
	F92_ENCO
	F95_ASC
	F235_GRY
	F236_DGRY
	F237_GBIN
	F238_DGBIN
	F240_COLM
	F241_LINE
	F327_INT
	F328_DINT
	F333_FINT
	F334_FRINT
	F335_FSIGN
	F337_RAD
	F338_DEG

	21 Selection Instructions
	F285_LIMT
	F286_DLIMT

	22 Date and Time Instructions
	F138_TIMEBCD_TO_SECBCD
	F139_SECBCD_TO_TIMEBCD
	F157_ADD_DTBCD_TIMEBCD
	F158_SUB_DTBCD_TIMEBCD
	GET_RTC_DTBCD
	SET_RTC_DTBCD

	23 Bistable Instructions
	KEEP
	SET

	24 Edge Detection Instructions
	DF
	DFN
	DFI
	ALT

	25 Counter Instructions
	CT_FB
	CT
	F118_UDC

	26 High Speed Counter and Pulse Output Instructions
	F0_MV
	26.1.1.1 Setting the Control Code for High-Speed Counter with FP-X
	26.1.1.2 Setting the Control Code for High-Speed Counter with FP-Sigma
	26.1.1.3 Setting the Control Code for Pulse Output with FP-X
	26.1.1.4 Setting the Control Code for Pulse Output with FP-Sigma

	26.1.2 Reading the Elapsed Value and Setting the Target Values
	26.1.2.1 Elapsed Values and Target Values for FP-X
	26.1.2.2 Elapsed Values and Target Values for FP-Sigma

	F162_HC0S
	F163_HC0R
	F164_SPD0
	F165_CAM0
	F166_HC1S
	F167_HC1R
	F171_SPDH
	F172_PLSH
	F173_PWMH
	F174_SP0H
	F175_SPSH_LINEAR
	26.1.3 Precautions during programming

	F176_SPCH_CENTER
	F176_SPCH_PASS

	27 Timer Instructions
	TM_1ms_FB
	TM_10ms_FB
	TM_100ms_FB
	TM_1s_FB
	TM_1ms
	TM_10ms
	TM_100ms
	TM_1s
	F137_STMR
	F183_DSTM

	28 Process Control Instructions
	28.1 Explanation of the Operation of the PID Instuctions
	F355_PID_DUT
	F356_PID_PWM
	28.1.1 F356_Control_DUT
	28.1.2 F356_Parameters_Hold_DUT
	28.1.3 F356_Parameters_NonHold_DUT

	PID_FB
	PID_FB_DUT

	29 System Register Instructions
	SYS1
	SYS2

	30 Special Instructions
	F140_STC
	F141_CLC
	F148_ERR
	F149_MSG

	31 Program Execution Control Functions
	MC
	MCE
	JP
	LOOP
	LBL
	ICTL

	Appendix Programming Information
	32.1 FP TOOL Library
	32.2 Floating Point Instructions
	32.3 Relays, Memory Areas and Constants
	32.3.1 Relays, Memory Areas and Constants for FP-Sigma
	32.3.2 Relays, Memory Areas and Constants for FP-X

	32.4 System Registers
	32.4.1 Precautions When Setting System Registers
	32.4.2 Types of System Registers
	32.4.3 Checking and Changing System Registers
	32.4.4 Table of System Registers for FP-Sigma
	32.4.5 Table of System Registers for FP-X

	32.5 Special Internal Relays
	32.5.1 Special Internal Relays for FP-Sigma
	32.5.2 Special Internal Relays for FP-X

	32.6 Special Data Registers
	32.6.1 Special Data Registers for FP-Sigma
	32.6.2 Special Data Registers for FP-X

	32.7 Error Codes
	32.7.1 General Information about Errors
	32.7.1.1 FP-Series PLCs and ERROR Display
	32.7.1.2 MEWTOCOL-COM Transmission Errors

	32.7.2 Table of Syntax Check Error
	32.7.3 Table of Self-Diagnostic Errors
	32.7.4 MEWTOCOL-COM Error Codes

	32.8 MEWTOCOL-COM Communication Commands
	32.9 Hexadecimal/Binary/BCD
	32.10 ASCII Codes
	32.11 Availability of All Instructions on All PLC Types

	Index
	Record of Changes
	Addresses

