PROGRAMMABLE CONTROLLER
 FP-M
 Hardware

Safety Precautions

Observe the following notices to ensure personal safety or to prevent accidents.
To ensure that you use this product correctly, read this User's Manual thoroughly before use.
Make sure that you fully understand the product and information on safe.
This manual uses two safety flags to indicate different levels of danger.

WARNING

If critical situations that could lead to user's death or serious injury is assumed by mishandling of the product.
 -Always take precautions to ensure the overall safety of your system, so that the whole system remains safe in the event of failure of this product or other external factor.
 -Do not use this product in areas with inflammable gas. It could lead to an explosion.
 -Exposing this product to excessive heat or open flames could cause damage to the lithium battery or other electronic parts.

CAUTION

If critical situations that could lead to user's injury or only property damage is assumed by mishandling of the product.
-To prevent abnormal exothermic heat or smoke generation, use this product at the values less than the maximum of the characteristics and performance that are assure in these specifications.
-Do not dismantle or remodel the product. It could lead to abnormal exothermic heat or smoke generation.
-Do not touch the terminal while turning on electricity. It could lead to an electric shock.. -Use the external devices to function the emergency stop and interlock circuit.
-Connect the wires or connectors securely.
The loose connection might cause abnormal exothermic heat or smoke generation -Do not allow foreign matters such as liquid, flammable materials, metals to go into the inside of the product. It might cause exothermic heat or smoke generation.
-Do not undertake construction (such as connection and disconnection) while the power supply is on.

Copyright / Trademarks

-This manual and its contents are copylighted.
-You may not copy this manual, in whole or part, without written consent of Matsushita Electric Works,Ltd.
-Windows and Windows NT are registered trademarks of Microsoft Corporation in the United States and/or other countries.
-All other company names and product names are trademarks or registered trademarks of their respective owners.
-Matsushita Electric Works,Ltd. pursues a policy of continuous improvement of the Design and performance of its products, therefore,we reserve the right to change the manual/ product without notice.

CONTENTS

CHAPTER 1: FEATURES

1-1. Features and Functions 2

1. Features 2
2. Functions 3
1) Advanced control functions 3
2) Network 6
1-2. Product Types 9
1. Control Boards 9
2. Expansion Boards 10
3. Intelligent Boards 10
4. Link Boards and Adapters 11
1-3. Expansion and Configurations 12
5. Expansion of FP-Ms 12
6. Restriction of Expansion 12
1) Expansion boards 12
2) Intelligent boards 12
3) Link boards 12
3. Combination of Boards 13
1) Combination of relay output type control and expansion boards 13
2) Combination of transistor output type control and expansion boards 13
1-4. Programming Tools for FP-Ms 14
1. Programming Tools 14
1) NPST-GR Software 14
2) FP Programmer II. 14
2. Tools for Making a Programmed ROM 15
1) Writing a program to memory (EPROM) with an FP ROM writer 15
2) Writing a program to memory (EPROM) with NPST-GR Software and a commercially available ROM programmer. 15
3) Writing a program to the memory (EPROM) via the master memory (EEPROM) with a commercially available ROM programmer 16
CHAPTER 2: SPECIFICATIONS AND PARTS TERMINOLOGY
2-1. Specifications of Control Board and Expansion Board 18
1. General 18
2. Performance 18
3. Input 20
4. Output 20
1) Relay output type 20
2) Transistor output type (PNP and NPN open collector) 21
2-2. Parts Terminology 22
1. Control Boards 22
1) C20R and C20RC types 22
2) C20T and C20TC types 24
3) C32T and C32TC types 26
2. Expansion Boards 28
1) E20R type 28
2) M1T-E type 29
3) M1T-EI type 30
4) M1T-EO type 31
3. Board and Case Structure 32
1) Board type 32
2) Case type 32
2-3. Dimensions 33
1. Board Type 33
1) Control boards 33
2) Expansion boards 33
3) Building dimensions 34
4) Mounting hole dimensions 34
2. Case Type 35
1) Case dimensions for control, expansion, intelligent and link boards 35
2) Building dimensions 35
3) Mounting hole dimensions 35
3-1. I/O Allocation of Control Boards 38
3-2. I/O Allocation of Expansion Boards 39
3-3. I/O Allocation Examples 40
CHAPTER 4: INSTALLATION AND WIRING
4-1. Stacking the Boards 42
1. Board Type 42
2. Case Type 43
4-2. Installation 44
3. Panel Mount 44
1) Board type mounting method (without mounting plate) 44
2) Case type mounting method (using mounting plate) 44
2. DIN Rail Mount 44
3. Cautions 45
4-3. Wiring. 46
4. Power Supply Wiring 46
1) Wiring for power supply 46
2) Power supply lines 46
3) Grounding 47
4) Momentary power drop 47
5) Safety 47
2. Input and Output Wiring (Control and Expansion Boards) 48
1) Wiring for I/O power supply (C20R control board and E20R expansion board) 48
2) Wiring description for I/O power supply (C20R control board and E20R expansion board) 49
3) Wiring for I/O power supply (C20T, C32T, M1T-E, M1T-EI, and M1T-EO series) 50
4) Wiring description for I/O power supply (C20T, C32T, M1T-E, M1T-EI, and M1T-EO series) 51
5) Wiring for I/O connectors (MIL connector) 55
6) Wiring for I/O terminals 61
7) Wiring for programming tool port 62
8) Wiring for RS232C port 62
CHAPTER 3: I/O ALLOCATION
3. Wiring Diagram and Pin Layouts 63
1) Control boards 63
2) Expansion boards 68
CHAPTER 5: BEFORE PROGRAMMING
5-1. Operating Principles of the Programmable Controller. 74
1. Basic Configuration 74
2. Basic Operation 76
5-2. Before Turning the Power ON 78
3. Things to Check Before Turning the Power ON 78
4. Operation Procedure 79
5-3. How to Program the Programmable Controller 80
5. Making a Ladder Diagram 80
6. Relays and Timer/Counter Contacts in the FP-M 81
7. I/O Allocation in the FP-M 83
1) Control boards. 83
2) Expansion boards 83
5-4. Programming with NPST-GR Software 84
1. System Configuration 84
2. Features of NPST-GR Software Ver. 3 85
3. NPST-GR Configuration 86
1) Overview of the programming screen 86
2) Overview of the menu window 88
4. NPST-GR Installation and Configuration 89
1) Preparing for installation 89
2) NPST-GR installation 90
3) How to use NPST-GR effectively 92
4) NPST-GR startup 92
5) Configuring NPST-GR 93
5. Exiting NPST-GR 95
6. Basic Key Operation for Programs 96
7. Downloading a Program to the Programmable Controller 97
8. Saving a Program to Disk 98
9. Printing 99
5-5. Programming with FP Programmer II 100
10. System Configuration 100
11. Downloading a Program to the Programmable Controller 101
5-6. RAM and ROM Operations 103
12. RAM and ROM Operations 103
13. Operation Without Backup Battery Enabled 104
14. Notes on Operation with Memory (ROM Operation) 105
5-7. How to Program ROM 106
15. Memory (ROM) Type 106
16. Install the Memory (ROM) 107
17. How to Program ROM. 107
1) Writing a program to the memory (EPROM) via master memory (EEPROM) with a commercially available ROM programmer 107
2) Writing a program to the memory (EPROM) with NPST-GR Software and a commercially available ROM programmer 109
CHAPTER 6: TROUBLESHOOTING AND MAINTENANCE
1. Operation Monitor LEDs When an Error Occurs 112
2. Operation Status When an Error Occurs 113
1) Duplicated output error (total-check error) 113
2) Battery error (self-diagnostic error) 113
3) Operation error (self-diagnostic error) 113
6-2. Troubleshooting 114
1. Points to be Checked When an Error Occurs 114
6-3. Error Codes 123
2. Table of Total-check Error Codes 123
3. Table of Self-diagnostic Error Codes 124
6-4. Maintenance 125
4. Replacement of Backup Battery 125
1) Battery life 125
2) Using backup battery type 125
3) How to replace backup battery 125
2. Check Items 126
CHAPTER 7: INTELLIGENT AND LINK BOARDS
7-1. Analog I/O Board 128
3. Specifications 128
1) General 128
2) Performance 128
3) Restriction of expansion 129
2. Dimensions 129
3. Parts Terminology 130
4. Wiring 132
7-2. A/D Converter Board 133
5. Specifications 133
1) General 133
2) Performance 133
3) Restriction of expansion 134
2. Dimensions 134
3. Parts Terminology 135
4. Wiring 137
7-3. D/A Converter Board 138
5. Specifications 138
1) General 138
2) Performance 138
3) Restriction of expansion 139
2. Dimensions 139
3. Parts Terminology 140
4. Wiring 142
7-4. Programming for Analog I/O, A/D Converter, and D/A Converter Boards 143
5. Digital Values of Analog Input 143
6. Digital Values of Analog Output 144
7. Specification of Analog I/O Data 146
8. Applications 147
7-5. High-speed Counter Board 148
9. Specifications 148
1) General 148
2) Performance 148
3) Differences in specifications between high-speed counter function with FP-M control board and high-speed counter board 149
4) Restriction of expansion 150
2. Dimensions 150
3. Parts Terminology 151
4. I/O Allocation 153
5. Wiring 156
6. Programming for High-speed Counter Board. 157
1) High-speed counter board related instructions F0 (MV), F1 157
2) Notes on programming the high-speed counter 158
3) Applications 159
7-6. FP-M Transmitter Master Board (MEWNET-TR) 161
1. Specifications 162
1) General 162
2) Performance 162
3) Restriction of expansion 162
2. Dimensions 162
3. Parts Terminology 163
7-7. FP-M I/O Link Board (MEWNET-F) 165
4. Specifications 166
1) General 166
2) Performance 166
3) Restriction of expansion 166
2. Dimensions 166
3. Parts Terminology 167

CHAPTER 8: APPENDIX

8-1. Performance Specifications 170

1. Control and Expansion Board Specifications 170
2. Intelligent Boards Specifications 173
1) Analog I/O board specifications 173
2) A / D converter and D / A converter board specifications 174
3) High-speed counter board specifications 175
4) FP-M transmitter master board (MEWNET-TR) specifications 176
5) FP-M I/O link board (MEWNET-F) specifications 176
8-2. Dimensions. 177
1. Board Type 177
1) Control boards 177
2) Expansion boards 177
3) Intelligent and link boards 178
4) Building dimensions 179
5) Mounting hole dimensions 179
2. Case Type 180
1) Case dimensions for control, expansion, intelligent and link boards 180
2) Building dimensions 180
3) Mounting hole dimensions 180
8-3. I/O Allocation Table 181
1. I/O Allocation of Control Boards 181
2. I/O Allocation of Expansion Boards 181
3. Allocation of Analog I/O, A/D Converter, and D/A Converter Boards 182
4. Allocation of High-speed Counter Board 183
5. I/O Allocation of FP-M Transmitter Master Board 184
6. I/O Allocation of FP-M I/O Link Board 184
8-4. Table of Memory Areas 185
8-5. System Registers 187
7. What Are System Registers 187
8. Table of the System Registers 189
8-6. Special Internal Relays 198
8-7. Special Data Registers 201
8-8. Table of the Error Codes 210
9. Table of Total-check Error Codes 210
10. Table of Self-diagnostic Error Codes 211
8-9. Table of Instructions 212
11. Basic Instructions 212
12. High-level Instructions 215
8-10. Table of Binary/BCD Expressions 219
$8-11$. Versions of Programming Tools 220
13. Differences Between NPST-GR Ver. 2.4 and 3.1 220
14. Differences Between the FP Programmer and FP Programmer II 222
8-12. Modem Communication 224
15. Using the Programming Tool Port (FP-M control board all types) 224
16. Using the RS232C Port [FP-M C type control boards (C20RC/C20TC/C32TC)] 227
8-13. Terminology 232
8 -14. Product Types 239
17. Case Type 239
18. Board Type 241
19. Programming Tools 244
20. Wiring Parts for I/O Terminal 250
21. Wiring Parts for I/O Connectors (MIL connectors) 250
22. Accessories 252
23. Maintenance Parts 253
INDEX 254
RECORD OF CHANGES 258
1-1. Features and Functions 2
24. Features 2
25. Functions 3
1-2. Product Types 9
26. Control Boards 9
27. Expansion Boards 10
28. Intelligent Boards 10
29. Link Boards and Adapters 11
1-3. Expansion and Configurations 12
30. Expansion of FP-Ms 12
31. Restriction of Expansion 12
32. Combination of Boards 13
1-4. Programming Tools for FP-Ms 14
33. Programming Tools 14
34. Tools for Making a Programmed ROM 15

1-1. Features and Functions

1. Features

- Excellent performance in a compact body

Succeeding the advanced functions of the FP1 programmable controller, the FP-M is designed to fulfill machine building requirements. The advantages of compact size, expandability, and time-tested dependability are convincing reasons to consider the FP-M as an alternative to the control systems with which you are familiar.

- Greatly increased program memory and high execution speed

FP-M surpasses the competition with a basic instruction execution speed of $1.6 \mu \mathrm{~s} /$ step and an ample program capacity of 2,720 and 5,000 steps. The board is driven by battery-backed RAM (EEPROM or EPROM program back-up option is also available). Types with an additional RS232C port and clock/calender (C types) are available to boost the range of applications possible.

- Smart system expandability

Up to four expansion boards can be stacked under the control board, but no additional mounting space is needed. This module enables you to add discrete I/O points and intelligent functions such as analog control, high-speed counter control, and link functions easily.
Available expansion boards are:
Transistor I/O, Relay I/O, Analog I/O, A/D, D/A, High-speed Counter, I/O Link, and FP-M Transmitter Master Boards.

I/O Expansion Example

Control board	Total I/O points				
	0 expansion	1 expansion	2 expansions	3 expansions	4 expansions
*C20R (Relay output)	20 12 inputs/8 outputs	40 24 inputs/16 outputs	60 36 inputs/24 outputs	80 48 inputs/32 outputs	100 60 inputs/40 outputs
*C20T (Transistor output)	20 12 inputs/8 outputs	60 36 inputs/24 outputs	100 60 inputs/40 outputs	140 84 inputs/56 outputs	180 108 inputs/72 outputs
* C32T (Transistor output)	32 16 inputs/16 outputs	72 40 inputs/32 outputs	112 64 inputs/48 outputs	152 88 inputs/64 outputs	192 112 inputs/80 outputs

For details about expansion refer to page 12.

* In the table above, the twenty I/O point relay type expansion board is used for the C20R and the forty I/O point transistor type is used for the C20T and C32T.

- Easy programming environment

NPST-GR changes your personal computer into a powerful programming support tool. This editing software is fully compatible with FP series programmable controllers.

2. Functions

1) Advanced control functions

■ High-speed counter function

The built-in high-speed counter function supports four modes: two-phase input, UP, DOWN, and UP/DOWN. The FP-M can read the input regardless of the scan time.

Max. counting speed	1-phase: 10 k Hz (when duty cycle ratio 50 \%) 2-phase: 10 k Hz
Counting range	$-8,388,608$ to $8,388,607$

Application: Pattern output function

This function of the control board allows the setting of a maximum of eight output patterns with 15 level settings of the high-speed counter. Can also be applied to multi-stage speed control with use of an invertor.

Pulse output function (transistor output type)

This function allows the output of a direct pulse (45 Hz to 4.9 k Hz) from the FP-M. In combination with a drive, a motor can be controlled. As direct pulse is possible, an additional positioning controller is not necessary. As the FP-M has two pulse outputs, it also supports motor drives with one input for forward driving and the other input for reverse driving. To prevent incorrect forward/reverse driving, create an interlock circuit outside of the FP-M. In addition, since the built-in high-speed counter can internally take the pulse output, no external wiring for feedback control is required.

- Wiring example for a drive with one pulse input and one direction input:

- Wiring example for a drive with two pulse inputs:

Interrupt input function

This function executes an interrupt program immediately after an external interrupt input (minimum pulse width of 0.2 ms) occurs, regardless of the input timing. It enables high-speed processing at a fixed timing and is not affected by scan time. Therefore it is useful when performing control which would be disrupted by variations in processing time due to such factors as timing synchronization.

- Timing control on a board inspection line

Immediately executes interrupt program when an edge detection signal comes in by interrupt input from sensor 1 . Sensor 2 inspects the part, and if an abnormality is detected, the conveyor stops and the abnormality is reported.

FP-M control board

Pulse catch input function

This function catches input pulse signals down to a minimum width of 0.5 ms . It is effective for situations such as when the sensor detects the moving target at a high-speed.

Adjustable input time filtering function

This function allows the input response time (input time constant) of the control board to be changed within a range of 1 to 128 ms in accordance with the input device connected. This prevents input errors due to such causes as limit switch chattering noise.

Manual dial-set register control function

This function makes it possible to change the values of special data registers DT9040 and DT9041 within a range of 0 to 255 using the potentiometers on the control board. Input settings involving analog-type numerical data such as analog timer and pulse output frequency changes can be performed.

Forced ON/OFF control function

This function allows the state of the input and output contacts to be forced ON or OFF with a programming tool (NPST-GR Software, etc.). By forcing the output contact ON or OFF, the connection on the output side can be checked. By forcing the input contact ON or OFF, the program can be checked.

Password protection function

This function forbids reading and writing of the program and system registers. It can be used for program protection and when secrecy is required.

Constant length scan setting function

The duration of one scan is fixed by setting it to units of 2.5 ms , eliminating variation in the scan time.

Clock/Calendar control function (C20RC, C20TC, and C32TC types)

By means of year, month, day, hour, minute, second, and day of the week settings, this function makes it possible to change temporal elements of control. It can be used for temporal control of such items as lighting, air conditioning, and equipment.

2) Network

Computer link function (MEWTOCOL)

This function allows the reading and writing of FP-M contact information and data register content from a host computer. It can be used for such applications as data collection and the monitoring of operating conditions. The computer program is written in BASIC and C languages.

Communication between one computer and one FP-M control board

- Using RS232C port (C20RC, C20TC, and C32TC types)

The RS232C port can be used for direct connection to a personal computer.

When connected to an I.O.P. using the computer link function, the I.O.P.'s data can be read as the FP-M's internal relay or data register. This can be used for such operations as production control.

- Using programming tool port (all series)

The programming tool port can also be used for direct connection to a personal computer.

Note:

- When using a control board equipped with an RS232C port (C20RC, C20TC, and C32TC types), various combinations can be created by making a computer link with the programming tool port and connecting another device with the RS232C port.

Communication between one computer and 32 FP-M control boards

Using a C-NET adapter, a maximum of $32 \mathrm{FP}-\mathrm{M}$ control boards can be connected with one personal computer. If a bar code reader is connected via the RS232C port, this system can be used for the collection of various production control information.

[^0]
MEWNET-TR (distributed I/O) system

I/O information can be exchanged between the master and several slave stations at a remote site. A maximum of 32 inputs and 32 outputs can be controlled per master board.
This system supports a total communication distance of 700 m per port using a twisted-pair cable. Master to master communication is also available.

- Master-slave communication

- Master-master communication

MEWNET-F (distributed I/O) system

Using a FP-M I/O link board, this function allows the exchange of I/O information with the master unit of the FP series programmable controller through a two-conductor cable.

Note:

- Refer to "REMOTE I/O SYSTEM Technical Manual" for details about MEWNET-F (remote I/O) system.

General communication using RS232C port (C20RC, C20TC, and C32TC types)

This function allows data input and output when connected to a device having an RS232C port. Data reading from a bar code reader, data output to a printer, and bilateral data exchange with the image checker are all possible.

Modem communication

Using a modem, the FP-M can perform long-distance communication with a personal computer to monitor and change data and also to change the program. Using C-NET adapters, you can control up to 32 programmable controllers from a personal computer. Through the RS232C port, the FP-M can initiate a call to a computer via modems for alarm purposes.

1-2. Product Types

1. Control Boards

Series		Description					
		Built-in memory	I/O point	Operating voltage	Input type	Output type	Part number
C20R	Standard type	RAM (2.7 k steps)	20 Input: 12 Output: 8	24 V DC	Sink/source	Relay, 2A 250 V AC	Board: AFC12212
							Case: AFC10212
	C20RC type*	RAM (5 k steps)	20 Input: 12 Output: 8	24 V DC	Sink/source	Relay, 2A 250 V AC	Board: AFC22212C
							Case: AFC20212C
C20T	Standard type	RAM (2.7 k steps)	20 Input: 12 Output: 8	24 V DC	Source	Transistor, 0.8 A (NPN open collector)	Board: AFC12242
							Case: AFC10242
					Sink	Transistor, 0.8 A (PNP open collector)	Board: AFC12252
							Case: AFC10252
	C20TC type*	RAM (5 k steps)	20 Input: 12 Output: 8	24 V DC	Source	Transistor, 0.8 A (NPN open collector)	Board: AFC22242C
							Case: AFC20242C
					Sink	Transistor, 0.8 A (PNP open collector)	Board: AFC22252C
							Case: AFC20252C
C32T	Standard type	RAM (2.7 k steps)	32 Input: 16 Output: 16	24 V DC	Source	Transistor, 0.8 A (NPN open collector)	Board: AFC12342
							Case: AFC10342
					Sink	Transistor, 0.8 A (PNP open collector)	Board: AFC12352
							Case: AFC10352
	C32TC type*	RAM (5 k steps)	32 Input: 16 Output: 16	24 V DC	Source	Transistor, 0.8 A (NPN open collector)	Board: AFC22342C
							Case: AFC20342C
					Sink	Transistor, 0.8 A (PNP open collector)	Board: AFC22352C
							Case: AFC20352C

Notes:

- * CPUs with a RS232C port and clock/calendar function (C20RC, C20TC and C32TC types).
- Board types include AFB88021 (4 spacers, 20 mm), APL9511 (power supply cable), AFB8505 (jumper cable) and 4 screws ($20 \mathrm{~mm} \times 2,8 \mathrm{~mm} \times 2$).
- Case types include the control board, case for control board (C20R type for AFC18011, C20T type for AFC18012 and C32T type for AFC18013), AFB88032 (4 spacers, 8 mm), APL9511 (power supply cable), AFB8505 (jumper cable), 4 screws ($20 \mathrm{~mm} \times 2,8 \mathrm{~mm} \times 2$), and AFB6804 (mounting plate).
- 12 V DC operating voltage type is also available.

2. Expansion Boards

Series	Description				
	I/O point	Operating voltage	Input type	Output type	Part number
E20R expansion I/O board	Input: 12 Output: 8	24 V DC	Sink/source	Relay	AFC13012
M1T-E expansion I/O board	40 Input: 24 Output: 16	24 V DC	Source	Transistor (NPN open collector)	AFB6342
M1T-EI expansion input board	36 Input: 36	24 V DC	Source		Sink
M1T-EO expansion output board	32 Output: 32	24 V DC	-		

Note:

- Operating voltage 12 V DC type is also available.

3. Intelligent Boards

Type	Description	Operating voltage	Part number
Analog I/O board	Input: 4 channels/board Output: 1 channel/board Input/output range: 0 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 0$ to 20 mA Resolution: $1 / 256$ (8 bits)	24 V DC	AFB6480
A/D converter board	Input: 4 channels/board Analog input range: 0 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 0$ to 20 mA Digital output range: $\mathrm{K0}$ to K 999	24 V DC	AFB6400
D/A converter board	Output: 2 channels/board Analog output range: 0 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 0$ to 20 mA Digital input range: K 0 to K 999	24 V DC	AFB6410
High-speed counter board	Input: 2 channels Counting range: $-8,388,608$ to $8,388,607$ Max. counting speed: 1-phase mode: 20 k Hz 2-phase mode: 5 k Hz	-	AFB6420

4. Link Boards and Adapters

Type	Description		Operating voltage	Part number
MEWNET-TR FP-M transmitter master board	FP-M transmitter master board enables the FP-M to exchange I/O information with slave stations at remote site using a twisted-pair cable. Connecting with another FP-M transmitter master board or with an FP3 transmitter master unit, you can exchange I/O information with another FP-M at remote site. Communication medium (RS485 port): twisted-pair cable up to 32 inputs and 32 outputs can be controlled per board.		24 V DC	AFC1752
FP I/O transmitter unit	Input type	4 points	24 V DC	AFP87525
		8 points		AFP87521
		16 points		AFP87522
	Output type (Transistor, 0.5 A, NPN open collector)	4 points	24 V DC	AFP87527
		8 points		AFP87523
		16 points		AFP87524
FP I/O terminal unit (with an expansion cable APL2510)	Input type	8 points	24 V DC	AFP87425
		16 points		AFP87426
	Output type (Transistor, 0.5 A, NPN open collector)	8 points	24 V DC	AFP87427
		16 points		AFP87428
MEWNET-F FP-M I/O link board	The FP-M I/O link board is the interface board for exchanging I/O information between an FP3/FP5 and an FP-M. When the FP-M is connected to the MEWNET-F system (FP3/FP5) via the FP-M I/O link board, you can exchange I/O information using a 2 -conductor cable.		24 V DC	AFC1732
C-NET adapter standard type	RS485 \leftrightarrow RS422/RS232C signal converter Used for communication between the programmable controller and your computer. Communication medium (RS485 port): 2-conductor cable or twisted pair cable		24 V DC	AFP8532
			$\begin{aligned} & 100 \mathrm{~V} \text { to } \\ & 240 \mathrm{~V} \mathrm{AC} \end{aligned}$	AFP8536
C-NET adapter S2 type (for FP-M control board only)	RS485 \leftrightarrow RS232C signal converter for programming tool port of FP-M control board. Used for communication between the C-NET adapter and FP-M control board.		-	AFP15402

1-3. Expansion and Configurations

1. Expansion of FP-Ms

- A total of 4 boards (expansion boards, intelligent boards, and link boards) can be stacked under the control board.
- Total number of I/O points:

C20R series: Max. 100 points*, C20T series: Max. 180 points, C32T series: Max. 192 points**

* Expansion board of the relay type is used.
** Max. 256 points using 3 transmitter master boards (MEWNET-TR).

- There are no restrictions on the order of expansion of boards (relay and transistor output type), intelligent boards, and link boards.

2. Restriction of Expansion

Be sure to check that the boards are added according to the following restrictions:

1) Expansion boards

- Expansion I/O board (E20R)
- Number of expandable boards: 4 boards
- Total number of I/O points:
- C20R and C20T series: Max. 100 points
- C32T series: Max. 112 points
- Expansion I/O board (M1T-E series)
- Number of expandable boards: 4 boards
- Total number of I/O points:
- C20R and C20T series: Max. 180 points
- C32T series: Max. 192 points

■ Expansion Input board (M1T-EI)

- Number of expandable boards: 2 boards
- Total number of I/O points:
- C20R and C20T series: Max. 92 points
- C32T series: Max. 104 points
- Expansion Output board (M1T-EO series)
- Number of expandable boards: 2 boards
- Total number of I/O points:
- C20R and C20T series: Max. 84 points
- C32T series: Max. 96 points

Note:

- Refer to page 13, "3. Combination of Boards" for details about combination of control boards and expansion boards.

3. Combination of Boards

1) Combination of relay output type control and expansion boards

Total number of boards	Requested I/O point		Number of boards		
	Input	Output	Control board C20R series (I: 12, O: 8)	Expansion board E20R series (I: 12, O: 8)	
1	20	12	8	1	
2	40	24	16	1	1
3	60	36	24	1	2
4	80	48	32	1	3
5	100	60	40	1	4

2) Combination of transistor output type control and expansion boards

Total number of boards	Requested I/O point			Number of boards				
	Total	Input	Output	Control board		Expansion board		
				$\begin{aligned} & \text { C20T series } \\ & (\mathrm{I}: 12, \mathrm{O}: 8) \end{aligned}$	$\begin{aligned} & \text { C32T series } \\ & (\mathrm{I}: 16, \mathrm{O}: 16) \end{aligned}$	$\begin{aligned} & \text { M1T-E } \\ & (\mathrm{I}: 24, \mathrm{O}: 16) \end{aligned}$	$\begin{aligned} & \text { M1T-EI } \\ & (\mathrm{I}: 36) \\ & \hline \end{aligned}$	M1T-EO (O: 32)
1	20	12	8	1				
	32	16	16		1			
2	52	12	40	1				1
	56	48	8	1			1	
	60	36	24	1		1		
	64	16	48		1			1
	68	52	16		1		1	
	72	40	32		1	1		
3	84	12	72	1				2
	88	48	40	1			1	1
	92	36	56	1		1		1
		84	8	1			2	
	96	72	24	1		1	1	
		16	80		1			2
	100	60	40	1		2		
		52	48		1		1	1
	104	40	64		1	1		1
		88	16		1		2	
	108	76	32		1	1	1	
	112	64	48		1	2		
4	120	48	72	1			1	2
	124	84	40	1			2	1
	132	60	72	1		2		1
		52	80		1		1	2
	136	96	40	1		2	1	
		40	96		1	1		2
		88	48		1		2	1
	140	84	56	1		3		
	144	64	80		1	2		1
	148	100	48		1	2	1	
	152	88	64		1	3		
5	156	84	72	1			2	2
	168	96	72	1		2	1	1
		88	80		1		2	2
	180	108	72	1		4		
		100	80		1	2	1	1
	192	112	80		1	4		

Notes:

- You can combine both relay output type and transistor output type control boards and expansion boards.
- Intelligent boards can also be combined with the control board.

1-4. Programming Tools for FP-Ms

1. Programming Tools

Program editing can be done with a commercially available personal computer and FP Programmer II.

1) NPST-GR Software

Using the NPST-GR program editing software, programs can be easily created with any personal computer.

Necessary tools

- Computer: Commercially available personal computer (IBM PC-AT or 100% compatible machine)
System required:
- Main memory: 550 KB or more free
- EMS: 800 KB or more free
- Hard disk space: 2 MB or more
- Operating system MS-DOS Ver. 3.30 or higher
- Video mode (display mode): EGA or VGA
- NPST-GR Software Ver. 3: AFP266538
- FP-M personal computer cable:
$3 \mathrm{~m} / 9.843 \mathrm{ft} .:$ AFC8513

Notes:

- The .EXE files in NPST-GR Software are compressed in the system disks. When installing NPST-GR, you will have to expand them.
- When using NPST-GR Software Ver. 2, refer to page 220, "1. Differences Between NPST-GR Ver. 2.4 and Ver. 3.1."
- Refer to page 106, "5-7. How to Program ROM" and "NPST-GR Manual", for details about writing programs using NPST-GR Software.
- Refer to page 239, "8-14. Product Types", for details about FP-M personal computer cable and RS232C interface adapter.

2) FP Programmer II

With the hand-held FP Programmer II, such operations as writing, reading, and retrieval of programs can be performed.

Necessary tools

- FP Programmer II: AFP1114
- FP-M peripheral cable (for FP Programmer II)
$1 \mathrm{~m} / 3.281 \mathrm{ft}$. : AFC8521
$3 \mathrm{~m} / 9.843 \mathrm{ft} .:$ AFC8523

Notes:

> - Refer to page 106, "5-7. How to Program ROM" and "FP PROGRAMMER II Operation Manual", for details about writing programs using the FP Programmer II.
> - Refer to page 239, "8-14. Product Types", for details about FP-M peripheral cable (for FP Programmer II).

2. Tools for Making a Programmed ROM

- Using an FP ROM writer or a commercially available ROM programmer, the contents of the FP-M control board's internal RAM can be written to ROM (memory).
- The following types of ROM (memory) are available:
- Memory (EPROM): AFP5202

Memory for storing programs. Writing is done with an FP ROM writer or a commercially available ROM programmer.

- Master memory (EEPROM): AFP5207

Memory for copying programs. Writing is done with attaching a master memory on the user memory socket.

1) Writing a program to memory (EPROM) with an FP ROM writer

- The content of the FP-M control board's internal RAM is written directly to the memory (EPROM).

```
Necessary tools
- FP ROM writer: AFP5651
- Memory (EPROM): AFP5202
- FP1 peripheral cable
\(0.5 \mathrm{~m} / 1.640 \mathrm{ft}:\) AFP15205
\(3 \mathrm{~m} / 9.843 \mathrm{ft} .:\) AFP1523
```

Note:

> - Refer to page 106, " $5-7$. How to Program ROM" and "FP ROM WRITER Technical Manual", for details about programming ROM.

2) Writing a program to memory (EPROM) with NPST-GR Software and a commercially available ROM programmer
 [Program with NPST-GR Software \rightarrow Commercially available ROM programmer's internal memory \rightarrow Memory (EPROM)]

Necessary tools

- Computer: Commercially available personal computer (IBM PC-AT or 100% compatible machine)
System required:
- Main memory: 550 KB or more free
- EMS: 800 KB or more free
- Hard disk space: 2 MB or more
- Operating system: MS-DOS Ver. 3.30 or higher
- Video mode (display mode): EGA or VGA
- NPST-GR Software Ver. 3: AFP266538
- RS232C cable: Needs to be made to match the specifications of the commercially available ROM programmer.
- Commercially available ROM programmer:

We recommend Aval Data Corporation's PECKER 11.

- Memory (EPROM): AFP5202

Note:

- The .EXE files of NPST-GR Software are compressed in the system disks. When installing NPST-GR, you will have to expand them.

3) Writing a program to the memory (EPROM) via the master memory (EEPROM) with a commercially available ROM programmer
[Program in FP-M control board's internal RAM \rightarrow Master memory (EEPROM) \rightarrow Commercially available ROM programmer's internal memory \rightarrow Memory (EPROM)]

Necessary tools

- FP Programmer II: AFP1114
- FP-M peripheral cable (for FP Programmer II)
$1 \mathrm{~m} / 3.281 \mathrm{ft}$.: AFC8521
$3 \mathrm{~m} / 9.843 \mathrm{ft}$.: AFC8523
- Commercially available ROM programmer:

We recommend Aval Data Corporation's PECKER 11.

- Master memory (EEPROM): AFP5207
- Memory (EPROM): AFP5202

Note:

> - Refer to page 106, "5-7. How to Program ROM" and "FP PROGRAMMER II Operation Manual", for details about programming ROM.

SPECIFICATIONS AND PARTS TERMINOLOGY

2-1. Specifications of Control Board and Expansion Board. 18

1. General 18
2. Performance 18
3. Input 20
4. Output 20
2-2. Parts Terminology 22
5. Control Boards 22
6. Expansion Boards 28
7. Board and Case Structure 32
2-3. Dimensions 33
8. Board Type 33
9. Case Type 35

2-1. Specifications of Control Board and Expansion Board

1. General

Item	Description
Ambient temperature	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$
Ambient humidity	30% to 85% RH (non-condensing)
Storage temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
Storage humidity	30 \% to 85 \% RH (non-condensing)
Breakdown voltage (See note.)	Transistor output type: 500 V rms for 1 min Between DC terminal and frame ground terminal Relay output type: $\quad$$1,500 \mathrm{~V}$ rms for 1 min Between output terminal and frame ground terminal
Insulation resistance (See note.)	Min. $100 \mathrm{M} \Omega$ (measured with a 500 V DC megger) Between DC terminal and frame ground terminal
Vibration resistance	10 Hz to $55 \mathrm{~Hz}, 1 \mathrm{cycle} / \mathrm{min}$: double amplitude of 0.75 mm (0.030 in .), 10 min on 3 axes
Shock resistance	Shock of $98 \mathrm{~m} / \mathrm{s}^{2}$ or more, 4 times on 3 axes
Noise immunity	1,000 Vp-p with pulse widths 50 ns and 1μ s (based on in-house measurements)
Operating environment	Must be free from corrosive gases and excessive dust.
Rated operating voltage	24 V DC
Operating voltage range	Controller power supply: 21.6 to 26.4 V DC Input/output power supply: 20.4 to 26.4 V DC (C20T, C32T series) 22.8 to 26.4 V DC (C20R series)
Current consumption	Controller power supply: 0.2 A or less Input/output power supply: Approx. 5 mA per an input point Approx. 3 mA per an output point (except load current)

2. Performance

Item	Description
Programming method	Relay symbol
Control method	Cyclic operation
Program memory	Built in RAM (lithium battery backup)
EEPROM (master memory)/EPROM (memory) [optional items]	
Program capacity	2.7 k type: 2,720 steps
	5 k type: 5,000 steps
Operation speed	$1.6 \mu \mathrm{~s} /$ step, basic instruction
Kinds of instruction	Basic
	81
External input (X)	111
External output (Y)	208 points (See note.)

Notes:

[^1]| | Item | Description |
| :---: | :---: | :---: |
| Internal relay (R) | | 1,008 points |
| Special internal relay (R) | | 64 points |
| Timer/counter (T/C) | | 144 points |
| Auxiliary timer | | Unlimited number of points (0.01 s to 327.67 s) |
| Data register (DT) | | 2.7 k type: 1,660 words 5 k type: 6,144 words |
| Special data register (DT) | | 112 words (For control board: 70 words, for intelligent boards: 42 words) |
| Index register (IX, IY) | | 2 words |
| MCR points | | 32 points |
| Number of labels (JMP,LOOP) | | 64 points |
| Differential points (DF or DF/) | | Unlimited number of points |
| Number of step ladders | | 128 stages |
| Number of subroutines | | 16 subroutines |
| Number of interrupt programs | | 9 programs |
| Advanced control functions | High-speed counter
 (1 channel) | Input: Count input (X0, X1)/reset input (X2)
 Counting input mode: up mode, down mode, up/down mode, 2-phase mode Counting range: $-8,388,608$ to $8,388,607$
 Max. counting speed: up/down mode 10 kHz , 2-phase mode 10 kHz
 Min. input pulse width: 1 phase $50 \mu \mathrm{~s} \cdot 2$ phases $50 \mu \mathrm{~s}$ |
| | Manual dial-set register | 2 potentiometers |
| | Pulse catch input | Total 8 points (X0 to X7) |
| | Interrupt input | |
| | Periodical interrupt | 10 ms to 30 s interval |
| | RS232C port (See note.) | Communication speed: 300/600/1,200/2,400/4,800/9,600/19,200 bps Communication distance per port: $15 \mathrm{~m} / 49.213 \mathrm{ft}$. Connector: D-SUB 9 pins connector |
| | Clock/calendar (See note.) | Clock/calendar function available |
| | I/O link | 64 I/O points (32 inputs and 32 outputs) or 32 I/O points (16 inputs and 16 outputs) |
| | Pulse output (See note.) | 2 points (Y6 and Y7)
 Pulse output frequency range: $360 \text { to } 5,000 \mathrm{~Hz} / 180 \text { to } 5,000 \mathrm{~Hz} / 90 \text { to } 5,000 \mathrm{~Hz} / 45 \text { to } 5,000 \mathrm{~Hz}$ |
| | Constant scan | $2.5 \mathrm{~ms} \times$ set value (160 ms or less) |
| Adjustable input time filtering | | 1 to 128 ms |
| Self-diagnosis function | | Watchdog timer, battery detection, program check, and others |
| Memory backup (at $25^{\circ} \mathrm{C}$) | | Approx. 27,000 h (C types: C20RC, C20TC and C32TC) Approx. 53,000 h (except C types: C20R, C20T and C32T) |

Notes:

- The RS232C port and clock/calendar functions are available for the C types (C20RC, C20TC and C32TC).
- The pulse output function is available for the transistor output type.
- The two pulse outputs, Y 6 and Y 7 cannot be used at the same time.

3. Input

Item	Description
Rated input voltage	24 V DC
Operating voltage range	20.4 V to 26.4 V DC
ON voltage/current	19.2 V or less/3 mA or less (19.2 V or less/3.6 mA: C32T series only)
OFF voltage/current	2.4 V or more/1 mA or more
Input impedance	Control board: Approx. $4.8 \mathrm{k} \Omega$
	Expansion board: Approx. $4.4 \mathrm{k} \Omega$
Response time $\mathrm{ON} \leftrightarrow$ OFF	2 ms or less (at normal input) (See note.)
	50μ s or less (in setting high-speed counter)
	200μ s or less (in setting interrupt input)
	500μ s or less (in setting pulse catch)
Operating mode indicator	LED
Insulation method	Optical coupler

Notes:

- Input response time can be changed using the input time filtering function to $1,2,4,8,16,32,64$, or 128 ms in unit of 8 inputs. However, for expansion boards, the input response time is fixed at 2 ms (or less).
- The number of ON points must be decreased when the ambient temperature is high (between $40^{\circ} \mathrm{C} / 104^{\circ} \mathrm{F}$ and $55^{\circ} \mathrm{C} / 131^{\circ} \mathrm{F}$).

Number of ON points/common [\%] 50

4. Output

1) Relay output type

Item	Description
Rated operating voltage	24 V DC
Operating voltage range	22.8 V to 26.4 V DC
Output type	Normally open (1 Form A), 2 points/common
Rated control capacity	$2 \mathrm{~A} \mathrm{250} \mathrm{V} \mathrm{AC,2A} \mathrm{30} \mathrm{V} \mathrm{DC} \mathrm{(resistive)} \mathrm{(See} \mathrm{note} \mathrm{1)}$.
Response time OFF \rightarrow ON	8 ms or less
$\mathrm{ON} \rightarrow$ OFF	10 ms or less
Mechanical life time	2×10^{7} operations or more
Electrical life time	10^{5} operations or more
Surge absorber	None
Operating mode indicator	LED

2) Transistor output type (PNP and NPN open collector)

Item	Description
Insulation method	Optical coupler
Rated load voltage	24 V DC
Operating load voltage range	20.4 V to 26.4 V DC
Max. load current	$0.8 \mathrm{~A} /$ point (at 24 V DC) (See note 2.)
OFF state leakage current	$100 \mu \mathrm{~A}$ or less
ON state voltage drop	1.5 V or less
Response time OFF \rightarrow ON	1 ms or less
	$\mathrm{ON} \rightarrow$ OFF 1 ms or less (100 μ s or less: Y6 and Y7)
Surge absorber	Zener diode
Operating mode indicator	LED

Notes:

1. Life characteristics of built-in relay (PA relay)

2. The maximum load current is kept within the following ranges when the ambient temperature is high.

3. Make the current for one common no more than the following values.

8 points/common circuit: $3 \mathrm{~A} /$ common
16 points/common circuit: $5 \mathrm{~A} /$ common

2-2. Parts Terminology

1. Control Boards

1) C20R and C20RC types

■ C20R type

- C20RC type

(2) Expansion power supply connector:Input terminal:

Output terminal:

Programming tool port (RS232C):
Baud rate selector (9600/19200):

Expansion connector:
(8) Potentiometers (V0 and V1):
(9) User memory socket (EPROM/EEPROM):
(10) Memory selector
(EPROM/EEPROM):
(11) Mode selector
(RUN/REMOTE/PROG.):

Operation monitor LEDs (RUN/PROG./ERR./ALARM):
(3) Backup battery holder:
(4) Input indicators (LED):
5) Output indicators (LED):
(16) RS232C port (C20RC type only):

Power supply connector for 24 V DC
Supplies the power (24 V DC) to the expansion board using expansion power supply cable.
Connect the input field devices (e.g., limit switch).
C20R and C20RC types: 12 input points
Use a solderless terminal for wiring.
Connect the output field devices (e.g., solenoid).
C20R and C20RC types: 8 output points
Use a solderless terminal for wiring.
Use this port for the programming tools (e.g., FP Programmer II or personal computer).
Selects the baud rate for communication with a programming tool.
Set the selector according to the connected programming tools.

- FP Programmer (AFP1112): 19,200 bps
- FP Programmer (AFP1112A): 19,200 bps or 9,600 bps
- FP Programmer II (AFP1114): 19,200 bps or 9,600 bps
- Personal computer: 9,600 bps

Connects the expansion boards.
Set with a screwdriver, the potentiometers allow manually adjusting the controller. This feature makes input an analog value ranging from K0 to K255. Each set value is stored respectively in manual dial-set registers (V0: DT9040 and V1: DT9041).
Use this socket to install the memory (EPROM) and master memory (EEPROM).
Select the used memory type.
EPROM: memory
EEPROM: master memory
RUN mode: The control board executes programs.
REMOTE mode: The RUN or PROG. mode can be changed using programming tools.
PROG. mode: Used for editing program.
RUN LED ON: Turns on when program is executed. Flashes: Turns on when forced ON/OFF operation is executed in RUN mode.
PROG. LED ON: Turns on when the control board halts program execution.
ERR. LED ON: Turns on when a self-diagnostic error occurs.
ALARM LED ON: Turns on when an abnormality is detected or watchdog timer error occurs.
Holder for the backup battery. Refer to page 125, " $6-4$. Maintenance", for details about backup battery replacment.
Indicates the input ON/OFF states.

$\left[\begin{array}{l}\text { X0, X4, and X8 LEDs: green } \\ \text { Other LEDs: red }\end{array}\right]$
Indicates the output ON/OFF states.

\circ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Y0	Y1 Y2 Y3	Y4	Y5 Y6	Y7		

Other LEDs: red\end{array}\right]\)

Use this port to connect peripheral devices with RS232C port (e.g., I.O.P. and bar-code reader).

2-2. Parts Terminology

2) C20T and C20TC types

■ C20T type

■ C20TC type

(9) Mode selector (RUN/REMOTE/PROG.)
(8) Potentiometers (V0 and V1)

(1) Power supply connector:
(2) Expansion power supply connector:
(3) I

Input connector (20-pin):
(4) Output connector (16-pin):

Power supply connector for 24 V DC
Supplies the power (24 V DC) to the expansion board using expansion power supply cable.
Connects the input field devices (e.g., limit switch).
MIL connector is used. Use a terminal, wire-press socket and flat cable connector for wiring.
C20T and C20TC types: 12 input points
Connects the output field devices (e.g., solenoid).
MIL connector is used. Use a terminal, wire-press socket and flat cable connector for wiring.
C20T and C20TC types: 8 output points
(5) Programming tool port (RS232C): Use this port for the programming tools (e.g., FP Programmer II or personal computer).
(6) Baud rate selector (9600/19200):

Selects the baud rate for communication with a programming tool. Set the selector according to the connected programming tools.

- FP Programmer (AFP1112): 19,200 bps
- FP Programmer (AFP1112A): 19,200 bps or 9,600 bps
- FP Programmer II (AFP1114): 19,200 bps or 9,600 bps
- Personal computer: 9,600 bps
(7) Expansion connector:
(8) Potentiometers (V0 and V1):

Mode selector
 (RUN/REMOTE/PROG.):

Operation monitor LEDs (RUN/PROG./ERR./ALARM):

(11) User memory socket

(EPROM/EEPROM):
(12) Memory selector
(EPROM/EEPROM):
(13) Backup battery holder:
(14) Input indicators (LED):
(15) Output indicators (LED):

Connects the expansion boards.
Set with a screwdriver, the potentiometers allow manually adjusting the controller. This feature makes input an analog value ranging from K0 to
K255. Each set value is stored respectively in manual dial-set registers (V0: DT9040 and V1: DT9041).
RUN mode: The control board executes programs.
REMOTE mode: The RUN or PROG. mode can be changed using programming tools.
PROG. mode: Used for editing program.
RUN LED ON: Turns on when program is executed.
Flashes: Turns on when forced ON/OFF operation is executed in RUN mode.
PROG. LED ON: Turns on when the control board halts program execution.
ERR. LED ON: Turns on when a self-diagnostic error occurs.
ALARM LED ON: Turns on when an abnormality is detected or watchdog timer error occurs.
Use this socket to install the memory (EPROM) and master memory (EEPROM).
Select the used memory type.
EPROM: memory
EEPROM: master memory
Holder for the backup battery. Refer to page 125, "6-4. Maintenance", for details about backup battery replacement.
Indicates the input ON/OFF states.

$\bigcirc \bigcirc \bigcirc$ X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 XAXB	$\begin{aligned} & \text { X0, X4, and X8 LEDs: green } \\ & \text { Other LEDs: red } \end{aligned}$

Indicates the output ON/OFF states.

○○○○○○○○	[Y0 and Y4 LEDs: green
Y0Y1 Y2 Y 3 Y4 Y5 Y6 Y7	Other LEDs: red

RS232C port (C20TC type only): Use this port to connect peripheral devices with RS232C port (e.g., I.O.P. and bar-code reader).

2-2. Parts Terminology

3) C32T and C32TC types

■ C32T type

■ C32TC type


```
Power supply connector:
Expansion power supply connector:
Input connector (30-pin):
(4) Output connector (34-pin):
Programming tool port (RS232C):
Baud rate selector (9600/19200):
```

(7) Expansion connector:
(8) Potentiometers (V0 and V1):
(9) User memory socket
(EPROM/EEPROM):
(10) Memory selector
(EPROM/EEPROM):
(11) Mode selector (RUN/REMOTE/PROG.):

Operation monitor LEDs (RUN/PROG./ERR./ALARM):

Backup battery holder:

Input indicators (LED):

Output indicators (LED):
(6) RS232C port (C32TC type only):

Power supply connector for 24 V DC
Supplies the power (24 V DC) to the expansion board using expansion power supply cable.
Connects the input field devices (e.g., limit switch).
MIL connector is used. Use a wire-press socket and flat cable connector for wiring.
C32T and C32TC types: 16 input points
Connects the output field devices (e.g., solenoid).
MIL connector is used. Use a wire-press socket and flat cable connector for wiring.
C32T and C32TC types: 16 output points
Use this port for the programming tools (e.g., FP Programmer II or personal computer).
This interface is for RS232C transmission.
Selects the baud rate for communication with a programming tool.
Set the selector according to the connected programming tools.

- FP Programmer (AFP1112): 19,200 bps
- FP Programmer (AFP1112A): 19,200 bps or 9,600 bps
- FP Programmer II (AFP1114): 19,200 bps or 9,600 bps
- Personal computer: 9,600 bps

Connects the expansion boards.
Set with a screwdriver, the potentiometers allow manually adjusting the controller. This feature makes input an analog value ranging from K 0 to K255. Each set value is stored respectively in manual dial-set registers (V0: DT9040 and V1: DT9041).
Use this socket to install the memory (EPROM) and master memory (EEPROM).
Select the used memory type.
EPROM: memory
EEPROM: master memory
RUN mode: The control board executes programs.
REMOTE mode: The RUN or PROG. mode can be changed using programming tools.
PROG. mode: Used for editing program.
RUN LED ON: Turns on when program is executed.
Flashes: Turns on when forced ON/OFF operation is executed in RUN mode.
PROG. LED ON: Turns on when the control board halts program execution.
ERR. LED ON: Turns on when a self-diagnostic error occurs.
ALARM LED ON: Turns on when an abnormality is detected or watchdog timer error occurs.
Holder for the backup battery. Refer to page 125, "6-4. Maintenance", for details about backup battery replacement.
Indicates the input ON/OFF states.

X0 X2 X4 X6 X8 XA XC XE	
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	X0, X4, X8, and XC LEDs: green
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	Other LEDs: red
X1 X3 X5 X7 X9 XB XD XF	Other LEDs. red

Indicates the output ON/OFF states.

$$
\begin{aligned}
& \circ \circ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \circ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
& \text { YO Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 YAYBYCYDYEYF }
\end{aligned} \quad\left[\begin{array}{l}
\text { Y0, Y4, Y8, and YC LEDs: green } \\
\text { Other LEDs: red }
\end{array}\right]
$$

Use this port to connect peripheral devices with RS232C port (e.g., I.O.P. and bar-code reader).

2. Expansion Boards

1) E20R type

Expansion power supply connector:

Input terminal (15-pin):
(3) Output terminal (12-pin):
(4) Output indicators (LED):

Expansion connector:

I/O address setting switch:

Input indicators (LED):

Connected to the control board, the power is supplied to the expansion board through this.

Connects the input field devices (e.g., limit switch). This terminal block is removable.

Connects the output field devices (e.g., solenoid). This terminal block is removable.

Indicates the output ON/OFF states.

Connects the control board with internal circuit.

The I/O addresses for the expansion boards are set using this switch. Refer to page 39, "3-2. I/O Allocation of Expansion Boards", for details.

Indicates the input ON/OFF states.

2) M1T-E type

Expansion power supply connector:

Input connector (40-pin):
(3) Output connector (34-pin):
(4) Output indicators (LED):
(5) Expansion connector:
(6) $/ \mathbf{O}$ address setting switches:
(7) Input indicators (LED):

Connected to the control board, the power is supplied to the expansion board through this.

Connects the input field devices (e.g., limit switch). MIL connector is used. Use a wire-press socket and flat cable connector for wiring.

Connects the output field devices (e.g., solenoid). MIL connector is used. Use a wire-press socket and flat cable connector for wiring.

Indicates the output ON/OFF states.

Connects the control board with the internal circuit.

The I/O addresses for the expansion boards are set using this switch. Refer to page 39, "3-2. I/O Allocation of Expansion Boards", for details.

Indicates the input ON/OFF states.

3) M1T-EI type

Expansion power supply connector:

(2)(3) Input connector A (40-pin) and B (20-pin):
(7) Indicators for input connector A (LED): Indicates the input ON/OFF states.

Connected to the control board, the power is supplied to the expansion board through this.

Connects the input field devices (e.g., limit switch).
MIL connector is used. Use a wire-press socket and flat cable connector for wiring.

Indicates the input ON/OFF states.

Connects the control board with the internal circuit.

The input addresses for the expansion boards are set using these switches.

SW1: Input address setting switch for input connector A
SW2: Input address setting switch for input connector B Refer to page 39, "3-2. I/O Allocation of Expansion Boards", for details.

4) M1T-EO type

Expansion power supply connector:

(2)(3) Output connector A (34-pin) and B (34-pin):

Connected to the control board, the power is supplied to the expansion board through this.

Connects the output field devices (e.g., solenoid).
MIL connector is used. Use a wire-press socket and flat cable connector for wiring.

Indicates the output ON/OFF states.

Connects the control board with the internal circuit.

The output addresses for the expansion boards are set using these switches.

SW1: Output address setting switch for output connector A
SW2: Output address setting switch for output connector B Refer to page 39, "3-2. I/O Allocation of Expansion Boards", for details.

Indicates the output ON/OFF states.

3. Board and Case Structure

1) Board type

2) Case type

Note:

- The connector board is already connected on C20RC, C20TC and C32TC types when shipped.

2-3. Dimensions

1. Board Type

1) Control boards

C20R and C20RC types
e.g.) C20R type

■ C32T and C32TC types
e.g.) C32T type
2) Expansion boards

■ M1T-E20R type
IM1T-E20R type

C20T and C20TC types

e.g.) C20TC type

■ M1T-E, M1T-EI, and M1T-EO types
e.g.) M1T-El type

(unit: mm/in.)

3) Building dimensions

Control board C20R, C20T, C20TC, and C32T types

Control board C20RC and C32TC types

Board	$\mathbf{H}(\mathbf{m m} / \mathrm{in})$.
1 control board	$45.5 / 1.791$
1 control board and 1 expansion board	$67.1 / 2.642$
1 control board and	$88.7 / 3.492$
2 expansion boards	
1 control board and 3 expansion boards	$110.3 / 4.343$
1 control board and 4 expansion boards	$131.9 / 5.193$

4) Mounting hole dimensions

(unit: mm/in.)

2. Case Type

1) Case dimensions for control, expansion, intelligent and link boards

2) Building dimensions

Control board C20R, C20T, and C32T types

Board	$\mathbf{H}(\mathbf{m m} / \mathrm{in})$.
1 control board	$44.2 / 1.740$
1 control board and	$63.8 / 2.512$
1 expansion board	

Control board C20RC, C20TC, and C32TC types

Board	$\mathbf{H}(\mathbf{m m} / \mathbf{i n})$.
1 control board	$44.2 / 1.740$
1 control board and	$63.8 / 2.512$
1 expansion board	

3) Mounting hole dimensions

I/O ALLOCATION

3-1. I/O Allocation of Control Boards 38
3-2. I/O Allocation of Expansion Boards 39
3-3. I/O Allocation Examples 40

3-1. I/O Allocation of Control Boards

- The I/O addresses for the control boards are fixed as follows.

Board type	I/O point	I/O allocation
C20R and C20RC	12 inputs	X 0 to XB
	8 outputs	Y 0 to Y7
C20T and C20TC	12 inputs	X 0 to XB
	8 outputs	$\mathrm{Y0}$ to Y7
C32T and C32TC	16 inputs	X 0 to XF
	16 outputs	Y 0 to YF

Note:

- The lowest digit for these relay addresses is expressed in hexadecimals and the second and higher digits are expressed in decimals as shown below.

3-2. I/O Allocation of Expansion Boards

- The I/O addresses for the expansion boards are set by the I/O address setting switches. Be sure to allocate I/O addresses of the expansion boards before installation, referring to following.

E20R type

■ M1T-El type

■ M1T-E type

■ M1T-EO type

Notes:

- When connecting expansion boards to the control board, be sure not to overlap I/O addresses.
- When connecting an input or output board to a control board, I/O address settings for blocks A and B should be performed separately using SW1 and SW2. Be sure to configure I/O address setting switches SW1 and SW2 with different settings in order to prevent I/O address overlap.

3-3. I/O Allocation Examples

- Example 1

- Example 2

INSTALLATION AND WIRING

4-1. Stacking the Boards 42

1. Board Type 42
2. Case Type 43
4-2. Installation 44
3. Panel Mount 44
4. DIN Rail Mount 44
5. Cautions 45
4-3. Wiring 46
6. Power Supply Wiring 46
7. Input and Output Wiring (Control and Expansion Boards) 48
8. Wiring Diagram and Pin Layouts 63

4-1. Stacking the Boards

1. Board Type

- The procedure for assembling boards is as follows.

Example: 1 control board and 4 expansion boards

Spacers

Shape	Length	Description	Part number
\square	20 mm	4 spacers attached to a control board	AFB88021
\square	20 mm	4 spacers attached to an expansion board	AFB8802

\square Procedure

1. Assemble each expansion board using the AFB8802 spacers.
2. When adding a control board to the expansion board, mount using the AFB88021 spacers and 8 mm screws. After attaching the connector board to the control board, tighten with the 20 mm screws. Note that the C type control board is shipped with the connector board already attached.
3. Insert the backup battery in the backup battery holder as shown in the drawing.

Notes:

- The lengths of the spacers for the board type and the case type are different, so be sure not to get them confused.
- Do not touch the boards directly with your hands when handling. When it is necessary to touch the board, first touch a grounded metal object to discharge any static electricity. Do not touch any electronic parts or connectors directly.

2. Case Type

- The procedure for assembling cases is as follows.

Example: 1 control board and 4 expansion boards

Spacers

Shape	Length	Description	Part number
$\square \square$	18 mm	4 spacers attached to an expansion and control boards	AFB8803
\square	8 mm	4 spacers attached to a mounting plate	AFB88032

\square Procedure

1. Using the four screws of the mounting plate, attach the mounting plate with AFB88032 spacers.
2. Assemble the expansion board using the skirt case and AFB8803 spacers.
3. Assemble the remaining expansion boards using the case for expansion board and AFB8803 spacers.
4. After connecting the connector board to the control board, attach the control board using the 20 mm and 8 mm screws.

Note that the C type control board is shipped with the connector board already attached.
5. Insert the backup battery in the backup battery holder as shown in the drawing.

6 . Finally, mount the case for control board.

Notes:

- The lengths of the spacers for the board type and the case type are different, so be sure not to get them confused.
- Do not touch the boards directly with your hands when handling. When it is necessary to touch the board, first touch a grounded metal object to discharge any static electricity. Do not touch any electronic parts or connectors directly.

4-2. Installation

1. Panel Mount

1) Board type mounting method (without mounting plate)

- Mount the stacked boards on the panel with four M3 size screws as follows.

Mounting hole dimension

2) Case type mounting method (using mounting plate)

- Mount the mounting plate on the panel with four M4 size screws as follows.

2. DIN Rail Mount

Attachment

- Put the claw of the FP-M mounting plate on the DIN rail and attach the FP-M on the rail.

Mounting hole dimension

Detachment

- To detach the FP-M from the DIN rail, pull the lever down with a slotted screwdriver.

3. Cautions

- Install and remove the boards when all power is turned OFF.
- Do not drop pieces of wire or other objects on the board when wiring.
- Do not use the board where it will be exposed to the following:
- Ambient temperatures of $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$.
- Ambient humidity of 35% to 85% RH.
- Sudden temperature changes that cause condensation.
- Inflammable or corrosive gas.
- Excessive airborne dust or metal particles.
- Benzine, paint thinner, alcohol or other organic solvents or strong alkaline solutions such as ammonia or caustic soda.
- Excessive vibration or shock.
- Influence from power transmission lines, high voltage equipment, power cables, power equipment, radio transmitters, or any other equipment that can generate high switching surges.
- Water in any form including spray or mist.
- Direct sunlight.
- Do not install the board above devices which generate heat such as heaters, transformers or large scale resistors.
- Install as shown below, for heat radiating boards.

- Do not install the board as shown below.

- When mounting a wiring duct, maintain a clearance between the board and duct as shown below. (Illustration: FP-M control board)

[^2]
4-3. Wiring

1. Power Supply Wiring

1) Wiring for power supply

- Power is supplied to the control board via the power cable [AWG\#28 (UL1007)].
- Power is supplied to the expansion board via the expansion connector. For input/output field devices, power is supplied to the expansion board via the expansion power supply connector.

Power cable

Notes:

- Twist the brown and red, and yellow and green power cables to stop incoming noise.
- Depending on the expansion boards, cut any excess expansion power supply cable.
- Ground is common with the yellow wire (0 V).

2) Power supply lines

- The power supply lines for the FP-M, I/O devices and motorized devices should be isolated as shown on the right.
- Excessive noise and line voltage fluctuations can result in FP-M misoperation or system shutdown. To prevent accidents caused by noise and line voltage fluctuations, be sure to employ countermeasures (such as use of an insulated DC power supply, isolation of controller and I/O power supply, etc.) when wiring the power supply lines.

Example:

■ Operating voltage range

Item	Operating voltage range
Controller's power supply	21.6 to 26.4 V DC (all control boards)
I/O power supply	20.4 to 26.4 V DC (C2OT, C20TC, C32T and C32TC)
	22.8 to 26.4 V DC (C20R and C20RC)

3) Grounding

- The FP-M has sufficient noise resistance under low noise level conditions. However, ground the FP-M for safety.
- When grounding, an earth-ground resistance of 100Ω or less is recommended to limit the effect of noise due to electromagnetic interference.
- Ground each board by grounding the mounting plate or spacers.
- Do not use a grounding wire with $2 \mathrm{~mm}^{2}$ or larger conducts, that is shared with other devices.

Correct

Incorrect

4) Momentary power drop

- The FP-M is not influenced by momentary power drops (less than 10 ms).

5) Safety

- In certain applications, malfunction may occur for the following reasons.

An operation time lag when a momentary power drop occurs.
Abnormality in the FP-M, power supply circuit, or other devices.

- In order to prevent malfunction from resulting in system shutdown, the following special attention is required.

Start up sequence:
The FP-M should be operated after all of the outside devices are energized. To keep this sequence, the following measures are recommended.
Set the mode selector from PROG. to RUN after power is supplied to all of the outside devices.
Program the FP-M so that it disregards the inputs and outputs until the outside devices are energized.

Emergency stop circuit:

Add an emergency stop circuit to controlled devices in order to prevent a system shutdown or an irreparable accident when malfunction occurs.

Interlock circuit:

When two motions that are opposed to each other are controlled, add an interlock circuit between the programmable controller's outputs and the control device.
e.g.:

When a motor clockwise/counter-clockwise operation is controlled, provide an interlock circuit that prevents clockwise and counter-clockwise signals from inputting into the motor at the same time.

2. Input and Output Wiring (Control and Expansion Boards)

1) Wiring for I/O power supply (C20R control board and E20R expansion board)
e.g.) C20R wiring diagram

- I/O power supply

Input side:

- Use for driving the internal circuit.
- An input power supply is not required for the E20R expansion board if COM (\pm) is connected to 24 V or 0 V , because it is supplied by the internal circuit. Also, when $\mathrm{COM}(\pm)$ and the 24 V terminal are connected, they become a source input. When $\operatorname{COM}(\pm)$ terminal and 0 V terminal are connected, they become a sink input.
Output side:
- Use for driving output field devices.
- Current capacity range of I/O power supply

Ic + Ie $\leqq 1$ A
Ic: Current capacity for output of control board
Internal drive current $7.5 \mathrm{~mA} \times$ number of ON points
Ie: Current capacity for expansion board

Notes:

- I/O current capacity for E20R expansion board:

Ia: Current capacity for input of expansion board
Internal drive current $5 \mathrm{~mA} \times$ number of ON points + current for field devices
(e.g., photoelectric sensor)

Ib: Current capacity for output of expansion board Internal drive current $7.5 \mathrm{~mA} \times$ number of ON points

- Consumption current of the intelligent/link board is as follows:
- Analog I/O board: Max. 250 mA
- FP-M transmitter master board: Max. 70 mA
- FP-M I/O link board: Max. 50 mA

2) Wiring description for I/O power supply (C20R control board and E20R expansion board)

■ Input side

- Supply a 24 V DC external power supply to the input circuit.

C20R control board

- Since the E20R is supplied input power through the internal circuit, the input voltage is not needed.

Note:

- Supply the I/O current within the limitation.

\square Output side

- The load power supply is supplied to each common terminal.

C20R control board

- Load current

Board type	Current capacity (resistive load)
C20R, E20R	2 A 250 V AC/point, 2 A 30 V DC/point, 2 A/common

3) Wiring for I/O power supply (C20T, C32T, M1T-E, M1T-EI, and M1T-EO series)

e.g.) C20T wiring diagram

- I/O power supply

Input side:

- Use for driving the internal circuit.
- An external power supply is not required for the input connector.
- The 24 V DC terminal of the input connector can be used as the power supply for input field devices (e.g., photoelectric sensors).
- The 5 V terminal on the input connector can supply 5 to 24 V DC.

Output side:

- Use for driving output field devices.
- When the load current is small (e.g., LED, etc.), drive by using the 24 V DC terminal of the output connector.

Note:

- The 24 V DC terminal or 0 V terminal of the I/O connector are connected internally.
- Current capacity range of I/O power supply
$\mathrm{Id}+\mathrm{Ic}+\mathrm{Ie} \leqq 1 \mathrm{~A}$

$$
\begin{aligned}
& \text { Ic } \leqq 0.5 \mathrm{~A} \\
& \text { If } \leqq 0.5 \mathrm{~A}
\end{aligned}
$$

Id: Current capacity for input of control board
Internal drive current $5 \mathrm{~mA} \times$ number of ON points + current for field devices (e.g., photoelectric sensor)
Ic: Current capacity for output of control board
Internal drive current $3 \mathrm{~mA} \times$ number of ON points + current for field devices
Ie: Current capacity for expansion board
If: Current capacity for output of expansion I/O board

Note:

- Consumption current of the intelligent/link board is as follows:
- Analog I/O board: Max. 250 mA
- FP-M transmitter master board: Max. 70 mA
- FP-M I/O link board:

Max. 50 mA

4) Wiring description for I/O power supply (C20T, C32T, M1T-E, M1T-EI, and M1T-EO series)

■ Input side

- Since C20T is supplied input power through the internal circuit, the input voltage is not needed.
- Do not exceed the I/O current capacity given on the previous page.

■ Output side

- If the load current is 0.8 A or more, supply external power.
- If the load is 0.8 A or less, such as for LEDs, you can use the built-in DC power supply (24 V).
- Do not exceed the I/O current capacity given on the previous page.

- Load current

Board type	Current capacity
C20T, C32T, M1T-E, M1T-EO	$0.8 \mathrm{~A} /$ point, $5 \mathrm{~A} /$ common

Input wiring examples
WIRING THE PHOTOELECTRIC SENSORS

- Due to the differences in photoelectric sensor output schemes, connect as shown below:
Photoelectric sensor

Wiring a two-wire type sensor

- If the input of the FP-M is not turned OFF because of leakage current from the sensor, the use of a bleeder resistor is recommended, as shown below.

The OFF voltage of the FP-M input is 2.4 V , therefore, select an R value so that the voltage between the COM terminal and the input terminal will be less than 2.4 V .

- Control board (input impedance is $4.8 \mathrm{k} \Omega$)

The bleeder resistor R is: $R \leqq \frac{11.52}{4.8 \mathrm{I}-2.4}$

- Expansion board (input impedance is $4.4 \mathrm{k} \Omega$)

The bleeder resistor R is: $\mathrm{R} \leqq \frac{10.56}{4.4 \mathrm{I}-2.4}$

- The wattage W of the resistor is:

$$
W=\frac{(\text { Power supply voltage })^{2}}{R}
$$

In the actual selection, use a value that is 3 to 5 times the value of W.

■ Wiring a LED-equipped reed switch

- When a LED is connected serially to an input contact such as the LED-equipped reed switch, make the voltage applied to the FP-M input circuit greater than 20 V . In particular, take care when connecting a number of switches in serial.

■ Wiring a LED-equipped limit switch

- If the input of the FP-M is not turned OFF or if the LED of the limit switch is kept ON because of the leakage current, the use of a bleeder resistor is recommended, as shown below.

r : Internal resistor of limit switch $(k \Omega)$
R : Bleeder resistor ($k \Omega$)
The OFF voltage of the FP-M input is 2.4 V , therefore when the power supply voltage is 24 V , select R so that the current will be greater than $\mathrm{I}=\frac{24-2.4}{r}$
- Control board (input impedance is $4.8 \mathrm{k} \Omega$)

The bleeder resistor R is: $R \leqq \frac{11.52}{4.8 \mathrm{I}-2.4}$

- Expansion board (input impedance is $4.4 \mathrm{k} \Omega$)

The bleeder resistor R is: $R \leqq \frac{10.56}{4.4 \mathrm{I}-2.4}$

- The wattage W of the resistor is:

$$
W=\frac{(\text { Power supply voltage })^{2}}{R}
$$

Select a value that is 3 to 5 times the value of W.

Connecting an input device with a different voltage (ex.: a 5 V sensor, etc.)

- When connecting a device with a power supply voltage different from the FP-M input voltage, such as a 5 V sensor, connect in common to the built-in DC power output terminal as shown below.

Note:

- Some sensors do not allow for this type of use, therefore check the specifications of the sensor before wiring.

■ Output wiring examples

- Connect a protective circuit such as the one shown below when switching inductive loads.

When switching DC type inductive loads with a relay output type, be sure to connect a diode across the ends of the load.

When using an AC inductive load

When using a DC inductive load

When using a capacitive load

- Mounting the protective device

In the actual circuit, it is necessary to locate the protective device (diode, resistor, capacitor, varister, etc.) in the immediate vicinity of the load or contact. If located too far away, the effectiveness of the protective device may diminish. As a guide, the distance should be within 50 cm (19.685 in.).

- Type of load and inrush current The type of load and its inrush current characteristics, together with the switching frequency are important factors which cause contact welding. Particularly for loads with inrush currents, measure the steady state current and inrush current and use a relay or magnet switch which provides an ample margin of safety. The table on the right shows the relationship between typical loads and their inrush currents.

Type of load	Inrush current
Resistive load	Steady state current
Solenoid load	10 to 20 times the steady state current
Motor load	5 to 10 times the steady state current
Incandescent lamp load	10 to 15 times the steady state current
Mercury lamp load	Approx. 3 times the steady state current
Sodium vapor lamp load	1 to 3 times the steady state current
Capacitive load	20 to 40 times the steady state current
Transformer load	5 to 15 times the steady state current

5) Wiring for I/O connectors (MIL connector)

- There are the following 4 methods for wiring to the I/O connectors (MIL connectors) on each board.

- The I/O connector on the board and the connector on the CT-2 connector terminal can be connected using a cable. Input wiring and transistor output wiring is easy.
- The terminals are connected using a cable. This eliminates the work required for wiring.
- Control of up to 2 A is possible using this terminal, and maintenance and inspection such as relay replacements are easy.

Wire-press socket

- A twisted wire (0.2 to 0.3 mm -squared) can be connected directly.
- The wiring can be done easily using wires with the covers on, and a pressure welder.
- Wiring mistakes can also be corrected easily.

Flat cable connector

- Wiring can be done easily using a flat cable with a connector on only one end.

■ CT-2 connector terminal

- Select a CT-2 connector terminal and a cable for the CT-2 connector terminal with the correct number of pins for the connector on each board.
- Use a terminal block for M3 size screws for the connector on the CT-2 connector terminal.

Connector example 1: C20T control board

- The I/O connector for the C20T control board has 20 input pins and 16 output pins.
Use:
- CT-2 connector terminals: CT2-20 (for 16 pins and 20 pins)
- Cable for CT-2 connector terminal: 16 and 20 pins

Connector example 2: C32T control board

- The I/O connector for the C32T control board has 30 input pins and 34 output pins.
Use:
- CT-2 connector terminals: CT2-30 (for 30 pins) and CT2-34 (for 34 pins)
- Cable for CT-2 connector terminal: 30 and 34 pins

Pin layouts of the CT-2 connector terminal

- When connecting the CT-2 connector terminal to each board, the terminal marked " $\mathbf{\nabla}$ " on the I/O connector for each board is connected to the A1 terminal on the CT-2 connector terminal.

Board type	Pin layout of CT-2 connector terminal	
C20T, C20TC control board	For output connector (20-pin) ov $\operatorname{ov}\|\mathrm{Yr} 7 \times 5\| Y 3\|\mathrm{Yy}\| 24 \mathrm{~V}\|24 \mathrm{~V}\| \mathrm{Nc}\|\mathrm{NC}\|$	
C32T, C32TC control board		
M1T-E expansion I/O board		For input connector (40-pin)
M1T-EI expansion input board	For input connector B (20-pin) 	For input connector A (40-pin) ov
M1T-EO expansion output board	For output connector B (34-pin) 	For output connector A (34-pin)

Product types

Board type	Number of pins	CT-2 connector terminal	Cable for CT-2 connector terminal
C20T, C20TC control board	Output: 16	CT2-20	AYT51163 (1 m), AYT51165 (2 m)
	Input: 20		AYT51203 (1 m), AYT51205 (2 m)
C32T, C32TC control board	Output: 34	CT2-34	AYT51343 (1 m), AYT51345 (2 m)
	Input : 30	CT2-30	AYT51303 (1 m), AYT51305 (2 m)
M1T-E expansion I/O board	Output: 34	CT2-34	AYT51343 (1 m), AYT51345 (2 m)
	Input : 40	CT2-40	AYT51403 (1 m), AYT51405 (2 m)
M1T-El expansion input board	Connector B: 20	CT2-20	AYT51203 (1 m), AYT51205 (2 m)
	Connector A: 40	CT2-40	AYT51403 (1 m), AYT51405 (2 m)
M1T-EO expansion output board	Connector B: 34	CT2-34	AYT51343 (1 m), AYT51345 (2 m)
	Connector A: 34		AYT51343 (1 m), AYT51345 (2 m)

■ RT-2 relay terminal

- Number of connectable RT-2 relay terminal output type
- C20T, C20TC, C32T and C32TC control board: 1 terminal
- M1T-E expansion board: 1 terminal
- M1T-EO expansion board: 2 terminals
- Use a terminal block for M3 size screws for the RT-2 relay terminal connector.
- Apply a 24 V DC power supply to the 24 V DC $(+)$ and (-) terminals to drive the relays on the RT-2 relay terminal. Use the same power supply for the board I/O and for the RT-2 relay terminal.
- The terminals on the RT-2 relay terminal and the board I/O allocation are given in the table below:

Terminal No.	1/O allocation
0+	Y0
1+	Y1
2+	Y2
3+	Y3
COM-	Common for Y0 to Y3
4+	Y4
5+	Y5
6+	Y6
7+	Y7
COM-	Common for Y4 to Y7
8+	Y8
9+	Y9
A+	YA
B+	YB
COM-	Common for Y8 to YB
C+	YC
D+	YD
E+	YE
F+	YF
COM-	Common for YC to YF

Connector example:

Product types

Board type	Number of pins	RT-2 relay terminal	Cable for RT-2 relay terminal
C20T, C20TC control board	Output: 16	-RT2S-OD16-24V (DIN rail mounting type) - RT2S-M-OD16-24V (Direct mounting type)	AY15723 (1 m), AY15725 (2 m)
C32T, C32TC control board	Output: 34		AY25523 (1 m), AY25525 (2 m)
M1T-E expansion I/O board	Output: 34		
M1T-EO expansion output board	Connector B: 34 Connector A: 34		

Notes:

- The I/O connector for the C20T control board has 8 output pins. Use 8 pins ($0+$ to $7+$ terminals) for the RT-2 relay terminal.
- The PC relay terminal of the 8 output pins (part No. RT1S-OD08-24V-S) can also be used.

■ Wiring using wire-press socket for loose wires

- The following describes how to assemble the wire-press socket for loose wires.

Procedure

1. Insert the removed contact into a pressure welder.
2. Firmly insert the covered loose wire to the end and lightly squeeze the welder.

3. Insert the wires with the pressure-connected contacts into the housing. After inserting all the wires, mount the cover and finish the socket.

Note:

- If there is a wiring mistake or the cable is incorrectly pressureconnected, the contact puller pin on the welder can be used to remove the contact.

Hold the housing against the welder so that the contact puller pin touches here.

Applicable cables

Number	Cross section area	External figure	Rated current
AWG \#22	$0.3 \mathrm{~mm}^{2}$	1.1 to 1.5 dia.	3 A
AWG \#24	$0.2 \mathrm{~mm}^{2}$		

Note:

- AWG \#22: 12 wires per 0.18 should be used.

Product types

Board type	Number of pins	Housing	Cover	Contact (5 in line)
C20T, C20TC control board	Output: 16	AXW1164A	AXW61601A	AXW7221 for AWG \#22, 24
	Input: 20	AXW1204A	AXW62001A	
C32T, C32TC control board	Output: 34	AXW1344A	AXW63401A	
	Input: 30	AXW1304A	AXW63001A	
M1T-E expansion I/O board	Output: 34	AXW1344A	AXW63401A	
	Input: 40	AXW1404A	AXW64001A	
M1T-El expansion input board	Connector B: 20	AXW1204A	AXW62001A	
	Connector A: 40	AXW1404A	AXW64001A	
M1T-EO expansion output board	Connector B: 34	AXW1344A	AXW63401A	
	Connector A: 34			

Stapler type pressure welder for loose wires: AXY52000

Wiring using flat cable connector

- The following shows the wiring for a flat cable connector.

FP-M control board

- Connect "No. 1" on the flat cable to the terminal marked " $\mathbf{\nabla}$ " on the I/O connector for each board.

Applicable flat cable

Number	Pitch	Rated current
AWG \#28 stranded wire (7 leads of 0.127 dia.)	1.27 mm	1 A

Product types

Board type	Number of pins	Flat cable connector	Connector
C20T, C20TC control board	Output: 16	APL9531 (1 m), APL9532 (2 m)	AXM116415
	Input: 20	APL9541 (1 m), APL9542 (2 m)	AXM120415
C32T, C32TC control board	Output: 34	AFB8531 (1 m), AFB8532 (2 m)	AXM134415
	Input: 30	AFB8521 (1 m), AFB8522 (2 m)	AXM130415
M1T-E expansion I/O board	Output: 34	AFB8531 (1 m), AFB8532 (2 m)	AXM134415
	Input: 40	AFB8541 (1 m), AFB8542 (2 m)	AXM140415
M1T-EI expansion input board	Connector B: 20	APL9541 (1 m), APL9542 (2 m)	AXM120415
	Connector A: 40	AFB8541 (1 m), AFB8542 (2 m)	AXM140415
M1T-EO expansion output board	Connector B: 34	AFB8531 (1 m), AFB8532 (2 m)	AXM134415
	Connector A: 34		

6) Wiring for I/O terminals

- The following shows how to wire the I/O terminals for each board.

Wiring not using solderless terminals

Procedure:

- Remove 7 mm of the cover from the applicable cable and insert it directly into the I/O terminal. Mount with a

Applicable cables: AWG \#26 to \#18 ($0.128 \mathrm{~mm}^{2}$ to $1.81 \mathrm{~mm}^{2}$)

Note:

- The wiring may become disconnected due to vibration, so do not use soldered cables.

Wiring using solderless terminals

Procedure:

1. Remove 7 to 8 mm of the cover from the applicable cable and insert into the solderless terminal.

(unit: mm/in.)
2. Insert the cable with the solderless terminal into the I/O terminal and tighten using a screwdriver. The torque should be less than $0.4 \mathrm{~N}-\mathrm{m}(4 \mathrm{kgf}-\mathrm{cm})$.

Applicable cables: AWG \#28 to \#16 ($0.08 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$) Product type
Solderless terminals (100 pcs): AFC8805

(unit: mm/in.)

Notes:

- When connecting 2 wires to a single terminal, insert as shown in the drawing to the right.
- It is possible to remove the I/O terminals from the expansion boards and intelligent boards to wire.

7) Wiring for programming tool port

- For the case type, when connecting the FP programmer cable with the control board through the case, cut the case in 3 places as shown below.

8) Wiring for RS232C port

- Connect an RS232C cable to the RS232C port on the C20RC, C20TC, and C32TC control boards.

3. Wiring Diagram and Pin Layouts

1) Control boards

C20R and C20RC types

■ Pin layout

- The I/O addresses for the C20R and C20RC control boards are fixed as follows.

■ Internal circuit and wiring example

C20T and C20TC types

■ Pin layout (transistor output type)

- The I/O addresses for the C20T and C20TC control boards are fixed as follows.

■ Internal circuit and wiring example (NPN open collector output type)

■ Internal circuit and wiring example (PNP open collector output type)

C32T and C32TC types

■ Pin layout (transistor output type)

- The I/O addresses for the C32T and C32TC control boards are fixed as follows.

\square Internal circuit and wiring example (NPN open collector output type)

■ Internal circuit and wiring example (PNP open collector output type)

2) Expansion boards

E20R type

■ Pin layout

- The I/O addresses for the E20R type expansion board are set by the I/O address setting switch.

■ Internal circuit and wiring example

M1T-E type

■ Pin layout (transistor output type)

- The I/O addresses for the M1T-E type expansion board are set by the I/O address setting switch.

■ Internal circuit and wiring example (NPN open collector output type)

■ Internal circuit and wiring example (PNP open collector output type)

M1T-El type

■ Pin layout

- The input addresses for the M1T-EI type expansion board are set by the I/O address setting switches.

Switch position		Input address of input connector	
Block B (SW2)	Block A (SW1)	Input connector B	Input connector A

■ Internal circuit and wiring example

M1T-EO type

■ Pin layout (transistor output type)

- The output addresses for the M1T-EO type expansion board are set by the I/O address setting switches.

Switch position		Output address of output connector	
Block B (SW2)	Block A (SW1)	Output connector B	Output connector A

■ Internal circuit and wiring example (NPN open collector output type)

BEFORE PROGRAMMING

5-1. Operating Principles of the Programmable Controller 74

1. Basic Configuration 74
2. Basic Operation 76
5-2. Before Turning the Power ON 78
3. Things to Check Before Turning the Power ON 78
4. Operation Procedure 79
5-3. How to Program the Programmable Controller 80
5. Making a Ladder Diagram 80
6. Relays and Timer/Counter Contacts in the FP-M 81
7. I/O Allocation in the FP-M 83
5-4. Programming with NPST-GR Software 84
8. System Configuration 84
9. Features of NPST-GR Software Ver. 3 85
10. NPST-GR Configuration 86
11. NPST-GR Installation and Configuration 89
12. Exiting NPST-GR 95
13. Basic Key Operation for Programs 96
14. Downloading a Program to the Programmable Controller 97
15. Saving a Program to Disk 98
16. Printing 99
5-5. Programming with FP Programmer II. 100
17. System Configuration 100
18. Downloading a Program to the Programmable Controller 101
5-6. RAM and ROM Operations 103
19. RAM and ROM Operations 103
20. Operation Without Backup Battery Enabled 104
21. Notes on Operation with Memory (ROM Operation) 105
5-7. How to Program ROM 106
22. Memory (ROM) Type 106
23. Install the Memory (ROM) 107
24. How to Program ROM 107

5-1. Operating Principles of the Programmable Controller

1. Basic Configuration

A programmable controller is composed of four basic sections: (1) CPU, (2) memory, (3) input interface, and (4) output interface. An inside look at these sections will help you understand their functions and operation of the programmable controller.

Programming tools

■ Functions of the four sections

CPU (Central Processing Unit)

Controls the operation of the programmable controller including the I/Os according to the program.
(2) Memory

Memory areas where the program and information needed for operation of the programmable controller are stored.

Types of Memory

(2) -a: Memory for operands

The memory area for storing operand data (external input relays, timer/counter set value, and data registers, etc.).
(2) -b: System register

The memory area for storing the system settings of programmable controllers. Information in this area decides the operand characteristics, advanced control function availabilities, and so on. The system registers can be set using an FP Programmer II or personal computer using NPST-GR Software.
(2) -c: Memory for program

The memory area to store the program for execution. Programs are written using an FP Programmer II or personal computer using NPST-GR Software.

(3) Input interface

Interface that receives data from the field devices and transfers it to the memory for operands.
(4) Output interface

Interface that outputs data from the memory for operands to the field devices.

2. Basic Operation

The basic operation of the programmable controller is:

- To read data from all the input field devices
- To execute the program according to the logic programmed
- To turn the output field devices ON or OFF

The process of reading inputs, executing the program, and updating the outputs is cyclicly repeated in the same manner.

(3) Output update stage

After program execution, the information (ON or OFF) in the memory for operands is written to the output interface and turns the output field devices ON or OFF.

Scan time of the programmable controller

- The process of input update, program execution, and output update is referred to as a scan and the process repeated over and over in the same manner is referred to as the cyclic execution method.
- In the cyclic execution method, since the process of input update is performed immediately after the output update, the process of input update and output update is sometimes called \mathbf{I} / \mathbf{O} update for the purpose of simplification.
- In addition to program execution and I/O update, the programmable controller also performs a variety of error checking (self-diagnostic function) and also communicates with the programming tools. These operations are referred to, as a whole, as tool services and are performed after program execution.
- Since the scan time is defined as the time required for one scan, the cyclic operation of a scan (I/O update, program execution, and tool service) can be shown below.

5-2. Before Turning the Power ON

1. Things to Check Before Turning the Power ON

- After wiring, be sure to check these items before turning the power ON.

Check item	Description	Page to see
Board	- Does the board type match the design list ? - Are the mounting screws properly tightened ? - Do the spacer types match the boards ? - Is operating voltage supplied correctly ? - Is the wire size correct?	page 42 and 43
Power Supply	- Does the wiring of connector and terminal match ? - Is the operating voltage of I/O correct ? - Are the expansion power supply cables properly connected ?	page 48 to 62
Wiring	Is the wire size correct ?	

2. Operation Procedure

- After installation and wiring, perform a trial operation according to the following procedure.

- Before turning the power ON, check the items on the previous page.
- After the power is ON, does the PROG. LED turn ON correctly?
- A program can be written using NPST-GR Software or FP Programmer II.
- Check the program using the self-diagnostic function of the programming tool.

Note:

- Using the FP Programmer II, be sure to make the program clear before input.
- Check the output wiring by using the forced output function.
- Check the input wiring by watching the ON/OFF status of the input indicators.
- When the mode selector is switched from PROG. to RUN, does the operating LED turn ON ?
- Check the operation of the program.
- If there is a problem in the operation, check the program using the monitoring function of the programming tool.
- Rewrite the program.
- We recommend that the created program be saved onto a floppy disk or EPROM/EEPROM.

5-3. How to Program the Programmable Controller

1. Making a Ladder Diagram

Originally, programmable controllers were designed as a replacement for relay-controlled systems. Therefore, programs can be easily created with a relay sequence circuit as shown below.

Ladder diagram on screen of NPST-GR Software

Explanation of movement

1) When push-button switch A is pressed, the coil of relay R0 is energized and its contacts turn ON.
2) Since contact (1) of relay R0 supplies power to the coil of relay R0, the coil stays energized even if switch A is turned OFF (self-hold circuit).
3) Contact (2) of relay R0 supplies power to lamp Y0 and timer T 0 . The lamp turns ON and the timer starts timing operation.
4) After the preset time (e.g., 3 s), timer contact T0 turns ON and motor Y1 starts operation.
5) When push-button switch B is pressed, the coil of relay R0 is de-energized and all the power turns OFF.
(logic for programming)

\square Time chart

■ I/O allocation

The input and output addresses of the programmable controller are allocated according to the condition in the sequence diagram.

Item	Name of device	I/O assignment
External input	Push-button switch A	X 0
	Push-button switch B	X 1
External output	Lamp	Y 0
	Motor	Y 1
Internal relay	Supplemental relay	R 0
Timer	Timer	$\mathrm{T0}$

- All relays and timers used in the sequence circuit are replaced with internal relays and timers in the programmable controller.

2. Relays and Timer/Counter Contacts in the FP-M

The FP-M programmable controller contains many relays and timer/counter contacts, as follows.

\square Memory area

\left.| Item | | Symbol | Numbering | |
| :--- | :--- | :--- | :--- | :--- |
| | | | 5 k type | |$\right]$

External input relay (X), external output relay

(Y), internal relay (\mathbf{R})

- The lowest digit for these relay's X, Y, and R numbers is expressed in hexadecimal and the second and higher digits are expressed in decimal to enable both bit and word processing.

Example:

Relay number

\square Timer contact (T), counter contact (C)

- The timer contact (T) and counter contact (C) numbers are expressed in decimal.

Timer contact (T)

Decimal
$0,1,2$.
...
\qquad

Counter contact (C)

3. I/O Allocation in the FP-M

1) Control boards

- The I/O addresses for the control boards are fixed as follows.

Board type	I/O point	I/O allocation
C20R and C20RC	12 inputs	X0 to XB
	8 outputs	Y0 to Y7
C20T and C20TC	12 inputs	X 0 to XB
	8 outputs	$\mathrm{Y0}$ to Y7
C32T and C32TC	16 inputs	$\mathrm{X0}$ to XF
	16 outputs	Y 0 to YF

2) Expansion boards

- The I/O addresses for the expansion boards are set by the I/O address setting switches as follows.

Board type	I/O point	I/O address setting switches and I/O allocation			
E20R type	12 inputs	X30 to X3B	X50 to X5B	X70 to X7B	X90 to X9B
	8 outputs	Y30 to Y37	Y50 to Y57	Y70 to Y77	Y90 to Y97
M1T-E type I/O address setting switch Output: 16 Input: 24	24 inputs	$\begin{aligned} & \text { X30 to X3F } \\ & \text { X40 to X47 } \end{aligned}$	$\begin{aligned} & \text { X50 to X5F } \\ & \text { X60 to X67 } \end{aligned}$	$\begin{aligned} & \text { X70 to X7F } \\ & \text { X80 to X87 } \end{aligned}$	$\begin{aligned} & \text { X90 to X9F } \\ & \text { X100 to X107 } \end{aligned}$
	16 outputs	Y30 to Y3F	Y50 to Y5F	Y70 to Y7F	Y90 to Y9F
M1T-EI type I/O address setting switches block B: 12 block A: 24	Input block A: 24 inputs (using SW1)	$\begin{aligned} & \text { X30 to X3F } \\ & \text { X40 to X47 } \end{aligned}$	$\begin{aligned} & \text { X50 to X5F } \\ & \text { X60 to X67 } \end{aligned}$	$\begin{aligned} & \text { X70 to X7F } \\ & \text { X80 to X87 } \end{aligned}$	$\begin{aligned} & \text { X90 to X9F } \\ & \text { X100 to X107 } \end{aligned}$
	Input block B: 12 inputs (using SW2)	X30 to X3B	X50 to X5B	X70 to X7B	X90 to X9B
M1T-EO type I/O address setting switches	Output block A: 16 outputs (using SW1)	Y30 to Y3F	Y50 to Y5F	Y70 to Y7F	Y90 to Y9F
	Output block B: 16 outputs (using SW2)	Y30 to Y3F	Y50 to Y5F	Y70 to Y7F	Y90 to Y9F

Notes:

- Set the I/O address setting switches collectly.
- Do not overlap the I/O address on dual switches.

5-4. Programming with NPST-GR Software

NPST-GR Software Ver. 3 offers program entry, editing, and monitoring of FP series programmable controllers. With this software, you can concentrate on the control pattern rather than wasting time learning how to enter the program.

1. System Configuration

\square Connection between a control board and a computer

- An FP-M personal computer cable (for NPST-GR) and a RS232C interface adapter are required to connect a personal computer to the FP-M control board.

Setting of FP-M control board

- Set the baud rate selector of the FP-M control board to 19200 or 9600.

Note:

- If the microprocessor of your computer works at 8 MHz or 16 MHz , set the baud rate selector of the FP-M to 9600 bps.

- Personal computer setting

- Set your personal computer's RS232C parameter to asynchronous. Refer to the manuals that came with your computer.

2. Features of NPST-GR Software Ver. 3

NPST-GR Software is a programming support tool for the FP-M. The things you can do with the NPST-GR are briefly introduced in the following:

- Programming

NPST-GR provides three programming modes.

- Programming by entering ladder symbols: the program will be displayed in ladder diagrams
(Ladder symbol mode)
- Programming by entering Boolean: the program will be displayed in ladder diagrams
(Boolean ladder mode)
- Programming by entering Boolean: the program will be displayed in Boolean
(Boolean non-ladder mode)
You can create a program using any of these methods and you can change the method any time. The display will change automatically according to the method you select. With any method, you can create a program by selecting instructions from the function keys.
NPST-GR Software also provides various features which enable effective programming such as the ability to customize it to make program creation easier.
While creating a program, you can copy, delete, move, and search for a part of the program.

- Comment function

You can enter comments for relays and output instructions.
These comments show you which device the relay corresponds to, or for what application the relay is used.

- Program check

With the program checking function, you can check the created program for grammatical errors.

- Monitoring

To support programming capability, NPST-GR Software can monitor the program you created and perform a test run for verifications. You can check the status of relays and registers, and the programmable controller operating status. This makes it easy to perform debugging and field adjustments.

- System register setting

You can set the system registers using NPST-GR Software. Using the screen messages makes option selection and value entry much easier.

- Documentation

You can print-out all the settings you made, such as program and system register settings.

- Data transfer

You can transfer the program created with NPST-GR Software to the programmable controller easily by key operation. You can also transfer the data to ROM.

- Data management

You can save the data to a disk, which is useful for back-ups and temporary storage before transferring the data to the programmable controller.

3. NPST-GR Configuration

The NPST-GR Software is configured as follows.

- Programming screen

The screen where a program is created or edited. At the very first moment when, the software is activated, the programming screen is displayed in the ladder symbol mode. Next, the menu window appears over it.

- Menu window

The window to select an option. The various functions of the NPST-GR Software can be selected from this window. Functions selected from the menu window are called menu functions.
When you start the software, the menu screen automatically overlaps the programming screen.

- Function window

When you select a menu function from the menu window, the corresponding window will be displayed.

1) Overview of the programming screen

The programming screen consists of a menu bar, a programming area and function key labels, as shown below. The display varies depending on the programming mode you are in.
The following figure shows the programming screen when you are in the ladder symbol mode.

- Menu bar

The uppermost line on the screen is called the "menu bar".
The menu bar indicates which mode, what function and which programming mode you are currently in.

When you are in the ONLINE mode, it indicates whether you are monitoring the program or not, and which mode the programmable controller is currently in.

When you are in the OFFLINE mode

Indicates which mode you are in: the OFFLINE mode or the ONLINE mode.
In the OFFLINE Mode, the software cannot communicate with the programmable controller, and in the ONLINE mode, it can communicate with the programmable controller. Depending on the function you use or how you use the function, you must be in either OFFLINE mode or ONLINE mode. For example, you should be in the OFFLINE mode when you enter comments, and in the ONLINE mode when you monitor the program. When creating a program, if you are in the ONLINE mode, the program will be transferred to the programmable controller simultaneously with entry of the program.

Note:

- When you use NPST-GR in the ONLINE mode, you must connect the computer on which NPSTGR is activated with the programmable controller.
(2) Indicates what function you are currently using.

For example, when you are creating a program, "PROGRAMMING" will be displayed.
Displayed when you are in the ladder symbol mode to indicate whether you are in the SEARCH mode or the ENTRY mode.

Indicates which programming style you are currently in.
The software provides three programming styles: Ladder symbol mode, Boolean ladder mode and Boolean nonladder mode.

Ladder symbol mode

The ladder symbol mode allows you to create a program by entering ladder symbols. Ladder symbols are graphic symbols which show logical elements, such as $\dashv \vdash$. The program will be displayed as a logic diagram on the screen. This diagram is called a "ladder diagram".
When you are in the ladder symbol mode, you will be in either the SEARCH mode or the ENTRY mode.

Boolean ladder mode

In the Boolean ladder mode, you can create a program by entering Boolean, but the program will be displayed as a ladder diagram.

Boolean non-ladder mode

The Boolean non-ladder mode allows you to create programs by entering Boolean. The program will be displayed as you entered it, in order of the addresses.

When you are in the ladder symbol mode, "LD SYMBOL" is displayed.
In the Boolean ladder mode or Boolean non-ladder mode, "BOOLEAN" is displayed.
The difference can be recognized by the display in the programming area.

When you are in the ONLINE mode

When you are in ladder symbol mode <default display>
(1) to (4) are the same as when you are in the OFFLINE mode.
(5) Indicates whether NPST-GR is monitoring a program or not. While monitoring a program, "MONITOR" will be displayed here.
When not monitoring, "WAITING" will be displayed here.
(6) Indicates the status, such as the current mode, of the programmable controller connected to the computer.

- Programming area

Depending on the programming mode (Ladder symbol mode, Boolean ladder mode, and Boolean non-ladder mode) you select, the display will vary.

- Function key labels

Corresponds to the function keys on the keyboard.
You may also use a function key in combination with Shift or Ctrl.

- Message display field

Any message from the software, such as error messages, will be displayed on the lower right of the screen.

2) Overview of the menu window

Immediately after starting NPST-GR, the menu window will overlap the programming screen. On the menu bar, you will see "NPST MENU" while the menu window is being displayed.

- NPST menu

In the NPST menu, the submenu names are listed.
From the NPST menu, select a submenu that the menu function you want to use belongs to.

- Submenu

In the submenu, the menu functions are listed.

- Programmable controller information area

PLC TYPE

Indicates the type of programmable controller currently specified.

PLC TYPE:	FP1	0.9 k
	FP1/FP-M	2.7 k
	FP1/FP-M	5 k
	FP3	10 k
	FP3/FP-C	16 k
FP5	16 k	
	FP10/FP10S	30 k
	FP10	60 k

PLC MODE

Indicates the operation mode of the programmable controller.
When you are in the OFFLINE mode, "OFFLINE" will be displayed here.
In the ONLINE mode, the display will vary according to the setting on the programmable controller.

PROGRAM NAME

The name of program is displayed on the screen. When you create a new program, nothing will be displayed. When you load the program from a disk or the programmable controller, the filename you registered for the program will be displayed.

USE/MAX (STEP)

Indicates the number of steps (program size). The number of steps you have already used for the program during editing or creation, and the maximum of number of steps you can use for the program is indicated.

4. NPST-GR Installation and Configuration

1) Preparing for installation

This section describes how to install the device driver ANSI.SYS. Install the software using the installation program. The installation program is included in the NPST-GR system disk. The installation program cannot start if the device driver ANSI.SYS provided with the MS-DOS system disk has been installed in the disk on which you want to install NPST-GR. If ANSI.SYS has not been installed, install ANSI.SYS first and then install NPST-GR.

Procedure

1. If the ANSI.SYS file does not exist on the disk on which you want to install NPST-GR, copy the ANSI.SYS file from the MS-DOS system disk to the hard disk. For example, to copy the ANSI.SYS file to the root directory of the hard disk, insert the MS-DOS system disk into drive A and type the following after the DOS prompt:

COPY A: \ANSI.SYS C: (Enter)
2. If the DEVICE command for ANSI.SYS is not included in the CONFIG.SYS file, modify the CONFIG.SYS file. For example, to add the DEVICE command to the CONFIG.SYS file, type the following at the DOS prompt (C: C):

COPY CONFIG.SYS+CON CONFIG.SYS (Enter)
DEVICE=ANSI.SYS (Enter)
Then, press Ctrl $+\mathbf{Z}$ and press Enter.
The CONFIG.SYS file will now contain the new line.
Notes:

[^3]
2) NPST-GR installation

This section describes how to install NPST-GR. Make a backup disk of the software and use it for installation.

Procedure

1. If the current drive is other than drive A, change to drive A by typing "A:" at the DOS prompt.
2. Insert the backup disk of the NPST-GR system disk into drive A.
3. Type the following at the DOS prompt (A:) to start the installation program:

INSI (Enter)
The installation program will start. The following screen will appear.
NPST-GR Installation Program
To install the NPST-GR, type INSI and specify the source drive
and the target drive. The "source drive" is the drive where you
place the NPST-GR System Disk. The "target drive" is the drive
on which you want to install the NPST-GR.
[Format]
INST [source drive]: [target drive]:
[Example]
When the NPST-GR System Disk is now in the drive A and you want
to install the NPST-GR on the drive C, type:
INSI A: C: (Enter)
4. Type the following at the DOS prompt:

INSI A: C: (Enter)
This shows that the backup disk of the NPST-GR system disk is in drive A and that you are going to install NPST-GR onto drive C. The following screen will appear.

5. Make sure that the source drive and the target drive are specified correctly. The "source drive" shows the drive which the NPST-GR system disk is in. The "target drive" shows the drive onto which you want to install NPST-GR.

When the source drive and the target drive are specified correctly, select "YES" and press Enter.
If not, select "NO" and press Enter. You will return to the previous screen.

When you select "YES, " the following screen will appear:

6. Check the message. To install, select "YES" and press Enter. The installation will start.

If you do not want to install, select "NO" and press Enter. You will return to the previous screen.

When the installation is complete, "C: \NPST3" will appear.
Note:

- When NPST-GR is installed successfully, the following files are stored in the NPST3 directory: NPST.EXE Contains a program which starts NPST-GR.
NPSTE.EXE Contains the system program for NPST-GR.
NPST.HLP Contains help messages.
NPSTP000.CIG Contains information for printer control.

3) How to use NPST-GR effectively

The flowchart shown below is an example of how you can use NPST-GR before you run a program in the field. Except for the settings for NPST-GR and programmable controller configuration, you can freely change the order of the flowchart.

4) NPST-GR startup

To start NPST-GR, follow the procedure below.

Procedure

1. If the personal computer is OFF , turn it ON .

You will see the DOS prompt C:\.
2. Change to the NPST3 directory by typing the following at the DOS prompt:

CD NPST3(Enter)

3. Type the following to start the NPST-GR Software:

NPST(Enter)
NPST-GR will start.

5) Configuring NPST-GR

Selecting [NPST CONFIGURATION] from the menu window

Before you create a program, you must first configure the settings and change the default settings if necessary.
If the programming screen is displayed, press Esc to display the "NPST MENU" window.

Procedure

1. Move the cursor to an option on the NPST menu with the up and down arrow keys. The submenu which belongs to the option you select will be displayed.

[NPST MENU]
EDIT A PROGRAM COMMENTS SEARCH MONITOR RELAYS/REGISTERS CHECK A PROGRAM NPST CONFIGURATION PLC CONFIGURATION PROGRAM MANAGER IC CARD PROGRAM MANAGER EXIT NPST-GR PLC TYPE PLC PLC MODE PROGRAM NAME [FP1/FP-M USE/MAX (STEP)

2. Press Enter or the Right arrow key.

The cursor will move to the submenu. The option currently selected with the cursor will blink.

3. Press Enter.

4. Move the cursor to the item you want to select with the up and down arrow keys. Select an option with the right and left arrow keys.

<SCREEN 1> window

- SCREEN MODE

You can select the NPST-GR screen mode between color and black/white.
MONO: Displays the screen in black and white.
COLOR: Displays the screen in color.
(Black/Cyan/Red/Magenta/Green/Bright Blue/Yellow or Brown/White)

- PLC TYPE

Before setting the configuration of the programmable controller and creating a program, you must specify the type of programmable controller for which you create a program.
You can select from;

FP1	0.9 k : FP1 C14/C16 series
FP1/FP-M	2.7 k: FP1 C24/C40 series and FP-M (2.7 k) C20R/C20T/C32T
FP1/FP-M	5 k : FP1 C56/C72 series and FP-M (5 k) C20RC/C20TC/C32TC
FP3	10 k : FP3 (10 k)
FP3/FP-C	16 k : FP3 (16 k) and the FP-C (16 k)
FP5	16 k: FP5 (16 k)
FP10/FP10S	30 k : FP10 (30 k) and FP10S (30 k)
FP10	60 k : FP10 (60 k)

COM PORT

Specify the serial port which is connected to the programmable controller.
1: Use COM PORT 1
2: Use COM PORT 2
3: Use COM PORT 3
TRANS RATE (bps)
Specify the transmission rate for communication with the programmable controller or modem.
Select between 19200, 9600, 4800, 2400, 1200, 600 or 300.
For communication with the programmable controller, specify either 19200 or 9600.
If the clock frequency is a multiple of five, you must select 19200. If you do not select 19200,
NPST-GR will not communicate with the programmable controller.

DATA LENGTH

Specify the data length for communication with the programmable controller.
Select either 8-bit or 7-bit.

- LOGGED DRIVE/DIRECTORY

Specify the logged drive when you manage files.

DRIVE/DIRECTORY

Specify the logged directory when you manage files. Include a \backslash at the beginning and at the end of the directory, eg., Inpstlprogram\.
If you omit this, the root directory will be specified.

NOTE DISPLAY

Specify whether file notes, which are the notes entered for a file (such as filename and date), are to be displayed when the disk file list is displayed.

ON: Displays the file notes.
OFF: Omits displaying the file notes.

- PROGRAMMING MODE

Select the programming mode for creating or editing a program.
Select from;
LADDER: The ladder symbol mode
B.LADDER: The Boolean ladder mode

BOOLN: The Boolean non-ladder mode

■ Logging or saving the parameters

After you set the parameters in [1.NPST CONFIGURATION], you must log the settings so that NPST-GR will be reconfigured according to the parameters you set. If you go to the programming screen or use other functions without logging the parameters you set, they will be aborted.
If you try to exit [1.NPST CONFIGURATION] without logging the parameters by pressing Esc , the
confirmation message "EXIT OK ? (Y/N)" will appear on the right bottom of the screen. Type \mathbf{N} to return to the previous operation. Type \mathbf{Y} if you want to abort the settings you made. The setting will be aborted and you will go to the programming screen. In each parameter window, you will see the SAVE label on the function key labels. If you set parameters on more than one window, you can save the parameters at one time after completing the settings. When you log the settings, you can also save the settings to the disk if necessary.

Procedure

1. Press the F1 key on the screen where one of the windows for setting parameters is displayed. The <SAVE> window will be displayed at the lower left of the screen.
2. Select "YES" or "NO" for the message "SAVE DISK ? [YES / N O]" Select "YES" to save the parameters in the disk.
3. Type \mathbf{Y} or \mathbf{N} for the message "LOG PARAMETERS ? (\mathbf{Y} / \mathbf{N})".

Type \mathbf{Y} to execute the operation. After execution, the window will close.
If you selected "YES" for "SAVE DISK ? [YES / N O]", the message, "SAVING TO THE DISK COMPLETED." will be displayed at the bottom of screen when the parameter has been successfully saved to the disk.
To quit the operation, type \mathbf{N}. The window will close.

5. Exiting NPST-GR

The [1.EXIT NPST-GR] option allows you to exit NPST-GR and to return to the MS-DOS screen.

Procedure

1. Select the [EXIT NPST-GR] option from the NPST menu.
2. Select the [1.EXIT NPST-GR] option from the [EXIT NPST-GR] menu.

The [EXIT NPST-GR] window will open.

3. Select "SAVE CONFIG \& EXIT" to save the parameters set with the [NPST CONFIGURATION] menu and exit NPST-GR. Select "EXIT" to exit NPST-GR without saving them.
4. Press Enter. You will exit NPST-GR and the DOS prompt will appear on the screen. When you turn OFF the computer, make sure that the DOS prompt is displayed on the screen.

6. Basic Key Operation for Programs

Input the following program using the ladder symbol mode.

Boolean Non-ladder				Key operation					
Address	Instruction								
0		X	0	F1	F1	0		Enter	
1		R	0	F2	F3	0		Enter	
2	AN/	X	1	F3	F8	F1		1	Enter
3		R	0	F4	F3	0		Enter	
4		R	0	F1	F3	0		Enter	
5		Y	0	F4	F2	0		Enter	
6		X		F5	F1	0		\longleftrightarrow	
	K		30	F1	3	0		Enter	
9		T		F1	F4	0		Enter	
10	OT	Y		F4	F2	1		Enter	
11	ED			F10	Ctr	+	F3	Enter	

When you first start NPST-GR, you will be in the ladder symbol mode.
The [1.PROGRAMMING STYLE] option changes the programming style to the Boolean non-ladder mode.

Procedure

1. Select the [EDIT A PROGRAM] option from the NPST menu.
2. Select the [1.PROGRAMMING STYLE] option from the [EDIT A PROGRAM] menu.
3. Select "BOOLEAN NONLADDER" from the [PROGRAMMING STYLE] window.
4. Press Enter.

Program input

Input the program using the function keys. The command language input will be displayed in the input field at the bottom of the screen. It will be interpreted and displayed as an element on the ladder diagram when you press the
Enter key.
[Input Deletions]
When deleting from the input field. Press B BS
When deleting from the ladder diagram display area.......Move the cursor to the location containing the mistake and press Del.
Refer to the "NPST-GR Software" manual for details.

7. Downloading a Program to the Programmable Controller

The [4.LOAD A PROGRAM TO PLC] option downloads the program and/or the I/O comments which are on the screen of the programmable controller. After you complete the program, you must download the program so that the programmable controller executes it.

Notes:

- The downloaded program will be executed when you set the mode of programmable controller to RUN.
- Before you start operation, make sure that NPST-GR is in the ONLINE mode.

Procedure

1. Select the [PROGRAM MANAGER] option from the NPST menu.
2. Select the [4.LOAD A PROGRAM TO PLC] option from the [PROGRAM MANAGER] menu.

The [LOAD TO PLC] window will appear on the screen.

3. If you want to change the communicating station, press $\mathbf{C t r l}+\mathrm{F} 7$.
4. If the programmable controller is in the RUN mode, change to the PROG. mode.

When the programmable controller is in the REMOTE mode, you can change it by pressing $\mathbf{C t r l}+\mathbf{F 6}$.
5. Specify what you want to load to the programmable controller at "LOAD."

Select "PROGRAM" to download only the program.
Select "I/O CMT" to download only the I/O comments.
Select "PROG \& I/O CMT" to download both the program and the I/O comments.
6. Specify whether or not to verify the programs.

Select "YES" at "VERIFY" with the arrow keys when you want to verify the transferred program with the one displayed on the screen after downloading. Select "NO" if you do not want to verify the program.
7. Press Enter to start downloading.

During the download, "LOADING PROGRAM..." will appear on the screen.
If you select "YES" at "VERIFY," the message "VERIFYING PROGRAM..." will appear.
When completed successfully, "VERIFY OK" will appear on the bottom of the screen. The number of steps used for the program will be displayed at the bottom of the screen.

8. Saving a Program to Disk

The [2.SAVE A PROGRAM TO DISK] option saves the program and/or the I/O comments which exist on the screen to the disk of your personal computer.

Procedure

1. Select the [PROGRAM MANAGER] option from the NPST menu.
2. Select the [2.SAVE A PROGRAM TO DISK] option from the [PROGRAM MANAGER] menu. A window for saving the program and/or I/O comments will open on the screen. You will see "SAVE PROGRAM" on the menu bar.

3. If you want to change the drive, press F6.
4. If you want to change the directory, press F8.
5. Enter a filename in the "FILE NAME" area.
6. If necessary, enter the information for "FILE NOTE", "DESIGNER" and "DATE". These items are optional and can be skipped. Press the down arrow key to go to the next item.
7. Specify what you want to save to the disk at "SAVE."

Select "PROGRAM" to save only the program.
Select "I/O CMT" to save only the I/O comments.
Select "PROG \& I/O CMT" to save both the program and the I/O comments.
8. Determine which version style you want to save in.

Select "Ver.3" to save in the version 3 style.
Select "Ver.2" to save in the version 2 style.
9. When you select "Ver.3", select whether you want to verify the programs.

Select "YES" at "VERIFY" with the arrow keys, to verify the saved program with the program on the screen after saving. Select "NO" if you do not want to verify the program.
10. Press Enter.

When you select "Ver.3," saving will start.

9. Printing

The [A.PRINT OUT] option prints out:

- the program displayed on the screen, as a ladder diagram or in Boolean.
- the list of the relays, registers or control instructions used in the program.
- the parameters set with the [NPST CONFIGURATION] menu
- the parameters set for system registers 0 to 418, the I/O map, and the remote I/O map

When you select the [A.PRINT OUT] option, the [PRINT OUT] window will open. First, select what you want to print out by selecting the "STYLE" option, and start printing by selecting the "PRINT" option. With the default settings, only the program will be printed in the ladder diagram style.

Procedure

1. Select the [PROGRAM MANAGER] option from the NPST menu.
2. Select the [A.PRINT OUT] option from the [PROGRAM MANAGER] menu. The [PRINT OUT] window will open.

3. Select "STYLE" in the [PRINT OUT] window. The [STYLE] window will open.

[Style]	
** title	\mathbf{Y} / \mathbb{N}
** Ladder diagram	$\boldsymbol{Y} / \mathrm{N}$
** boolean	\mathbf{Y} / \mathbb{N}
** Relay list	\mathbf{Y} / \mathbb{N}
NPST CONFIGURATION	\mathbf{Y} / \mathbb{N}
SYStem register	\mathbf{Y} / \mathbf{N}
REMOTE I/O	Y / N
** = [ENTER] TO SET THE	details

4. Specify what you want to print out in the [STYLE] window.

Select " Y " for the item which you want to print. Select " N " not to print it.
5. Press F1 to log the settings in each window and to return to the previous window.

You must press $F 1$ on every window on which you made any change. When pressing F1, you will be asked "SURE?" Type \mathbf{Y} to log the changes you made. To cancel them, type \mathbf{N}.
6. Select "PRINT" from the [PRINT OUT] window.
7. Press Enter. The [PRINT] windows shown right will open.

[PRINT]		
Start page		
Start address	[
END ADDRESS	[12	
PAPER SIZE	PORT	Land
Print mode	SINGL	CONTIN
	HIGH	NORMAL
[ENTER] : EXECUTE.		

8. When you want to change the settings in the windows, select the desired options. To select an option, use the right or left arrow key. To go to the next item, press the down arrow key.
9. Press Enter to start printing.

5-5. Programming with FP Programmer II

The FP Programmer II performs program entry, editing, and monitoring of FP series programmable controllers.

1. System Configuration

■ Connection between an FP-M control board and an FP Programmer II

- An FP-M peripheral cable (for FP Programmer II) is required to connect an FP-M control board to an FP Programmer II.

Setting of FP-M control board

- Set the baud rate selector of the FP-M control board to 19200.

2. Downloading a Program to the Programmable Controller

Procedure

1. Connect FP Programmer II and the FP-M control board using the FP-M peripheral cable (for FP Programmer II).
2. Set the mode selector of the FP-M control board to PROG.
3. Press the keys on the FP Programmer II, as shown on the right, to clear all the data stored in the FP-M control board.
4. Enter the address from where you want to enter instructions. Use the
 alphanumeric keys to enter the address. In the example, instructions are entered from address 0 , therefore, press 0 to read its contents then press $\underset{\sim}{\text { READ }}$.
5. Download the program (addresses and instructions) to the programmable controller.

Notes:

- An alarm will sound if you try to download a program while in RUN mode or if you press the wrong keys. If an alarm sounds, press the acli key and redo the download operation from the beginning.
- The first time you input a program, be sure to execute the program clear procedure (step 3 above) before starting input.

■ Key operations for correcting input errors

- Correcting the contents of the program

Procedure example

1. Read the contents of address 3 .
2. Clear the display for address 3 .
3. Rewrite with the correct instructions.

- Deleting instructions

Procedure example

1. Read the contents of address 3 .
2. Delete.

- Adding/inserting instructions

Procedure example

1. Read the contents of address 3 .
2. Insert the new instruction.

Inputting instructions that are not on the key display

There are two ways to input instructions such as the ED (END) instruction and the DF (Leading edge differential) instruction, which are not on the key display.

- Using the HELP function

Procedure example

1. Press the keys shown on the right.
2. Next, press $\sqrt{\text { READ }}$ to look for the desired instruction.
3. Input the number for the instruction.

Example:
The ED instruction.

- Direct input of the instruction code

Example:
The ED instruction.

5-6. RAM and ROM Operations

1. RAM and ROM Operations

- The program may be downloaded and saved to RAM on the FP-M control board or to memory (EPROM) or master memory (EEPROM).
- Use of the RAM and EPROM/EEPROM memory makes it easy to reproduce and transfer programs.

Operations

RAM operation: Operation with installed RAM
ROM operation: Operation with memory (EPROM) or master memory (EEPROM)

Item	RAM operation	ROM operation
Memory	RAM on the control board	Memory (EPROM) or master memory (EEPROM)
Execution of program	The built-in program is executed.	When the mode is changed from PROG. to RUN or the power is turned ON in the RUN mode, the contents of ROM are loaded into the RAM on the FP-M control board and the program is executed. Necessary tools - Memory (EPROM): AFP5202 - Master memory (EEPROM): AFP5207 - Commercially available ROM programmer: We recommend Aval Data Corporation's "PECKER 11"
Backup	The contents of RAM are saved using the backup battery. Note: Replace the backup battery when voltage of the battery is low. (See page 125.) - Battery life $\begin{aligned} & \text { FP-M C20R, C20T, and C32T: } \\ & \text { Approx. } 53,000 \text { hrs. } \\ & \text { FP-M C20RC, C20TC, and C32TC: } \\ & \text { Approx. } 27,000 \text { hrs. } \end{aligned}$	Since the contents of the program and system registers are written to ROM, backup is not necessary. The hold area contents written to RAM are backed up by the backup battery.

2. Operation Without Backup Battery Enabled

- When the voltage of the backup battery is low or the backup battery is disconnected, system register 4 specifies the operation of FP-M.
- This battery error disregarding function is available for NPST-GR Software Ver. 3 or later.

Procedure

- Using NPST-GR Software Ver. 3.1

1. In the ONLINE mode, press Esc to display the [NPST MENU] window.
2. Select the PLC CONFIGURATION option from the NPST menu.
3. Select the 1. SYSTEM REGISTER option from the [PLC CONFIGURATION] menu.
4. Press the F8 key on the [SYSTEM REGISTER] screen.

The ACT ON ERROR window will open.
5. Select system register 4. BATTERY ERROR INDICATION in the ACT ON ERROR window.
6. Select "YES" or "NO" for system register 4. BATTERY ERROR INDICATION.

YES: The conditions (voltage of backup battery low or backup battery disconnected) are regarded as errors.
NO: The conditions (voltage of backup battery low or backup battery disconnected) are not regarded as errors.
7. Press $\mathbf{F 1}$ to save the setting contents and press Esc to return to the previous window.

- Using FP Programmer II

2. To read the contents of system register 4, press the keys shown on the right.
3. Press the "K, $\mathbf{0}$ " or " $\mathbf{K}, \mathbf{1}$ " keys for system register 4 (operation without backup battery).

K0: The conditions (voltage of backup battery low or backup battery disconnected) are regarded as errors.
K1: The conditions (voltage of backup battery low or backup battery disconnected) are not regarded as errors.
4. Press the "ACLR" key to end OP50 operation.

The FP Programmer II will return to its initial state.

3. Notes on Operation with Memory (ROM Operation)

- When the FP-M is operated with the installed memory (ROM), the mode selector causes the following operational changes to occur.

\square When the power is turned ON in PROG. mode

- In the PROG. mode, even if the memory (ROM) is installed, the programming tools (NPST-GR Software or FP Programmer II) read the contents of the RAM on the FP-M control board.
- Accordingly, to verify the contents of memory (ROM) while in the PROG. mode, you can transmit the contents to RAM using the following procedure.

Procedure

- Using NPST-GR Software Ver. 3.1

1. In the ONLINE mode, press Esc key to display the [NPST MENU] window.
2. Select the PROGRAM MANAGER option from the NPST menu.
3. Select the 7. COPY PROGRAM BETWEEN ROM \& RAM option from the [PROGRAM MANAGER] menu.

4. Press F1.

When the COPY ROM TO RAM window opens, the contents of ROM will be loaded from ROM to RAM.

- Using FP Programmer II

1. Press the keys in the sequence shown on the right.

2. The contents of memory (ROM) will automatically be loaded into the RAM on the FP-M control board.

\square When the power is turned ON in RUN mode

- The contents of memory (ROM) are automatically loaded (overwritten) into the RAM on the FP-M control board when the power is turned ON. Note that the previous contents of the RAM will be erased.

5-7. How to Program ROM

1. Memory (ROM) Type

- FP-M program writing and operation can be done using only the internal RAM. However, program writing, operation and saving, etc., are also possible using optional ROM.
- The contents of the program and system registers are written to the memory or master memory. When the ROM is driven [contents of the memory (ROM) are transferred to RAM], the existing contents of memory and system registers will be overwritten.
- The contents of memory for operand, such as internal relays and data registers, are not overwritten.

- Memory type

Type	Part number	Writing method	Description
Memory (EPROM) 2 pieces in a set	AFP5202	Commercially available ROM programmer	27C256 or equivalent Suitable for program storage or ROM operation when installed on the FP-M control board.
Master memory (EEPROM) 1 piece in a set	AFP5207	FP-M control board (A ROM programmer	28C256 or equivalent You can write data without using a ROM is not required.
programmer. Suitable for copying and			
transmitting the program.			

2. Install the Memory (ROM)

- Set the same mode between memory (ROM) type and memory selector.
- Turn OFF the power of the FP-M control board before installing or removing the memory (EPROM) and master memory (EEPROM).
- Put the memory on the user memory socket, align the pins of the memory with the user memory socket holes and insert correctly.
- Attach an opaque sheet onto the window on the memory (EPROM) before use. If the opaque sheet is not attached, light may cause problems.

- When removing the memory (EPROM) and master memory (EEPROM) from the user memory socket, use of an IC EXTRACTOR is recomended. Note that the surface of the FP-M control board might be damaged by using a screwdriver.

3. How to Program ROM

- Using a commercially available ROM programmer, the contents of RAM on the FP-M control board can be written to the memory (ROM).
- The following types of memory (ROM) are available:
- Memory (EPROM):

AFP5202 [27C256 type or equivalent]
Memory for storing programs. Writing is done with a commercially available ROM programmer.

- Master memory (EEPROM): AFP5207 [28C256 type or equivalent]

Memory for copying programs. Writing is done with a master memory attached to the FP-M control board.

1) Writing a program to the memory (EPROM) via master memory (EEPROM) with a commercially available ROM programmer

Necessary tools

- Memory (EPROM): AFP5202 [27C256 type or equivalent]
- Master memory (EEPROM): AFP5207 [28C256 type or equivalent]
- Commercially available ROM programmer: We recommend Aval Data Corporation's PECKER 11
- Programming tools
- FP-M personal computer cable (for NPST-GR): AFC8513 (3 m/9.843 ft.)
- RS232C interface adapter: See page 84.
- Commercial computer: IBM PC-AT or 100% compatible machine

Main memory: 550 KB or more free
EMS: 800 KB or more free
Hard disk space: 2 MB or more required
Operating system: MS-DOS Ver. 3.30 or later
Video mode (display mode): VGA

- NPST-GR Software Ver. 3: AFP266538
- FP-M peripheral cable: AFC8521 ($1 \mathrm{~m} / 3.281 \mathrm{ft}$.), AFC8523 ($3 \mathrm{~m} / 9,843 \mathrm{ft}$.)
- FP Programmer II: AFP1114

Procedure

[FP-M RAM \rightarrow master memory (EEPROM) \rightarrow ROM programmer memory \rightarrow memory (EPROM)]

1. Turn OFF the power of the FP-M control board.
2. Attach the master memory (EEPROM) to the FP-M control board. Set the memory selector to EEPROM mode.
3. Set the mode selector of the FP-M control board to PROG. mode and then turn ON the power of the FP-M control board.
4. Transfer the contents of RAM to the master memory (EEPROM) using programming tools (NPST-GR Software or FP Programmer II) as shown below.

- Using NPST-GR Software Ver. 3.1
(1) In the ONLINE mode, press the Esc key to display the [NPST MENU] window.
(2) Select the PROGRAM MANAGER option from the NPST menu.
(3) Select the 7. COPY PROGRAM

BETWEEN ROM \& RAM option from the [PROGRAM MANAGER] menu.
(4) Press F1.

When the [COPY RAM TO ROM] window opens, the contents of RAM will be loaded from RAM to ROM.

FP-M control board

- Using FP Programmer II
(1) Press the keys in the sequence shown right.
(2) The contents of RAM will be loaded into the attached ROM.

5. Turn OFF the power of FP-M control board. Detach the programmed master memory (EEPROM) from the FP-M control board.

6. Attach the master memory (EEPROM) to the ROM programmer. Transfer the contents of master memory (EEPROM) to ROM programmer memory.

7. Replace the master memory (EEPROM) on the ROM programmer with the memory (EPROM). Write the contents of the ROM programmer memory to the memory (EPROM).

Notes:

- If you want to write the contents of RAM on the FP-M control board to a master memory (EEPROM), be sure to set the mode selector to PROG. before turning ON the power.
- When using a commercially available ROM programmer to write to the master memory (EEPROM) or the memory (EPROM), refer to the manual that comes with it for operation procedure and settings.

2) Writing a program to the memory (EPROM) with NPST-GR Software and a commercially available ROM programmer

Necessary tools

- Memory (EPROM): AFP5202 [27C256 type or equivalent]
- Commercially available ROM programmer: We recommend Aval Data Corporation's PECKER 11
- Programming tools
- RS232C cable: Needs to be customized to match the specifications of the commercial ROM programmer.
- Commercial computer: IBM PC-AT or 100% compatible machine

Main memory: 550 KB or more free
EMS: 800 KB or more free
Hard disk space: 2 MB or more required
Operating system: MS-DOS Ver. 3.30 or later
Video mode (display mode): VGA

- NPST-GR Software Ver. 3: AFP266538

Procedure

[Program with NPST-GR Software \rightarrow ROM programmer memory \rightarrow memory (EPROM)]

1. Transfer the program from the computer to the ROM programmer memory using NPST-GR Software as shown below.

- Using NPST-GR Software Ver. 3.1
(1) In the ONLINE mode, press Esc key to display the [NPST MENU] window.
(2) Select the NPST CONFIGURATION option from the NPST menu.
(3) Select the 1. NPST CONFIGURATION option from the NPST CONFIGURATION menu.
(4) Press SHIFT + F6 (ROM) keys. The <ROM CONFIG> window will open.
(5) Select the parameter for each setting item according to the ROM programmer. Then press the F1 key.
<ROM CONFIG> window setting items
TRANS RATE (bps): 9600, 4800, 2400,

$$
1200,600,300
$$

DATA LENGTH: 8, 7
PARITY CHECK: NO, EV, OD STOP BIT: 1, 2
(6) Select the 8. LOAD TO/FROM ROM WRITER option from the PROGRAM MANAGER menu.
(7) Select "WRITE" in the window and specify the format according to the ROM programmer.
(8) Press the F1 (EXEC) key to load the program.
2. Attach the memory (EPROM) to the ROM programmer.
3. Write the contents of the ROM programmer memory to the memory (EPROM).

Note:

- When using a commercially available ROM programmer to write to the master memory (EEPROM) or the memory (EPROM), refer to the manual that comes with it for operation procedure and settings.

TROUBLESHOOTING AND MAINTENANCE

6-1. Self-diagnostic Function 112

1. Operation Monitor LEDs When an Error Occurs 112
2. Operation Status When an Error Occurs 113
6-2. Troubleshooting 114
3. Points to be Checked When an Error Occurs 114
6-3. Error Codes 123
4. Table of Total-check Error Codes 123
5. Table of Self-diagnostic Error Codes 124
6-4. Maintenance 125
6. Replacement of Backup Battery 125
7. Check Items 126

6-1. Self-diagnostic Function

FP-M programmable controllers use the self-diagnostic function when something goes wrong with them.
The abnormalities detected by the self-diagnostic function are divided into three categories:

- Self-diagnostic error

This type of error is detected when the following occurs:

- Hardware problem in CPU or ROM, and backup battery problem (ROM, system, interrupt, or battery abnormality).
- An instruction is incorrectly executed in RUN mode (operation error).

- Total-check error

This type of error is detected by a total-check operation when the following occurs. The total-check operation is performed when the mode selector is changed from PROG. to RUN.

- Program abnormalities such as syntax errors, duplicated use of output, and instruction combination errors.
(syntax error, duplicated output error, mismatch error, program area error, operand error)
The total-check operation can also be performed by using the FP Programmer II (OP9 function) or the NPST-GR Software ["1.TOTALLY CHECK A PROGRAM" (menu 1) or "V.TOTALLY CHECK" (menu 2)].

- System watchdog timer error

This type of error is detected when the following occurs:

- program scan time is extraordinarily long
- hardware abnormality is detected

1. Operation Monitor LEDs When an Error Occurs

- The status of the operation monitor LEDs on the FP-M control board vary, as shown in the table below.

Content	Position of the mode selector	LED status			
		RUN	PROG.	ERR.	ALARM
Normal operation	RUN	ON	OFF	OFF	OFF
	PROG.	OFF	ON	OFF	OFF
Forced ON/OFF	RUN	Flash	OFF	Varies	OFF
	PROG.	OFF	ON	Varies	OFF
When a self-diagnostic error occurred	RUN	Varies	Varies	ON	OFF
	PROG.	OFF	ON	ON	OFF
When a total-check error occurred	RUN	OFF	ON	ON	OFF
	PROG.	OFF	ON	OFF	OFF
When a system watchdog timer error occurred	RUN	Varies	Varies	Varies	ON
	PROG.	Varies	Varies	Varies	ON

2. Operation Status When an Error Occurs

When an error occurs, the FP-M usually stops operating. However, regarding duplicated output errors, a backup battery abnormality, and operation errors, you can continue operation by changing the system register settings.

1) Duplicated output error (total-check error)

- If the duplicated use of output is detected, the FP-M stops operating and the ERR. LED turns ON. When you change system register 20 settings using the FP Programmer II or NPST-GR Software, duplicated output is not regarded as an error and the FP-M continues to operate. In this case, the ERR. LED does not turn ON.
Duplicated output error: system register 20 (K1 or ENAB)
[FP Programmer II: K0 (stops operation), K1 (continues operation)]
[NPST-GR Ver. 3.1:DISA (stops operation), ENAB (continues operation)]

2) Battery error (self-diagnostic error)

- If the voltage of the backup battery lowers or if the backup battery disconnects, the ERR. LED turns ON.

Battery error: system register 4 (K1 or NO)
[FP Programmer II: K0 (stops operation), K1 (continues operation)]
[NPST-GR Ver. 3.1: YES (stops operation), NO (continues operation)]

3) Operation error (self-diagnostic error)

- An operation error is one of the errors in the programmable controllers. These errors occur when an instruction [one of high-level/some basic (e.g., ST =) instructions] is executed abnormally.
- When an operation error occurs, operation of the programmable controller stops. At the same time, operation error flags R9007 and R9008 turn ON, the error address is stored in DT9017 and DT9018, the error code [K45 (H2D)] is set at DT9000, and the ERR. LED lights.
However, when you change system register 26 settings using the FP Programmer II or NPST-GR Software (Ver. 3.1 or later), the FP-M continues to operate. In this case, even if the FP-M continues to operate, this is regarded as an error and the ERR. LED stays ON.
Operation error: system register 26
[FP Programmer II: K0 (stops operation), K1 (continues operation)]
[NPST-GR Ver. 3.1:STOP (stops operation), STRT (continues operation)]

6-2. Troubleshooting

1. Points to be Checked When an Error Occurs

When an abnormality is detected, check the following points.

- If the ERR. LED is ON, refer to page 115, ■ When an ERR. LED is ON.
- If the ALARM LED is ON, refer to page 117, When an ALARM LED is ON.
- If the all LEDs are OFF, refer to page 117, ■ When all LEDs are OFF.
- If the output does not work, refer to page 118, Diagnosing output malfunction.
- If the communication error is detected by the NPST-GR Software, refer to page 121, \square When "PLC = COMM. ERR" is displayed on the NPST-GR screen.
- If the PROTECT ERROR is detected by the programming tool, refer to page 122, \square When "PROTECT ERROR" is displayed.

Note:

- Check the entire system including peripheral devices, referring the followings:
- Observe what is happening.
- Check for error repetition.
- Check the status of indicators.
- Check that power is properly supplied to the programmable controller.
- Check whether the trouble detected is in the programmable controller or in other devices.
- Check whether the trouble detected is in the I/O section or other parts.
- Check whether there is problem with the program or not.

When an ERR. LED is ON

<Condition: an error is detected by the self-diagnostic function>
Set the mode selector of the FP-M control board from RUN to PROG.

Probably a total-check error. Check the program using the programming tool.

- Using NPST-GR Software Ver. 3.1
<If you are using MENU 1 screen type> <If you are using MENU 2 screen type> Open [NPST MENU] by pressing Open [ONLINE MONITOR
Esc, and then select
"CHECK A PROGRAM" to skip to the FUNCTION MENU] by pressing
Esc , and then select In the [CHECK A PROGRAM]
subwindow, select " 1 . TOTALLY
CHECK A PROGRAM".

In the [TOTALLY CHK] window, press $\mathbf{F 1}$ to execute the program check. You can get the address and program where a total-check error occurs. The type of errors can also be displayed.

- Using FP Programmer II

Press the keys on the FP Programmer II

as shown on the right.
When a total-check error occurs, the screen shown on the right is displayed. You can find the address and program where a total-check error occurs by pressing the $\stackrel{\operatorname{READO}}{ }$ key.

```
54PAIR
55SYNTAX
```

Correct the program referring to page 123,

1. Table of Total-check Error Codes.
[^4]
From page 115

Probably a self-diagnostic error.
Check the program using the
programming tool.

- Using NPST-GR Software Ver. 3.1

<If you are using MENU 1 screen type> <If you are using MENU 2 screen type> Open [NPST MENU] by pressing Esc, and then select "MONITOR" to skip to the [MONITOR] subwindow. In the [MONITOR] subwindow, select " 7 . STATUS DISPLAY".

At the bottom of the [STATUS DISPLAY] window, you can find the error code in "()", represented in decimal, and comments in "[]", SLF DIAGN ERR CD (50) [BATTERY ERROR] as shown on the right.

- Using FP Programmer II

Press the keys on the FP Programmer II as shown on the right.
When self-diagnostic error occurs, the screen shown on the right is displayed.

Open [ONLINE MONITOR FUNCTION MENU] by pressing Ctrl and F10 together, and then select "P. STATUS DISPLAY".

Check the FP-M referring to page 124, 2. Table of Self-diagnostic Error Codes.

Cancel error status and start operation again.

- You can cancel the error status in the following ways:
- Turn the power OFF and then ON.
- Cancel the error status using the NPST-GR Software Ver. 3.1 or the FP Programmer II.
To perform this function, use "OP 112" of the FP Programmer II or [STATUS DISPLAY] of NPST-GR Software Ver. 3.1. (This function is not available with a conventional FP Programmer or with NPST-GR Software Ver. 3.0 or earlier.)
- Cancel the error status using the F148 (ERR) instruction.

When an ALARM LED is ON

<Condition: a system watchdog timer error occurs>

> | Set the mode selector of the FP-M |
| :--- |
| control board from RUN to PROG. and |
| turn the power OFF and then ON. |

- If the ALARM LED is turned ON again, there is probably an abnormality in the FP-M control board. Please contact your dealer.
- If the ERR. LED is turned ON, go to page 115, When an ERR. LED is ON.

Set the mode selector of the FP-M
control board from PROG. to RUN.

- If the ALARM LED is ON, the program execution time is too long. Check the program, referring the following:
- Check if instructions such as JP or LOOP are programmed in such a way that a scan can never finish.
- Check that interrupt instructions are executed in succession.

When all LEDs are OFF

- Be sure to check the fluctuation in the power supply.

Make sure the direction is correct when installing ROM memory on the FP-M control board.

- Installation in the wrong direction may cause the power supply to short.

Disconnect the power supply wiring to the other devices if the power supplied to the FP-M control board is shared with them.

- If the LEDs on the FP-M control board turn ON at this moment, the capacity of the power supply is not enough to control other devices as well.
- Prepare another power supply for other devices or increase the capacity of the power supply.

■ Diagnosing output malfunction

<First check the output condition and then the input condition>
(1) Output condition: the output indicators are ON

Check the wiring of the output devices.

Check if the power is properly supplied to the output devices.

- If the power is properly supplied to the load, there is probably an abnormality in the load. Check the load again.
- If the power is not supplied to the load, there is probably an abnormality in the FP-M's output.
Please contact your dealer.

(2) Output condition: the output indicators are OFF

Monitor the output condition using a programming tool.

How to monitor the outputs:

- Using the NPST-GR Software Ver. 3.1

<If you are using MENU 1 screen type> Open [NPST MENU] by pressing Esc, then select "MONITOR" to skip to the [MONITOR] subwindow.
In the [MONITOR] subwindow, select "3. MONITOR LISTED RELAYS".
<If you are using MENU 2 screen type> Open [ONLINE MONITOR FUNCTION MENU] by pressing CtrI and F10 together, then select "I. LISTED RELAYS".

- Using the FP Programmer II

Press the keys on the FP Programmer II as shown on the right.

If the output monitored is turned ON, there is probably a duplicated output error or I/O allocation error. Check the program and the I/O allocation.

- Using NPST-GR Software Ver. 3.1
<If you are using MENU 1 screen type> Open [NPST MENU] by pressing Esc, then select "RELAYS/REGISTERS" to skip to the [RELAYS/REGISTERS] subwindow. In the [RELAYS/REGISTERS] subwindow, select "1. FORCE I/O".
- Using FP Programmer II

Press the keys on the FP Programmer II as shown on the right.
<If you are using MENU 2 screen type> Open [ONLINE MONITOR FUNCTION MENU] by pressing Ctrl and F10 together, then select "D. FORCE I/O".

Check if the output indicator is ON.

- If the output indicator is turned ON, go to input condition check.
- If the output indicator remains OFF, there is probably an abnormality in the FP-M control board's output circuit.
Please contact your dealer.
(3) Input condition: the input indicators are ON

Monitor the input condition using a programming tool.

How to monitor the inputs:

- Using NPST-GR Software Ver. 3.1
<If you are using MENU 1 screen type> Open [NPST MENU] by pressing Esc, then select "MONITOR" to skip to the [MONITOR] subwindow.
In the [MONITOR] subwindow, select
<If you are using MENU 2 screen type> Open the [ONLINE MONITOR FUNCTION MENU] by pressing Ctrl and F10 together, then select "I. LISTED RELAYS". " 3 . MONITOR LISTED RELAYS".

- Using the FP Programmer II

Press the keys on the FP Programmer II as shown on the right.

If the input monitored is OFF, there is probably an I/O allocation error or an abnormality with the FP-M's input.
Please contact your dealer.
If the input monitored is ON, check the program again.
Also check for current leaks at the input devices (e.g., two-wired photoelectric sensors). Check for the duplicated use of output or the program flow when a control instruction such as MC or JP is used.
Check the settings of the I/O allocation and I/O address setting switch.
(Next page)
(4) Input condition: the input indicators are OFF

Check the wiring of the input devices.

Check that the power is properly
supplied to the input terminals.

- If the power is properly supplied to the input terminal, there is probably an abnormality in the FP-M's internal circuit.
Please contact your dealer.
- If the power is not properly supplied to the input terminal, there is probably an abnormality in the input device or input power supply.
Check the wiring again.

When "PLC = COMM. ERR" is displayed on the NPST-GR screen

Check if the baud rate settings of the FP-M and NPST-GR are the same.

- NPST-GR baud rate setting

<If you are using MENU 1 screen type> Open [NPST MENU] by pressing the
Esc key, then select "NPST
CONFIGURATION" to skip to the [NPST CONFIGURATION] subwindow. In the [NPST
CONFIGURATION] subwindow, select
"1. NPST CONFIGURATION".
<If you are using MENU 2 screen type> Open [NPST FUNCTION MENU] by pressing the Esc key, then select "Z. NPST CONFIGURATION".

In this window, you can find the baud rate as shown below:
TRNS RATE (bps) [19200 / $9600 / 4800 / 2400 / 1200 / 600 / 300]$
Select a baud rate (19,200 or 9,600), press the F1 key and select "SAVE DISK? YES" to register this change onto the disk.

- FP-M baud rate setting

Set the baud rate using the baud rate selector of the FP-M control board.

Note:

- Even when both the NPST-GR and FP-M are set to $19,200 \mathrm{bps}$, sometimes a computer cannot communicate with the FP-M properly at 19,200 bps. If this happens, change both of their settings to 9,600 bps and try again.

Check the cable and RS232C interface adapter.

RS232C interface adapter: Needs to be customized to match your computer.

- Confirm the cable specifications, referring to the following examples:

RS232C interface adapter \& IBM PC-AT (9 Pins)				RS232C interface adapter \& personal computer (25 Pins)			
Connected to RS232C interface adapter (25 pins male)		Connected to IBM PC-AT (9 pins female)		Connected to RS232C interface adapter (25 pins male)		Connected to personal computer (25 pins male)	
Pin No.	Abbreviation						
1	FG	1	CD (DCD)	1	FG	1	FG
2	SD (TXD)	2	RD (RXD)	2	SD (TXD)	2	SD (TXD)
3	RD (RXD)	3	SD (TXD)	3	RD (RXD)	3	RD (RXD)
4	RS (RTS)	4	ER (DTR)	4	RS (RTS)	4	RS (RTS)
5	CS (CTS)	5	SG	5	CS (CTS)	5	CS (CTS)
6	DR (DSR)						
7	SG	7	RS (RTS)	7	SG	7	SG
8	CD (DCD)	8	CS (CTS)	8	CD (DCD)	8	CD (DCD)
20	ER (DTR)	9	RI (CI)	20	ER (DTR)	20	ER (DTR)

Confirm the setting of the personal computer referring to the manual for your computer.

When "PROTECT ERROR" is displayed

(1) When memory (EPROM) or master memory (EEPROM) is installed in the FP-M control board If memory (EPROM) or master memory (EEPROM) is installed on the FP-M control board, the program cannot be modified.
Proceed with program modification as follows:

When a password is set for the programmable controller
Change the setting of the password using a programming tool.

- Using NPST-GR Software Ver. 3.1
<If you are using MENU 1 screen type> Open [NPST MENU] by pressing the Esc key, and then select "PLC CONFIGURATION" to skip to the [PLC CONFIGURATION] subwindow. In the [PLC CONFIGURATION] subwindow, select " 5 . SET PLC PASSWORD".

In the [SET PLC PASSWORD] window, select ENAB and press the Enter key to set the mode of the password setting to enable saving and loading of the program.

- Using FP Programmer II

Press the keys on the FP Programmer II as shown on the right.
<If you are using MENU 2 screen type> Open [NPST FUNCTION MENU] by pressing the Esc key in the ONLINE mode, and then select "SET PLC
PASSWORD".

6-3. Error Codes

- When the ERR. LED turns ON, a total-check error or self-diagnostic error has occurred. The causes of the error can be known by checking the error code in " 1 . Table of Total-check Error Codes" or " 2 . Table of Self-diagnostic Error Codes" in this section.
- For details about the error checking procedure, refer to page 115, "■ When an ERR. LED in ON".

1. Table of Total-check Error Codes

Error code	Name of error	Description	Step to take
E1	Syntax error (SYNTAX)	Instruction is incorrectly programmed.	Set the mode of FP-M to PROG. and input the instruction correctly, referring to the description for the instruction.
E2	Duplicated output error (DUP USE)	Two or more OT and KP instructions are programmed using same relay.	Set the mode of FP-M to PROG. and correct the program so that one relay is not used for two or more OT and KP instructions. This error can be disregarded by changing the system register 20 setting to K1 (ENAB).
E3	Not paired error (PAIR)	One of the instructions, which must be paired, is missing (e.g., JP and LBL). The paired instruction sets may have been programmed in the incorrect order (e.g., MC and MCE).	Set the mode of FP-M to PROG. and program the missing instruction. Program the instruction sets in the proper order, referring to the description of the instruction.
E4	System register parameter error (MISMATCH)	The operand for the instruction is out of the range set in the system register.	Set the mode of FP-M to PROG. and check the system register parameter using a FP Programmer II (OP50) or NPST-GR Software (1. SYSTEM REGGSTER in the PLC CONFIGURATION).
E5	Program area error (PRG AREA)	The instruction has been programmed in the incorrect position (e.g., INT and IRET instructions are programmed at the address before the ED instruction).	Set the mode of FP-M to PROG. and program the instruction in the proper position, referring to the description of the instruction.
E8	Operand error (OPR COMBI)	Incorrect operand has been entered for the instruction.	Set the mode of FP-M to PROG. and program the instruction using the correct operand, referring to the description of the instruction.

2. Table of Self-diagnostic Error Codes

Error code	Name of error	Program execution when an error occurs	Description	Step to take
E26	ROM error	Stops	Probably an abnormality in the memory (EPROM) or master memory (EEPROM).	Program the memory (EPROM) or master memory (EEPROM) again and try to operate. If the same error is detected, try to operate with another memory (EPROM) or master memory (EEPROM).
E28	System register error	Stops	Probably an abnormality in the system register.	Set the mode of FP-M to PROG., initialize the system register and set it again.
E31	Interrupt error	Stops	Probably a hardware abnormality or an abnormality caused by noise.	Turn OFF the power of the FP-M and check the surrounding noise level.
E32	Interrupt error	Stops	Probably a hardware abnormality or an abnormality caused by noise.	Turn OFF the power of the FP-M and check the surrounding noise level.
Probably an interrupt program corresponding to the trigger is missing.	Set the mode of FP-M to PROG. and create a program which corresponds to the interruption.			
E45	Operation error	Selectable (by system register 26) (See note 1.)	Probably an abnormality was detected when a high-level or basic instruction was executed.	Check the program, referring to the error address which is stored in spedial data registers DT9018 and DT9017.
E50	Battery error	Continues	The voltage of the backup battery lowers or the connector of the backup battery is disconnected.	Replace the backup battery. The operation without backup battery can be specified by System register 4.
(See note 2.)				

Notes:

1. System register 26 specifies the program execution state when an operation error occurs.

Settings:
KO: FP-M stops operation if an operation error occurs.
K1: FP-M continues operation even if an operation error occurs.
2. System register 4 specifies the operation of the FP-M when the voltage of the backup battery lowers or when the backup battery disconnects.
Settings:
K0: The conditions above are regarded as errors.
K1: The conditions above are not regarded as errors.

6-4. Maintenance

Although programmable controllers have been designed in such a way to minimize maintenance and offer troublefree operation, several maintenance aspects should be taken into consideration. If preventive maintenance is performed periodically, you will minimize the possibility of system malfunctions.

1. Replacement of Backup Battery

1) Battery life

Control board	Battery life (at $\mathbf{2 5}{ }^{\circ} \mathbf{C} / 77{ }^{\circ} \mathrm{F}$ ambient temperature)
C20R, C20T, and C32T types	Approx. 53,000 hours (approx. 6 years)
C20RC, C20TC, and C32TC types	Approx. 27,000 hours (approx. 3 years)

- When the voltage of the backup battery lowers, special internal relays R9005 and R9006 turn ON and the ERR. LED turns ON. Replace the backup battery within a month after this battery error is detected.

2) Using backup battery type

Item	Part number	Description
Backup battery	AFB8801	Lithium battery, BR2032/CR2032 type or equivalent

Caution:

- Never throw batteries into a fire. Do not dispose of them in trash that will be incinerated.

3) How to replace backup battery

- Replace the battery within 3 minutes, after applying the power to the FP-M control board more than 1 minute.

Procedure

(1) Turn OFF the power of FP-M control board.
(2) Lift the backup battery on the FP-M control board using insulated slotted screwdriver as shown on the right.
(3) Remove the backup battery from the backup battery holder as shown on the right.

(4) With the + side facing up, insert the new backup battery into the backup battery holder by sliding it in sideways as shown on the right.
(5) Turn ON the power of the FP-M control board.

Note:

- Before inserting the new battery, check that nothing is attached to the + and - surfaces.

2. Check Items

- Perform a daily or periodic check to maintain proper operation of the FP-M programmable controller.

Item	Check point	Criteria for judgement
Power supply voltage	Check the power supply condition by measuring it at power supply terminals of the FP-M.	21.6 to 26.4 V DC
I/O power supply voltage	Check the I/O power supply condition by measuring it at I/O power supply terminals of the FP-M.	20.4 to 26.4 V DC: C20T and C32T types 22.8 to 26.4 V DC: C20R type
Environment	Ambient temperature (e.g., temperature in the control box)	$0{ }^{\circ} \mathrm{C}$ to $55{ }^{\circ} \mathrm{C} / 32{ }^{\circ} \mathrm{F}$ to $131{ }^{\circ} \mathrm{F}$
	Ambient humidity (e.g., humidity in the control box)	$\begin{aligned} & 30 \text { to } 85 \% \mathrm{RH} \\ & \text { (non-condensing) } \end{aligned}$
	Is dirt and dust present?	Free from corrosive gases and excessive dust
LEDs on control boards	RUN LED	Turns ON when program is executed.
	ERR. LED	Turns ON when a self-diagnostic error occurs.
	ALARM LED	Turns ON when an abnormality is detected or watchdog timer error occurs.
Indicators (LED) on control and expansion boards	Input indicators (LED)	Turns ON when input devices are ON. Turns OFF when input devices are OFF.
	Output indicators (LED)	Turns ON when output devices are ON. Turns OFF when output devices are OFF.
Mounting and connecting condition	- Are all of the boards firmly fixed on a panel? - Are all the terminal screws securely tightened? - Is the wiring being properly kept?	
Backup battery	Is the backup battery being periodically replaced?	Refer to the preceding page.

INTELLIGENT AND LINK BOARDS

7-1. Analog I/O Board 128

1. Specifications 128
2. Dimensions 129
3. Parts Terminology 130
4. Wiring 132
7-2. A/D Converter Board 133
5. Specifications 133
6. Dimensions 134
7. Parts Terminology 135
8. Wiring 137
7-3. D/A Converter Board 138
9. Specifications 138
10. Dimensions 139
11. Parts Terminology 140
12. Wiring 142
7-4. Programming for Analog I/O, A/D Converter, and D/A Converter Boards 143
13. Digital Values of Analog Input 143
14. Digital Values of Analog Output 144
15. Specification of Analog I/O Data 146
16. Applications 147
7-5. High-speed Counter Board 148
17. Specifications 148
18. Dimensions 150
19. Parts Terminology 151
20. I/O Allocation 153
21. Wiring 156
22. Programming for High-speed Counter Board 157
7-6. FP-M Transmitter Master Board (MEWNET-TR) 161
23. Specifications 162
24. Dimensions 162
25. Parts Terminology 163
7-7. FP-M I/O Link Board (MEWNET-F) 165
26. Specifications 166
27. Dimensions 166
28. Parts Terminology 167

7-1. Analog I/O Board

Input and output of analog data (voltage and current) is possible by expanding the FP-M control board with an analog I/O board.

1. Specifications

1) General

Item	\quad Description
Ambient temperature	$0{ }^{\circ} \mathrm{C}$ to $+50{ }^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ (See note.)
Ambient humidity	30% to $80 \% \mathrm{RH}$ (non-condensing)
Storage temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
Vibration resistance	10 Hz to $55 \mathrm{~Hz}, 1$ cycle $/ \mathrm{min}:$ double amplitude of $0.75 \mathrm{~mm}(0.030 \mathrm{in}),. 10 \mathrm{~min}$ on 3 axes
Shock resistance	Shock of $98 \mathrm{~m} / \mathrm{s}^{2}$ or more, 4 times on 3 axes
Noise immunity	$800 \mathrm{Vp}-\mathrm{p}$ (based on in-house measurements)

Note:

- When using in ambient temperature of $45^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, be sure to make the number of ON points on the upper expansion board 50% or less.

2) Performance

Item		Description
Analog input specifications	Number of input channels	4 channels
	Input range	0 to $5 \mathrm{~V}, 0$ to 10 V , and 0 to 20 mA
	Resolution	1/256
	Overall accuracy	$\begin{aligned} & \pm 3 \mathrm{LSB}\left(\text { at } 25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}\right. \text {), } \\ & \pm 5 \mathrm{LSB}\left(\text { at } 0^{\circ} \mathrm{C} \text { to } 50^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F} \text { to } 122^{\circ} \mathrm{F}\right. \text {) } \end{aligned}$
	Response time	$2.5 \mathrm{~ms} /$ channel
	Input impedance	$1 \mathrm{M} \Omega$ or more (for 0 to 5 V and 0 to 10 V range) 250Ω (for 0 to 20 mA range)
	Absolute input range	+15 V (at 0 to 5 V and 0 to 10 V range) +30 mA (at 0 to 20 mA range)
	Digital converted data	K0 to K255
Analog output specifications	Number of output channels	1 channel
	Output range	0 to $5 \mathrm{~V}, 0$ to 10 V , and 0 to 20 mA
	Resolution	1/256
	Overall accuracy	$\pm 1.0 \%$ of full scale (at $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$), $\pm 2.0 \%$ of full scale (at $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} / 32{ }^{\circ} \mathrm{F}$ to $122{ }^{\circ} \mathrm{F}$)
	Response time	$2.5 \mathrm{~ms} /$ channel
	Output impedance	0.5Ω or less (for 0 to 5 V and 0 to 10 V output range)
	Max. output current	20 mA (for 0 to 5 V and 0 to 10 V output range)
	Allowable load resistance	0 to 500Ω (for 0 to 20 mA range)
	Digital data	K0 to K255
Insulation method		Optical coupler (not insulated between channels)

Analog data conversion characteristics

- 0 to 10 V range

- 0 to 20 mA range

3) Restriction of expansion

- A total of four analog I/O boards can be attached to the control board.
- When expanding analog I/O boards, install them beneath the expansion I/O board as shown below.

CORRECT

2. Dimensions

(unit: mm/in.)

3. Parts Terminology

Expansion power supply connector:
(2) Input terminal (15-pin):Input/output terminal (12-pin):
(4) Expansion connector:
(5) Board number selector: (See following page.)
(6) Analog range selectors: (See following page.)

Supplies power (24 V DC) to the analog board using the expansion power supply cable.

Connect the input field devices (e.g., limit switch). This terminal block is removable.

Connect the input/output field devices (e.g., limit switch, solenoid). This terminal block is removable.

Connects the control board with internal circuit.
Sets the special data register for storing analog input and output data by selecting the board number.

The analog I/O ranges are selectable with jumper pins on the board.

Analog range setting

Jumper pin	Pin position	Selectable range		
JP1	A	Analog input	Channel 0	Voltage input: 0 to 5 V (Current input: 0 to 20 mA)
	B			Voltage input: 0 to 10 V
JP2	A	Analog input	Channel 1	Voltage input: 0 to 5 V (Current input: 0 to 20 mA)
	B			Voltage input: 0 to 10 V
JP3	A	Analog input	Channel 2	Voltage input: 0 to 5 V (Current input: 0 to 20 mA)
	B			Voltage input: 0 to 10 V
JP4	A	Analog input	Channel 3	Voltage input: 0 to 5 V (Current input: 0 to 20 mA)
	B			Voltage input: 0 to 10 V
JP5	A	Analog output	Channel 0	Voltage output: 0 to 5 V (Current output: 0 to 20 mA)
	B			Voltage output: 0 to 10 V

Note:

- The jumper pins (JP1 to JP5) are set to position "A" when shipped.

■ Board number setting

- Analog input and output data for analog I/O boards are stored in special data registers (DT9080 to DT9102) using the board number selector as follows.

Board number	Selector position	Input/output	Channel number	Special data register
No. 0		Converted digital value of analog input from analog I/O board No. 0	0	DT9080
			1	DT9081
			2	DT9082
			3	DT9083
		Digital value for specifying analog	0	DT9096
		output from analog I/O board No. 0		DT9097
No. 1		Converted digital value of analog input from analog I/O board No. 1	0	DT9084
			1	DT9085
			2	DT9086
			3	DT9087
		Digital value for specifying analog output from analog I/O board No. 1	0	$\begin{aligned} & \hline \text { DT9098 } \\ & \text { DT9099 } \end{aligned}$
No. 2	$\begin{aligned} & \text { OFF ON OFF OFF } \\ & \begin{array}{\|l\|l\|l\|l\|} \hline \nabla_{0} & \square_{2} & \square & \square \\ \text { ONT } & \\ \hline \end{array} \end{aligned}$	Converted digital value of analog input from analog I/O board No. 2	0	DT9088
			1	DT9089
			2	DT9090
			3	DT9091
		Digital value for specifying analog output from analog I/O board No. 2	0	DT9100 DT9101
No. 3		Converted digital value of analog input from analog I/O board No. 3	0	DT9092
			1	DT9093
			2	DT9094
			3	DT9095
		Digital value for specifying analog output from analog I/O board No. 3	0	DT9102 DT9103

Notes:

- Refer to page 201, "8-7. Special Data Registers", for details about special data registers.
- When two or more analog I/O boards are installed, be sure to configure the board number selector in order to prevent special data register overlap. The board number selectors are set to board number 0 (all "OFF" position) when shipped.
- Board number selector upper state is "OFF (\square)" and the lower state is "ON (\square)".

4. Wiring

■ Pin layout

Notes:

- When using current input, connect between current input terminal (e.g., IO, I1, I2, I3) and voltage input terminal (e.g., V0, V1, V2, V3).
- The voltage and current range cannot be used on the same channel at one time.

The terminals of the unused range should be left open.

- Use the 24 V terminal of the input terminal or the expansion power supply connector for the analog I/O board power supply.
- Refer to page 61, "6) Wiring for I/O terminals", for the wiring.
- To prevent electric and magnetic interference, use shielded twisted-cable (two-core type) for I/O signals.
- Keep the main circuit wiring away from high voltage lines. Do not bundle signal cables and high voltage lines together.
- The shielded cable should be grounded at:

Output signal: Output field device side
Input signal: FG (frame ground) terminal of analog I/O board

7-2. A/D Converter Board

Input of analog data (voltage and current) is possible by expanding the FP-M control board with an intelligent board for analog data input.

1. Specifications

1) General

Item	\quad Description
Ambient temperature	$0{ }^{\circ} \mathrm{C}$ to $+50{ }^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right.$ to $\left.+122{ }^{\circ} \mathrm{F}\right)$ (See note.)
Ambient humidity	30% to $80 \% \mathrm{RH}$ (non-condensing)
Storage temperature	$-20{ }^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.+158{ }^{\circ} \mathrm{F}\right)$
Vibration resistance	10 Hz to $55 \mathrm{~Hz}, 1$ cycle $/ \mathrm{min}$: double amplitude of $0.75 \mathrm{~mm}(0.030 \mathrm{in}),. 10 \mathrm{~min}$ on 3 axes
Shock resistance	Shock of $98 \mathrm{~m} / \mathrm{s}^{2}$ or more, 4 times on 3 axes
Noise immunity	$800 \mathrm{Vp-p}$ (based on in-house measurements)

Note:

- When using in ambient temperature of $45^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, be sure to make the number of ON points on the upper expansion board 50% or less.

2) Performance

Item	Description
Number of input channels	4 channels
Input range	0 to $5 \mathrm{~V}, 0$ to 10 V , and 0 to 20 mA
Resolution	$1 / 1000$
Overall accuracy	$\pm 1.0 \%$ of full scale (at $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$),
	$\pm 2.0 \%$ of full scale (at $0{ }^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}$)
Response time	$2.5 \mathrm{~ms} /$ channel
Input impedance	$1 \mathrm{M} \Omega$ or more (for 0 to 5 V and 0 to 10 V range)
	250Ω (for 0 to 20 mA range)
Absolute input range	+15 V (at 0 to 5 V and 0 to 10 V range)
	+30 mA (at 0 to 20 mA range)
Digital converted data	K0 to K1000
Insulation method	Optical coupler (not insulated between channels)

7-2. A/D Converter Board

Analog data conversion characteristics

- 0 to 10 V range

- 0 to $\mathbf{2 0} \mathbf{m A}$ range

3) Restriction of expansion

- A total of four A / D converter boards can be attached to the control board.
- When expanding A/D converter boards, install them beneath the expansion I/O boards as shown below.

2. Dimensions

3. Parts Terminology

(1) Expansion power supply connector:
(2) Input terminal (8-pin):Input terminal (12-pin):Expansion connector:

Board number selector:
(See following page.)
(6) Analog range selectors:
(See following page.)

Supplies power to the A/D converter board using the expansion power supply cable.

Connect the input field devices (e.g., limit switch) for channel 3.

Connect the input field devices (e.g., limit switch) for channels 0 , 1 and 2.

Connects the control board with the internal circuit.

Sets the special data register for storing analog input data by selecting the board number.

The analog input ranges are selectable with jumper pins on the board.

Analog range setting

Jumper pin	Pin position	Selectable range		
JP1	A	Analog input	Channel 3	Voltage input: 0 to 5 V (Current input: 0 to 20 mA)
	B			Voltage input: 0 to 10 V
JP2	A	Analog input	Channel 2	Voltage input: 0 to 5 V (Current input: 0 to 20 mA)
	B			Voltage input: 0 to 10 V
JP3	A	Analog input	Channel 1	Voltage input: 0 to 5 V (Current input: 0 to 20 mA)
	B			Voltage input: 0 to 10 V
JP4	A	Analog input	Channel 0	Voltage input: 0 to 5 V (Current input: 0 to 20 mA)
	B			Voltage input: 0 to 10 V

Note:

- The jumper pins (JP1 to JP4) are set to position "A" when shipped.

■ Board number setting

- Analog input data for A/D converter boards are stored in special data registers (DT9080 to DT9095) using the board number selector as follows.

Board number	Selector position	Input/output	Channel number	Special data register
No. 0		Converted digital value of analog input from A/D converter board No. 0	0	DT9080
			1	DT9081
			2	DT9082
			3	DT9083
No. 1		Converted digital value of analog input from A/D converter board No. 1	0	DT9084
			1	DT9085
			2	DT9086
			3	DT9087
No. 2		Converted digital value of analog input from A/D converter board No. 2	0	DT9088
			1	DT9089
			2	DT9090
			3	DT9091
No. 3		Converted digital value of analog input from A/D converter board No. 3	0	DT9092
			1	DT9093
			2	DT9094
			3	DT9095

Notes:

- Refer to page 201, "8-7. Special Data Registers", for details about special data registers.
- When two or more A/D converter boards are installed, be sure to configure the board number selector in order to prevent special data register overlap. The board number selectors are set to board number 0 (all "OFF" position) when shipped.
- Board number selector upper state is "OFF (\square)" and the lower state is "ON (\square

4. Wiring

■ Pin layout

Notes:

- When using current input, connect between current input terminal (e.g., I0, I1, I2, I3) and voltage input terminal (e.g., V0, V1, V2, V3).
- The voltage and current range cannot be used on the same channel at one time.

The terminals of the unused range should be left open.

- Use the 24 V terminal of the input terminal or the expansion power supply connector for the A / D converter board power supply.
- Refer to page 61, "6) Wiring for I/O terminals", for the wiring.
- To prevent electric and magnetic interference, use shielded twisted-cable (two-core type) for input terminals.
- Keep the main circuit wiring away from high voltage lines. Do not bundle signal cables and high voltage lines together.
- The shielded cable should be grounded to the FG (frame ground) terminal of A/D converter board. Depending on the noise conditions, if might be better to ground the cable at the input field device side.

7-3. D/A Converter Board

Output of analog data (voltage and current) is possible by expanding the FP-M control board with an intelligent board for analog data output.

1. Specifications

1) General

Item	\quad Description
Ambient temperature	$0{ }^{\circ} \mathrm{C}$ to $+50{ }^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right.$ to $\left.+122{ }^{\circ} \mathrm{F}\right)$ (See note.)
Ambient humidity	30% to $80 \% \mathrm{RH}$ (non-condensing)
Storage temperature	$-20{ }^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.+158{ }^{\circ} \mathrm{F}\right)$
Vibration resistance	10 Hz to $55 \mathrm{~Hz}, 1$ cycle/min: double amplitude of $0.75 \mathrm{~mm}(0.030 \mathrm{in}),. 10 \mathrm{~min}$ on 3 axes
Shock resistance	Shock of $98 \mathrm{~m} / \mathrm{s}^{2}$ or more, 4 times on 3 axes
Noise immunity	$800 \mathrm{Vp-p}$ (based on in-house measurements)

Note:

- When using in ambient temperature of $45^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, be sure to make the number of ON points on the upper expansion board 50% or less.

2) Performance

Item	Description
Number of output channels	2 channels
Output range	0 to $5 \mathrm{~V}, 0$ to 10 V , and 0 to 20 mA
Resolution	$1 / 1000$
Overall accuracy	$\pm 1.0 \%$ of full scale (at $25^{\circ} \mathrm{C} / 77{ }^{\circ} \mathrm{F}$),
	$\pm 2.0 \%$ of full scale (at $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} / 32{ }^{\circ} \mathrm{F}$ to $122{ }^{\circ} \mathrm{F}$)
Response time	$2.5 \mathrm{~ms} /$ channel
Output impedance	0.5Ω or less (for 0 to 5 V and 0 to 10 V range)
Max. output current	20 mA (for 0 to 5 V and 0 to 10 V range)
Allowable load resistance	0 to 500Ω (for 0 to 20 mA range)
Digital data	K 0 to K 1000
Insulation method	Optical coupler (not insulated between channels)

Analog data conversion characteristics

- 0 to 10 V range

- 0 to 20 mA range

3) Restriction of expansion

- A total of four D/A converter boards can be attached to the control board.
- When expanding D/A converter boards, install them beneath the expansion I/O boards as shown below.

2. Dimensions

3. Parts Terminology

Expansion power supply connector:Output terminal (12-pin):

Expansion connector:
Board number selector:
(See following page.)
(5) Analog range selectors:
(See following page.)

Supplies power (24 V DC) to the D/A converter board using the expansion power supply cable.

Connect the external output devices (e.g., solenoid) for channels 0 and 1 .

Connects the control board with the internal circuit.
Sets the special data register for storing analog output data by selecting the board number.

The analog output ranges are selectable with jumper pins on the board.

Analog range setting

Jumper pin	Pin position	Selectable range		
JP1	A	Analog output	Channel 0	Voltage output: 0 to 5 V (Current output: 0 to 20 mA)
	B			Voltage output: 0 to 10 V
JP2	A	Analog output	Channel 1	Voltage output: 0 to 5 V (Current output: 0 to 20 mA)
	B			Voltage output: 0 to 10 V

Note:

- The jumper pins (JP1 and JP2) are set to position "A" when shipped.

■ Board number setting

- Analog output data for D/A converter boards are stored in special data registers (DT9096 to DT9103) using the board number selector as follows.

Board number	Selector position	Input/output	Channel number	Special data register
No. 0		Digital value for specifying analog output from D/A converter board No. 0	0	DT9096
			1	DT9097
No. 1		Digital value for specifying analog output from D/A converter board No. 1	0	DT9098
			1	DT9099
No. 2		Digital value for specifying analog output from D/A converter board No. 2	0	DT9100
			1	DT9101
No. 3		Digital value for specifying analog output from D/A converter board No. 3	0	DT9102
			1	DT9103

Notes:

- Refer to page 201, "8-7. Special Data Registers", for details about special data registers.
- When two or more D/A converter boards are installed, be sure to configure the board number selector in order to prevent special data register overlap. The board number selectors of the D/A converter board are set to board number 0 (all "OFF" position) when shipped.
- Board number selector upper state is "OFF (\square)" and the lower state is "ON (\square)".

4. Wiring

■ Pin layout

Notes:

- The voltage and current range cannot be used on the same channel at one time.

The terminals of the unused range should be left open.

- Use the 24 V terminal of the output terminal or the expansion power supply connector for the D/A converter board power supply.
- Refer to page 61, "6) Wiring for I/O terminals", for the wiring.
- To prevent electric and magnetic interference, use shielded twisted-cable (two-core type) for output terminal.
- Keep the main circuit wiring away from high voltage lines. Do not bundle signal cables and high voltage lines together.
- The shielded cable should be grounded to the output field device. Depending on the noise conditions, if might be better not to ground the cable or to connect the cable to the output signal common side.

7-4. Programming for Analog I/O, A/D Converter, and D/A Converter Boards

1. Digital Values of Analog Input

- The converted digital values are stored in the special data registers (DT9080 to DT9095) by the board number selector of each board.
- Be sure to use the $\mathbf{F 0}$ (MV) instruction to transfer the converted digital value in the special data registers (DT9080 to DT9095) into other data registers.

Example: Transfer the converted digital value of DT9080 to the data register DT0 when X1 turns ON. \qquad

- The contents of special data registers DT9080 to DT9095 can be monitored using NPST-GR Software or FP Programmer II.

Note:

- The converted digital values of analog input are transmitted to special data registers DT9080 to DT9095 at the time of programmable controller I/O updating during each scan. Transmission will not occur if the mode selector of the FP-M control board is set to PROG.

Analog input data conversion characteristics

- The ranges of the converted digital values of analog input are shown below:
- When analog I/O board is installed

K 0 to K 255 (0 to $5 \mathrm{~V}, 0$ to 10 V and 0 to 20 mA)
The range of converted digital values
(8 bits resolution of special data registers DT9080 to DT9095)
<Analog I/O Board>

- 0 to 10 V range

- 0 to 20 mA range

- When the A/D converter board is installed

K0 to K999 (0 to $5 \mathrm{~V}, 0$ to 10 V and 0 to 20 mA)
The range of converted digital values
(10 bits resolution of special data registers DT9080 to DT9095)

<A/D Converter Board>

- 0 to 5 V range

- 0 to 10 V range

- 0 to 20 mA range

2. Digital Values of Analog Output

- The digital values are stored in the special data registers (DT9096 to DT9103) by the board number selector of each board.
- Be sure to use the $\mathbf{F 0}$ (MV) instruction to transfer the digital values into special data registers DT9096 to DT9103.
- The data is transferred from the special data registers at the time of I/O update in each scan.

Example: Transfer the digital value of data register DT100 to special data register DT9096 when X1 turns

X1 [F0 MV, DT100, DT9096] ON.

- The digital data can be transferred into special data registers DT9096 to DT9103 using NPST-GR Software or FP Programmer II.

Note:

[^5]
Analog output data conversion characteristics

- The ranges of digital values to specify analog output are shown below:
- When analog I/O board is installed

K0 to K255 (0 to $5 \mathrm{~V}, 0$ to 10 V , and 0 to 20 mA)
The range of digital values for specifying analog output
(8 bits resolution of special data registers DT9096 to DT9103)

<Analog I/O Board>

- 0 to 5 V range

- 0 to 10 V range

- 0 to 20 mA range

- When D/A converter board is installed

K0 to K999 (0 to $5 \mathrm{~V}, 0$ to 10 V , and 0 to 20 mA)
The range of digital values for specifying analog output (10 bits resolution of special data registers DT9096 to DT9103)

<D/A Converter Board>

- 0 to 5 V range

- 0 to 10 V range

- 0 to 20 mA range

3. Specification of Analog I/O Data

- When the analog I/O board is installed, be sure to specify the data within the range of K0 to K255 (using 8 bits) as follows:

The analog input data (A/D) in bit positions 8 to 15 becomes 0 .
The analog output data (D/A) in bit positions 8 to 15 is ignored.

Example:

If K-1 is set to special data register DT9096, analog data, being regarded as K255, is output.
Data configuration when $\mathrm{K}-1$ is set:

Note:

- If data outside K0 to K255 is specified, the analog value is output ignoring data in bit positions 8 to 15.
- When the A / D converter board or D / A converter board is installed, be sure to specify the data within the range of K 0 to K999 (using 10 bits) as follows:

The analog input data (A/D) in bit positions 10 to 15 becomes 0 .
The analog output data (D/A) in bit positions 10 to 15 is ignored.

Example:

If K1,024 is set to special data register DT9096, analog data, being regarded as 0 , is output.
Data configuration when $\mathrm{K} 1,024$ is set:

Notes:

- If data outside K 0 to $\mathrm{K} 1,023$ is specified, the data is handled ignoring data in bit positions 10 to 15 .
- If data $\mathrm{K} 1,000$ to $\mathrm{K} 1,023$ is specified, analog data that is slightly more than the maximum rated value ($5 \mathrm{~V}, 10 \mathrm{~V}$, and 20 mA) is output.

4. Applications

- Example 1: A/D program example of simple temperature control

- Compares the analog data from channel 0 of analog control board No. 0 (DT9080) with preset values (K100 and K110). The compared result is stored in special internal relays R900A and R900C.
- When the contents of DT9080 < K100, external output relay Y0 (heater) goes ON.
- When the contents of DT9080 > K110, external output relay Y0 (heater) goes OFF.

Program

Special internal relays

- R9010: Always ON relay
- R900A: > flag
- R900C: < flag

High-level instruction

- F62 (WIN): 16-bit data band compare

Special data register

- DT9080: Channel 0 of converted digital value from analog control board No. 0

■ Example 2: D/A program example of variable speed control

- Transfer the value of potentiometer V0 on the FP-M control board to channel 0 of analog control board No. 0 (DT9096).

Program

$\stackrel{\text { R9010 }}{\vdash}$ [F0 MV, DT9040, DT9096]

Special internal relay - R9010: Always ON relay High-level instruction

- F0 (MV): 16-bit data, move

Special data registers

- DT9040: Manual dial-set register for potentiometer V0 on FP-M control board
- DT9096: Channel 0 of digital value for specifying analog data output from analog control board No. 0

7-5. High-speed Counter Board

This is a 2 channel high-speed counter board. One high-speed counter board can be used to expand the FP-M control board.

1. Specifications

1) General

Item	Description
Ambient temperature	$0{ }^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Ambient humidity	30% to $80 \% \mathrm{RH}($ non-condensing $)$
Storage temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.+158{ }^{\circ} \mathrm{F}\right)$
Storage humidity	30% to $80 \% \mathrm{RH}$ (non-condensing)
Vibration resistance	10 Hz to $55 \mathrm{~Hz}, 1$ cycle $/ \mathrm{min}$: double amplitude of $0.75 \mathrm{~mm}(0.030 \mathrm{in}),$. 10 min on 3 axes
Shock resistance	$98 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G})$ or more, 4 times on 3 axes
Noise immunity	800 V or more (based on in-house measurements)

2) Performance

Item		Description
Counter Specifications	Counter channels	2 channels (CH 0, CH 1)
	Max. counting speed	1-phase mode: 20 kHz 2-phase/4-time multiplication mode: 5 kHz
	Counting range	$-8,388,608$ to $+8,388,607$
	Number of target value settings	2 points/channel
Input Specifications	Input mode	3 modes (2-phase/4-time multiplication mode, individual input mode, directional input mode) * The mode is set using the input mode selector.
	Number of input points	3 points (INA, INB, RESET) $\times 2$ channels 2 points (RST.E, O.INH) $\times 2$ channels
	Rated input voltage	24 V DC
	Input voltage range	21.6 to 26.4 V DC
	Insulation method	Optical coupler
	ON voltage	19.2 V DC or less
	OFF voltage	4.8 V DC or more
	Min. input pulse width	$50 \mu \mathrm{~s}$ at INA and INB inputs 2.5 ms at RESET input
	Input delay time	1 ms or less at RST.E and O.INH inputs
	Input current	Approx. 7.5 mA at INA, INB, and RESET inputs Approx. 5 mA at RST.E and O.INH inputs
	Input type	Source

3) Differences in specifications between high-speed counter function with FP-M control board and high-speed counter board

Item	Description	
	High-speed counter function of FP-M control board	High-speed counter board
Counter channels	1 channel	2 channels (CH 0, CH 1)
Max. counting speed	1-phase mode: 10 kHz 2-phase mode: 10 kHz	1-phase mode: 20 kHz 2-phase/4-time multiplication mode: 5 kHz
Number of target value settings	Optionally set	2 points/channel
Input mode	4 modes (up, down, up/down, and 2-phase mode)	3 modes (2-phase/4-time multiplication, individual input, and directional input mode)
Number of input points	3 points - Count pulse inputs (X0 and X1) - External reset input $(X 2) \times 1$ channel	6 points [Count A/B phase pulse inputs (INA and INB), External reset input (RST)] $\times 2$ channels 4 points [Input to enable external reset (RST.E), Input to inhibit accord output (O.INH)] $\times 2$ channels
Min. input pulse width	1-phase: $50 \mu \mathrm{~s}$ 2-phase: $50 \mu \mathrm{~s}$	INA and INB inputs: $50 \mu \mathrm{~s}$ RESET input: 2.5 ms
Number of output points	Optionally set	2 points (OUT0 and OUT1)/channel
Functions	- Output set operation (output goes ON) using F162 (HCOS) instruction - Output reset operation (output goes OFF) using F163 (HCOR) instruction - Reading and changing elapsed value using F1 (DMV) instruction - Interrupt function using the elapsed value of F162 (HCOS), F163 (HCOR), F164 (SPDO), and F165 (CAMO) instruction - Pulse output control or pattern output control using F164 (SPD0) instruction - Cam output control using F165 (CAMO) instruction	- Output condition control (output goes OFF \rightarrow ON or $\mathrm{ON} \rightarrow \mathrm{OFF}$) when the target value agrees with the elapsed value - Reading and changing elapsed value - Reading capture value

Item	Description		
	High-speed counter function of FP-M control board		

Note:

- Refer to FP-M/FP1 Programming Manual "4-4. How to Use the High-speed Counter", for details about instructions F1 (DMV), F162 (HCOS), F163 (HCOR), F164 (SPDO), and F165 (CAM0) that are related to the high-speed counter function.

4) Restriction of expansion

- One high-speed counter board can be attached to the control board.

2. Dimensions

3. Parts Terminology

(1) Input/output connector (26-pin): (See page 156.)
(2) Control output indicators:Control input indicators:
(4) Expansion connector:
(5) Operating indicator:
(6) Input mode selector:
(See following page.)

Connects the input and output field devices (e.g., encorder, motor driver) of the high-speed counter board.
MIL connector is used.

LED 0: ON when OUT 00 terminal is in the ON state
LED 1: ON when OUT 01 terminal is in the ON state
LED 2: ON when OUT 10 terminal is in the ON state
LED 3: ON when OUT 11 terminal is in the ON state

LED 4: ON when RST.E0 terminal is in the ON state
LED 5: ON when O.INH0 terminal is in the ON state
LED 6: ON when RST.E1 terminal is in the ON state
LED 7: ON when O.INH1 terminal is in the ON state

Connects the internal circuit of the control board.

The LED is normally ON when the high-speed counter board is properly connected and operating.

Selects the input mode for the high-speed counter board.
\square Input mode setting

- 2-phase/4-time multiplication mode

Switch position

Operation conditions

INA		INB
Counting mode		
ON	ON	Down
OFF	OFF	Up
ON	ON	Up
OFF	OFF	Down

INB	INA	Counting mode
ON	ON	Up
OFF	OFF	Down
ON		
OFF	ON	Down
	OFF	Up

- Individual input mode

Operation conditions

INA	INB	Counting mode
ON	-	Up
OFF		
INB		INA
ON Counting mode		
OFF	-	Down

- Directional input mode

Operation conditions

INA		INB
ON Counting mode		
OFF	ON	Up
	OFF	Down

Time chart

Time chart

Time chart

Note:

[^6]
4. I/O Allocation

- The data of the high-speed counter board are stored in the special data registers.

Channel number	Data type	Special data register	Description
Channel 0	Target value 0	DT9104, DT9105	- These registers are for storing data of the high-speed counter board. - The target value areas, elapsed value, and capture value are processed in binary in the range of $\mathrm{K}-8,388,608$ to $\mathrm{K} 8,388,607$. If the data outside the range is input, the data is handled while disregarding bit positions 24 to 31 in each register (bit positions 8 to 15 in higher 16-bit area of 32-bit data). Note:
	Target value 1	DT9106, DT9107	
	Elapsed value	DT9108, DT9109	
	Capture value	DT9110, DT9111	
Channel 1	Target value 0	DT9112, DT9113	
	Target value 1	DT9114, DT9115	- Be sure to use the F1 (DMV) instruction to transfer data in these special data registers to other registers, or data in other registers to these special data registers.
	Elapsed value	DT9116, DT9117	
	Capture value	DT9118, DT9119	
Channels 0 and 1	Control area	DT9120	- The control modes for the high-speed counter board are specified by DT9120. The control modes, output mode, internal and external reset enable/disable, "target = elapsed" output control, and target setting can be set. For details about construction of DT9120, refer to the following page.
	Status monitor register area	DT9121	- The status of the high-speed counter board can be monitored by DT9121. The status of reset enable input, output disable input, flag condition when target value = elapsed value, and error code can be monitored. For details about construction of DT9121, refer to the following page.

■ Construction of DT9120

This area specifies the control modes for the high-speed counter board.

*1. Output mode:

The output goes ON or OFF when the elapsed value becomes equal to the target. These bits specify the mode for output transition when the elapsed value becomes equal to the target value. If the output mode is changed, set the target

Bit position	Channel	Corresponding target value	Corresponding output
0	0	Target 0	OUT00
1		Target 1	OUT01
8	1	Target 0	OUT10
9		Target 1	OUT11

*2. External reset control bit:

These bits (bit positions 3 and 11) are in the ON state, the external reset inputs (RST.0/RST.1) are ignored as:

By turning ON the external reset enable inputs (RST.E0/RST.E1), you can enable the external reset inputs (RST.0/RST.1). The external reset inputs (RST.0/RST.1) effective are:

- external reset inputs while the external reset enable input is in the ON states. - the first external reset inputs after the external reset enable input turns OFF.

*3. Target setting:

To preset the target values for the high-speed counter board, first, transfer the set values to the special data registers for the target values. Then, turn the target setting bit from 0 to 1 . A set value is revised at the moment the leading edge of this bit is detected. Therefore, if the bit is already set to 1 , change the bit from 1 to 0 and then change it back to 1 .

*4. Number system selection:

This bit is prepared to select the number system used for the high-speed counter board. If you set this bit to 0 , the data counts the number in the BCD code. However, the FP-M usually handles numbers in binary, so use of the binary number system is recommended.

■ Construction of DT9121

The status of the high-speed counter board can be monitored in this area.

*1. Output disable input:

This input disables external output even if the high-speed counter is set to the output enable mode by DT9120. While this input is turned ON, the output of the high-speed counter board is not changed even if the elapsed value becomes equal to the target.

*2. Error codes

A BCD error is detected only when data for the high-speed counter board is set to BCD operation using $\mathbf{F 0}$ (MV) and bit position 7 of DT9120.

Bit position				Description
11	10	9	8	
0	0	0	1	BCD error
0	0	1	0	CH 0 overflow/underflow
0	1	0	0	CH 1 overflow/underflow
1	0	0	0	Watchdog timer error

5. Wiring

■ Pin layout and wiring example

- The terminal pairs 11 and 12, 17 and 18, 21 and 22 are each connected internally.

Pin name		Description	
Channel 0	Channel 1		
INA 0	INA 1	A phase pulse input	
INB 0	INB 1	B phase pulse input	
RST 0	RST 1	External reset input	
OUT00	OUT10	Target value 0 accord output	
OUT01	OUT11	Target value 1 accord output	
RST.E0	RST. E1	Input to enable external reset	
O.INH0	O.INH1	Input to inhibit accord output	

Internal circuit of high-speed counter board

6. Programming for High-speed Counter Board

1) High-speed counter board related instructions F0 (MV), F1 (DMV)

- Be sure to use only the F1 (DMV) instruction when changing the target value and reading and changing the elapsed value of the high-speed counter board stored in special data registers DT9104 through DT9119.
- Be sure to use the $\mathbf{F 0}$ (MV) instruction, when changing the setting and reading the status of the high-speed counter board.

- Changing the target value

- Only the F1 (DMV) instruction changes the target value of the high-speed counter board stored in special data registers DT9104 through DT9107 and DT9112 through DT9115.

Program example:

- Changing the target value of the high-speed counter board When trigger X3 turns ON:
- Transfer the target value 0 "K1000" of board channel 0 to special data registers DT9104 and DT9105.
- Transfer the target value 1 "K2000" of board channel 0 to special data registers DT9106 and DT9107.

Note:

- The target value is processed when 1 is set to bit position 5 (target setting bit for channel 0) of DT9120.

- Changing and reading the elapsed value

- Only the F1 (DMV) instruction changes and reads the elapsed value of the high-speed counter board stored in the special data registers DT9108, DT9109, DT9116, and DT9117.

Program example:

- Reading the elapsed value of the high-speed counter board

The elapsed value of board channel 0 stored in DT9108 is copied to data register DT0.

R9010:	Always ON relay
DT9108:	Elapsed value area of high-speed
	counter board channel 0

DT9108: Elapsed value area of high-speed counter board channel 0

\square Reading the capture value

- Only the F1 (DMV) instruction reads the capture value of the high-speed counter board stored in special data registers DT9110, DT9111, DT9118, and DT9119.

Program example:

- Reading the capture value of the high-speed counter board The capture value of board channel 0 stored in DT9110 is copied to data register DT0 when trigger X5 turns ON.

DT9110: Capture value area of the highspeed counter board channel 0

\square Monitoring the status of the high-speed counter board

- The F0 (MV) instruction reads the control status of the high-speed counter board stored in special data register DT9121.

Program example:

- Monitoring the status of the high-speed counter board

The control status of the high-speed counter board stored in DT9121 is copied to word internal relay WR10.
$\stackrel{\text { R9010 }}{\longmapsto}[$ F0 MV, DT9121, WR 10]
DT9121: High-speed counter board status monitor area

2) Notes on programming the high-speed counter

- Operation errors will occur in the following circumstances:
- The high-speed counter board is disconnected from the FP-M control board when instructions F0 (MV) and F1 (DMV) are executed.
- The setting of the input mode selector on the high-speed counter board is incorrect when instructions $\mathbf{F 0}$ (MV) and F1 (DMV) are executed.
- When the target value is consecutively set to the same channel and executed.
- When the changing/reading of the elapsed and capture value are executed consecutively.

If executing consecutively, execute leaving one or more scan times open.

- When changing/reading the contents of special data registers DT9104 through DT9119, be sure to use the F1 (DMV) instruction.
- Once the operation mode is specified, the high-speed counter operates in the mode until a new setting is made.
- An error will occur if an elapsed value is read simultaneously in a normal program and interrupt program.

3) Applications

■ Example 1: Position control

Program example

Time chart:

*1 \cdots. The mode for the output transition is specified as ON \rightarrow OFF.

■ Example 2: Elapsed value comparison control

High-speed counter board setting conditions: Individual input mode (A phase: 1,000 pulse, B phase: 1,000 pulse)

Program example

Counting the number of times the target value is updated,
the sign of the target value is changed to positive or
negative.

Time chart:

7-6. FP-M Transmitter Master Board (MEWNET-TR)

Refer to "FP-M/FP1 MEWNET-TR (Remote I/O) system Technical Manual" for details about the FP-M transmitter master board.

I/O information can be exchanged between the master and several slave stations at a remote site. A maximum of 32 inputs and 32 outputs can be controlled per master board. This system supports a total transmission distance of 700 m per port using a twisted pair cable.

MEWNET-TR (distributed I/O) system

- Master-slave communication

- Master-master communication

MEWNET-TR System Specifications

Item	Description
Communication method	Two-lines, half-duplex
Syncronization method	Asyncronous system
Communication path	2-conductor cable or twisted pair cable
Transmission distance	Max. $400 \mathrm{~m}(1,312.34 \mathrm{ft}$.) with 2-conductor cable Max. $700 \mathrm{~m}(2,296.59 \mathrm{ft}$) with twisted pair cable
Communication speed	500 kbps
Controllable I/O points (See note.)	Max. 48 inputs and 32 outputs/FP-M transmitter master board (MEWNET-TR) Max. 128 inputs and 96 outputs/control board
Controllable slave stations (See note.)	Combination of FP I/O transmitter units (16, 8, 4 point input and output types)
Interface	RS485

Notes:

- The controllable I/O points are set by the operation mode selector.
- Controllable slave stations are determined by the number of unit I/O points used by system.

1. Specifications

1) General

Item	Description
Ambient temperature	$0{ }^{\circ} \mathrm{C}$ to $+50{ }^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right.$ to $\left.122{ }^{\circ} \mathrm{F}\right)$
Ambient humidity	30% to 80% RH (non-condensing)
Storage temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
Storage humidity	30 \% to 80% RH (non-condensing)
Vibration resistance	10 Hz to 55 Hz , 1 cycle/min: double amplitude of 0.75 mm (0.030 in .), 10 min on 3 axes
Shock resistance	$98 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G})$ or more, 4 times on 3 axes
Operating environment	Must be free from corrosive gases and excessive dust.

2) Performance

Item	Description	
Rated operating voltage	24 V DC	
Operating voltage range	20.4 to 26.4 V DC	
Current consumption	70 mA or less (at 24 V DC)	

■ Recommended cable

Conductor:
Size: Min. $1.25 \mathrm{~mm}^{2}$ (AWG16 or larger)
Resistance: Max. $16.8 \Omega / \mathrm{km}$ (at $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$)
Cable:
Insulation material: Polyethylene Insulation thickness: Max. $0.5 \mathrm{~mm} / 0.020 \mathrm{in}$. Jacket diameter: Approx. $8.5 \mathrm{~mm} / 0.335 \mathrm{in}$.

3) Restriction of expansion

- A total of three FP-M transmitter master boards (MEWNET-TR) can be attached to the control board.

2. Dimensions

3. Parts Terminology

(1) Expansion power supply connector:
2) RS485 interface:
(3) Operation mode selector:
(See following page.)
(4) Selector for station monitor LEDs:
(5) Station monitor LEDs:
(6) Expansion connector:
(7) Operation monitor LEDs: (See following page.)

Supplies power to the FP-M transmitter master board (MEWNETTR) through the expansion power supply cable.

Interface for MEWNET-TR communications.

Selects the MEWNET-TR communication conditions and sets the I/O addresses.

Selects condition of station monitor LEDs (input or output).
INPUT position: Status of slave station (FP I/O transmitter units) input type is indicated by LEDs.
OUTPUT position: Status of slave station (FP I/O transmitter units) output type is indicated by LEDs.

LEDs that monitor the slave stations connected to the FP-M transmitter master board (MEWNET-TR).

Connected to the control board.
Indicate the operation and communication status of the MEWNET-TR system.

Operation monitor LEDs

LED	\quad Description	
POWER	ON: OFF:	Power is supplied. Power is not supplied.
COM.	Flashing:	Normal communication status (Flashes in approx. 0.2 s intervals)
	ON:	Not communicating
	Flashing	A communication error occurred at the slave station. The normal slave station
slowly:	continues I/O control operation. (Flashes in approx. 1 s intervals)	
	OFF:	Abnormal condition

Operation mode selector setting

Selector number	Function	Description	Selector position							
			1	2	3	4	5	6	7	8
1	System configuration selection	I/O link system: (FP-M - FP-M) (FP-M - FP3/FP10S)	ON							
		I/O link system: [FP-M (master) - FP I/O transmitter unit (slave)]	OFF							
2	Output operation condition during a communication error	Stop	ON							
		Start (continues I/O control operation)	OFF							
3	Terminal station setting	Not a terminal station	ON							
		Terminal station	OFF							
4	Error flag (R9036) setting	ON when an I/O link error occurs	ON							
		Not setting	OFF							
5	Not used		-							
$\begin{aligned} & 6,7, \\ & \text { and } 8 \end{aligned}$	I/O allocation setting (use I/O address for expansion board)	32 inputs: X110 to X12F 32 outputs: Y110 to Y12F	OFF - -							
			ON ON ON							
		24 inputs: X70 to X87 16 outputs: Y70 to Y7F	ON ON OFF							
			ON OFF ON							
		24 inputs: X 30 to X 47 16 outputs: Y30 to Y3F	ON OFFOFF							

7-7. FP-M I/O Link Board (MEWNET-F)

Refer to "REMOTE I/O SYSTEM Technical Manual" for details about MEWNET-F (Remote I/O) system.

Using a FP-M I/O link board, this function allows the exchange of I/O information with the master unit of the FP series programmable controller through a 2 -conductor cable.

MEWNET-F (distributed I/O) system

MEWNET-F (Remote I/O) System Specifications

Item	Description
Communication method	Two-lines, half-duplex
Syncronization method	Asyncronous system
Communication path	2-conductor cable or twisted pair cable
Transmission distance	Max. $400 \mathrm{~m} \mathrm{(1,312.34} \mathrm{ft)} .\mathrm{with} \mathrm{2-conductor} \mathrm{cable}$ Max. 700 m (2,296.59 ft.) with twisted pair cable
Communication speed	500 kbps
Controllable I/O points	Max. 1,024 points per master unit
Controllable slave stations	Max. 32 stations per master unit
Interface	RS485

1. Specifications

1) General

Item	Description
Ambient temperature	$0{ }^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right.$ to $\left.122{ }^{\circ} \mathrm{F}\right)$
Ambient humidity	30% to $85 \% \mathrm{RH}($ non-condensing $)$
Storage temperature	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.+158{ }^{\circ} \mathrm{F}\right)$
Storage humidity	30% to $85 \% \mathrm{RH}$ (non-condensing)
Breakdown voltage	Across external terminal and frame ground terminal: $500 \mathrm{~V} \mathrm{AC}, 1 \mathrm{~min}$
Insulation resistance	$100 \mathrm{M} \Omega$ or more, between external terminal and frame ground terminal (measured with a $500 \mathrm{~V} \mathrm{DC} \mathrm{megger)}$
Vibration resistance	10 Hz to $55 \mathrm{~Hz}, 1 \mathrm{cycle} / \mathrm{min}$: double amplitude of $0.75 \mathrm{~mm} \mathrm{(0.030} \mathrm{in),}$. 10 min on 3 axes
Shock resistance	$98 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G})$ or more, 4 times on 3 axes
Noise immunity	$1,000 \mathrm{Vp}-\mathrm{p}$ with pulse width, 50 ns or $1 \mu \mathrm{~s}$ (based on in-house measurements)
Operating environment	Must be free from corrosive gases and excessive dust.

2) Performance

Item	Description	
Rated operating voltage	24 V DC	
Operating voltage range	21.6 to 26.4 V DC	
Current consumption	50 mA or less (at 24 V DC)	

\square Recommended cable

Conductor:
Size: Min. $1.25 \mathrm{~mm}^{2}$ (AWG16 or larger)
Resistance: Max. $16.8 \Omega / \mathrm{km}\left(\right.$ at $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$) Cable:

Insulation material: Polyethylene
Insulation thickness: Max. $0.5 \mathrm{~mm} / 0.020 \mathrm{in}$.
Jacket diameter: Approx. $8.5 \mathrm{~mm} / 0.335 \mathrm{in}$.

3) Restriction of expansion

- One FP-M I/O link board (MEWNET-F) can be attached to the control board.

2. Dimensions

3. Parts Terminology

Expansion power supply connector:RS485 interface:
(3) Operation mode selector:
(See following page.)
(4) Station number selector:
(5)

Expansion connector:
(6) Operation monitor LEDs: (See following page.)

Supplies power to the FP-M I/O link board (MEWNET-F) through the expansion power supply cable.

Connects a communication cable for the MEWNET-F system.

Selects the MEWNET-F communication conditions and controllable I/O points.

Sets the station number with a Phillips screwdriver for the MEWNET-F system.

Connects the control board to transfer data.

Indicates the operation and communication status of the MEWNET-F system.

Operation monitor LEDs

LED	Description	
POWER	ON: OFF:	Power is supplied. Power is not supplied.
COM.	Flashing: Normal communication status (Flashes in approx. 0.2 s intervals) ON:	Not communicating
Flashing	A communication error occurred at the slave station. The normal slave station	
slowly:	continues I/O control operation. (Flashes in approx. 1 s intervals)	
OFF:	Abnormal condition	

Operation mode selector setting

Selector number	Function	Description	Selector position	
			12	$3 \quad 4$
1 and 2	Terminal station setting	Not terminal station	OFF OFF	
		Terminal station	ON ON	
3	Output operation condition during a communication error	Stop	OFF	
		ON state (maintain its output condition)	ON	
4	I/O points setting	64 points 32 input points: X110 to X12F 32 output points: Y110 to Y12F		OFF
		$\begin{aligned} & 32 \text { points } \\ & 16 \text { input points: } \mathrm{X} 110 \text { to } \mathrm{X} 11 \mathrm{~F} \\ & 16 \text { output points: } \mathrm{Y} 110 \text { to } \mathrm{Y} 11 \mathrm{~F} \end{aligned}$		ON

CHAPTER 8

APPENDIX

8-1. Performance Specifications1701. Control and Expansion Board Specifications 170
2. Intelligent Boards Specifications 173
8-2. Dimensions 177
3. Board Type 177
4. Case Type 180
8-3. I/O Allocation Table 181
5. I/O Allocation of Control Boards 181
6. I/O Allocation of Expansion Boards 181
7. Allocation of Analog I/O, A/D Converter, and D/A Converter Boards 182
8. Allocation of High-speed Counter Board 183
9. I/O Allocation of FP-M Transmitter Master Board 184
10. I/O Allocation of FP-M I/O Link Board 184
8-4. Table of Memory Areas 185
8-5. System Registers 187
11. What Are System Registers 187
12. Table of the System Registers 189
8-6. Special Internal Relays 198
8-7. Special Data Registers 201
8-8. Table of the Error Codes 210
13. Table of Total-check Error Codes 210
14. Table of Self-diagnostic Error Codes 211
8-9. Table of Instructions 212
15. Basic Instructions 212
16. High-level Instructions 215
8-10. Table of Binary/BCD Expressions 219
8-11. Versions of Programming Tools 220
17. Differences Between NPST-GR Ver. 2.4 and 3.1 220
18. Differences Between the FP Programmer and FP Programmer II 222
8-12. Modem Communication 224
19. Using the Programming Tools Port 224
20. Using the RS232C Port 227
8-13. Terminology 232
8-14. Product Type 239

8-1. Performance Specifications

1. Control and Expansion Board Specifications

Item		Description
Programming method		Relay symbol
Control method		Cyclic operation
Program memory		Built-in RAM (lithium battery backup) EEPROM (master memory)/EPROM (memory) [optional items]
Program capacity		2.7 k type: 2,720 steps 5 k type: 5,000 steps
Operation speed		$1.6 \mu \mathrm{~s} /$ step: basic instruction
Kinds of instruction	Basic	81
	High-level	111
External input (X)		208 points (See note.)
External output (Y)		208 points (See note.)
Internal relay (R)		1,008 points
Special internal relay (R)		64 points
Timer/counter (T/C)		144 points
Auxiliary timer		Unlimited number of points (0.01 s to 327.67 s)
Data register (DT)		2.7 k type: 1,660 words 5 k type: 6,144 words
Special data register (DT)		112 words (For control board: 70 words, for intelligent boards: 42 words)
Index register (IX, IY)		2 words
MCR points		32 points
Number of labels (JMP,LOOP)		64 points
Differential points (DF or DF/)		Unlimited number of points
Number of step ladders		128 stages
Number of subroutines		16 subroutines
Number of interrupt programs		9 programs
Advanced control functions	High-speed counter (1 channel)	Input: Count input (X0, X1)/reset input (X2) Counting input mode: up mode, down mode, up/down mode, 2-phase mode Counting range: $-8,388,608$ to $8,388,607$ Max. counting speed: up/down mode 10 kHz , 2-phase mode 10 kHz Min. input pulse width: 1-phase $50 \mu \mathrm{~s} \cdot 2$-phase $50 \mu \mathrm{~s}$
	Manual dial-set register	2 potentiometers
	Pulse catch input Interrupt input	Total 8 points (X0 to X7)
	Periodical interrupt	10 ms to 30 s (10 ms interval)

Note:

- The actual number of points that can be used is the total number of I/O points of the control board and the expansion board.

Item		Description
Advanced control functions	RS232C port (See note.)	Communication speed: 300/600/1,200/2,400/4,800/9,600/19,200 bps Communication distance per port: $15 \mathrm{~m} / 49.213 \mathrm{ft}$. Connector: D-SUB 9 pin connector
	Clock/calendar (See note.)	Clock/calendar function available
	I/O link	64 I/O points (32 inputs and 32 outputs) or 32 I/O points (16 inputs and 16 outputs)
	Pulse output (See note.)	2 points (Y6 and Y7) Pulse output frequency range: 360 to $5,000 \mathrm{~Hz} / 180$ to $5,000 \mathrm{~Hz} / 90$ to $5,000 \mathrm{~Hz} / 45$ to $5,000 \mathrm{~Hz}$
	Constant scan	$2.5 \mathrm{~ms} \times$ set value (160 ms or less)
Adjustable input time filtering		1 to 128 ms
Self-diagnosis function		Watchdog timer, battery detection, program check, etc.
Memory backup (at $25^{\circ} \mathrm{C}$)		Approx. 27,000 h (C types: C20RC, C20TC and C32TC) Approx. 53,000 h (except C types: C20R, C20T and C32T)

Notes:

- The RS232C port and clock/calendar functions are available for the C types (C20RC, C20TC and C32TC).
- The pulse output function is available for the transistor output type.
- The two pulse outputs, Y6 and Y7 cannot be used at the same time.

Input specifications

Item	Description
Rated input voltage	24 V DC
Operating voltage range	20.4 V to 26.4 V DC
ON voltage/current	19.2 V or less/3 mA or less (19.2 V or less/3.6 mA: C32T series only)
OFF voltage/current	2.4 V or more $/ 1 \mathrm{~mA}$ or more
Input impedance	Control board: Approx. $4.8 \mathrm{k} \Omega$
	Expansion board: Approx. $4.4 \mathrm{k} \Omega$
Response time $\mathrm{ON} \leftrightarrow$ OFF	2 ms or less (at normal input) (See note.)
	50μ s or less (in setting high-speed counter)
	$200 \mu \mathrm{~s}$ or less (in setting interrupt input)
	$500 \mu \mathrm{~s}$ or less (in setting pulse catch)
Operating mode indicator	LED
Insulation method	Optical coupler

Notes:

- Input response time can be changed using the input time filtering function to $1,2,4,8,16,32,64$, or 128 ms in unit of 8 inputs. However, for expansion boards, the input response time is fixed at 2 ms (or less).
- The number of ON points must be decreased when the ambient temperature is high (between $40^{\circ} \mathrm{C} / 104^{\circ} \mathrm{F}$ and $55^{\circ} \mathrm{C} / 131^{\circ} \mathrm{F}$).

■ Output specifications

Relay output type

Item	Description
Rated operating voltage	24 V DC
Operating voltage range	22.8 V to 26.4 V DC
Output type	Normally open (1 Form A), 2 points/common
Rated control capacity	2 A 250 V AC, 2 A 30 V DC (resistive load)(See note 1.)
Response time OFF \rightarrow ON	8 ms or less
$\mathrm{ON} \rightarrow$ OFF	10 ms or less
Mechanical life time	2×10^{7} operations or more
Electrical life time	10^{5} operations or more
Operating mode indicator	LED

Transistor output type (PNP or NPN open collector)

Item	Description
Insulation method	Optical coupler
Rated load voltage	24 V DC
Operating load voltage range	20.4 V to 26.4 V DC
Max. load current	$0.8 \mathrm{~A} /$ point (at 24 V DC) (See note 2.)
OFF state leakage current	$100 \mu \mathrm{~A}$ or less
ON state voltage drop	1.5 V or less
Response time OFF \rightarrow ON	1 ms or less
$\mathrm{ON} \rightarrow$ OFF	1 ms or less (100 $\mu \mathrm{s}$ or less: Y6 and Y7)
Surge absorber	Zener diode
Operating mode indicator	LED

Notes:

2. Intelligent Boards Specifications

1) Analog I/O board specifications

Item		Description
Analog input specifications	Number of input channels	4 channels
	Input range	0 to $5 \mathrm{~V}, 0$ to 10 V , and 0 to 20 mA
	Resolution	1/256
	Overall accuracy	$\begin{aligned} & \pm 3 \mathrm{LSB}\left(\text { at } 25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}\right. \text {), } \\ & \pm 5 \mathrm{LSB} \text { (at } 0^{\circ} \mathrm{C} \text { to } 50^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F} \text { to } 122^{\circ} \mathrm{F} \text {) } \end{aligned}$
	Response time	$2.5 \mathrm{~ms} /$ channel
	Input impedance	$1 \mathrm{M} \Omega$ or more (for 0 to 5 V and 0 to 10 V range) 250Ω (for 0 to 20 mA range)
	Absolute input range	$\begin{aligned} & +15 \mathrm{~V} \text { (at } 0 \text { to } 5 \mathrm{~V} \text { and } 0 \text { to } 10 \mathrm{~V} \text { range) } \\ & +30 \mathrm{~mA} \text { (at } 0 \text { to } 20 \mathrm{~mA} \text { range) } \end{aligned}$
	Digital converted data	K0 to K255
Analog output specifications	Number of output channels	1 channel
	Output range	0 to $5 \mathrm{~V}, 0$ to 10 V , and 0 to 20 mA
	Resolution	1/256
	Overall accuracy	$\pm 1.0 \%$ of full scale (at $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$), $\pm 2.0 \%$ of full scale (at $0{ }^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} / 32{ }^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}$)
	Response time	$2.5 \mathrm{~ms} /$ channel
	Output impedance	0.5Ω or less (for 0 to 5 V and 0 to 10 V output range)
	Max. output current	20 mA (for 0 to 5 V and 0 to 10 V output range)
	Allowable load resistance	0 to 500Ω (for 0 to 20 mA range)
	Digital data	K0 to K255
Insulation method		Optical coupler (not insulated between channels)

Analog data conversion characteristics

- 0 to 5 V range

- 0 to 10 V range

- 0 to 20 mA range

2) A / D converter and D / A converter board specifications

■ A/D converter board specifications

Item	Description
Number of input channels	4 channels
Input range	0 to $5 \mathrm{~V}, 0$ to 10 V , and 0 to 20 mA
Resolution	$1 / 1000$
Overall accuracy	$\pm 1.0 \%$ of full scale (at $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$),
	$\pm 2.0 \%$ of full scale (at $0{ }^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}$)
Response time	$2.5 \mathrm{~ms} /$ channel
Input impedance	$1 \mathrm{M} \Omega$ or more (for 0 to 5 V and 0 to 10 V range)
	250Ω (for 0 to 20 mA range)
Absolute input range	+15 V (at 0 to 5 V and 0 to 10 V range)
	+30 mA (at 0 to 20 mA range)
Digital converted data	K 0 to K1000
Insulation method	Optical coupler (not insulated between channels)

■ D/A converter board specifications

Item	Description
Number of output channels	2 channels
Output range	0 to $5 \mathrm{~V}, 0$ to 10 V , and 0 to 20 mA
Resolution	$1 / 1000$
Overall accuracy	$\pm 1.0 \%$ of full scale (at $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$),
	$\pm 2.0 \%$ of full scale (at $0{ }^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C} / 32{ }^{\circ} \mathrm{F}$ to $122{ }^{\circ} \mathrm{F}$)
Response time	$2.5 \mathrm{~ms} /$ channel
Output impedance	0.5Ω or less (for 0 to 5 V and 0 to 10 V range)
Max. output current	20 mA (for 0 to 5 V and 0 to 10 V range)
Allowable load resistance	0 to 500Ω (for 0 to 20 mA range)
Digital data	K 0 to K 1000
Insulation method	Optical coupler (not insulated between channels)

Analog data conversion characteristics

- 0 to 20 mA range

3) High-speed counter board specifications

Item		Description
Counter specifications	Counter channels	2 channels (CH 0, CH 1)
	Max. counting speed	1-phase mode: 20 kHz 2-phase mode: 5 kHz
	Counting range	$-8,388,608$ to $+8,388,607$
	Number of target value settings	2 points/channel
Input specifications	Input mode	3 modes (2-phase/4-time multiplication mode, individual input mode, directional input mode) * The mode is set using the input mode selector.
	Number of input points	3 points (INA, INB, RESET) $\times 2$ channels 2 points (RST.E, O.INH) $\times 2$ channels
	Rated input voltage	24 V DC
	Input voltage range	21.6 to 26.4 V DC
	Insulation method	Optical coupler
	ON voltage	19.2 V DC or less
	OFF voltage	4.8 V DC or more
	Min. input pulse width	$50 \mu \mathrm{~s}$ at INA and INB inputs 2.5 ms at RESET input
	Input delay time	1 ms or less at RST.E and O.INH inputs
	Input current	Approx. 7.5 mA at INA, INB, and RESET inputs Approx. 5 mA at RST.E and O.INH inputs
	Input type	Source
Output specifications	Number of output points	2 points (OUT 0 and OUT 1)
	Rated load voltage	24 V DC
	Load voltage range	21.6 to 26.4 V DC
	Insulation method	Optical coupler
	Output type	Transistor PNP or NPN open collector
	Max. load current	200 mA
	Residual voltage	1.5 V or less
	Leakage current	$100 \mu \mathrm{~A}$ or more
	Response time ON \rightarrow OFF OFF \rightarrow ON	1 ms or less 1 ms or less

4) FP-M transmitter master board (MEWNET-TR) specifications
 Performance specifications

Item	Description	
Rated operating voltage	24 V DC	
Operating voltage range	20.4 to 26.4 V DC	
Current consumption	70 mA or less (at 24 V DC)	

MEWNET-TR system specifications

Item	Description
Communication method	Two-lines, half-duplex
Syncronization method	Asyncronous system
Communication path	2-conductor cable (VCTF: $0.75 \mathrm{~mm} \times 2$ conductors)
Transmission distance	Max. $400 \mathrm{~m} \mathrm{(1,312.34} \mathrm{ft)} .\mathrm{with} \mathrm{2-conductor} \mathrm{cable}$ Max. $700 \mathrm{~m} \mathrm{(2,296.59} \mathrm{ft)} with twisted pair cable$.
Communication speed	500 kbps
Controllable I/O points (See note.)	Max. 48 inputs and 32 outputs/FP-M transmitter master board (MEWNET-TR) Max. 128 inputs and 96 outputs/control board
Controllable slave stations (See note.)	Combination of FP I/O transmitter units $(16,8,4$ point input and output types)
Interface	RS485

5) FP-M I/O link board (MEWNET-F) specifications

- Performance specifications

Item	Description	
Rated operating voltage	24 V DC	
Operating voltage range	21.6 to 26.4 V DC	
Current consumption	50 mA or less (at 24 V DC)	

■ MEWNET-F system specifications

Item	Description
Communication method	Two-lines, half-duplex
Syncronization method	Asyncronous system
Communication path	2-conductor cable (VCTF: 0.75 mm \times 2 conductors)
Transmission distance	Max. $400 \mathrm{~m}(1,312.34 \mathrm{ft}$.$) with 2-conductor cable$ Max. $700 \mathrm{~m} \mathrm{(2,296.59} \mathrm{ft)} .\mathrm{with} \mathrm{twisted-pair} \mathrm{cable}$
Communication speed	500 kbps
Controllable I/O points (See note.)	Max. 1,024 points per master unit
Controllable slave stations (See note.)	Max. 32 stations per master unit
Interface	RS485

Notes:

[^7]
8-2. Dimensions

1. Board Type

1) Control boards

C20R and C20RC types
e.g.) C20R type

■ C32T and C32TC types

e.g.) C32T type

2) Expansion boards

■ M1T-E20R type

C20T and C20TC types

e.g.) C20TC type

- M1T-E, M1T-EI, and M1T-EO types e.g.) M1T-EI type

Tolerance $\pm 1.0 / \pm 0.39$ (unit: mm/in.)

3) Intelligent and link boards

- Analog I/O board

D/A converter board

■ FP-M transmitter master board

A/D converter board

■ High-speed counter board

■ FP-M I/O link board

Tolerance $\pm 1.0 / \pm 0.39$ (unit: $\mathrm{mm} / \mathrm{in}$.)

4) Building dimensions

Control board C20R, C20T, C20TC, and C32T types

Board	$\mathbf{H}(\mathbf{m m} / \mathbf{i n})$.
1 control board	$43.6 / 1.717$
1 control board and 1 expansion board	$65.2 / 2.567$
1 control board and	$86.8 / 3.417$
2 expansion boards	
1 control board and 3 expansion boards	$108.4 / 4.268$
1 control board and 4 expansion boards	$130.0 / 5.118$

Control board C20RC and C32TC types

5) Mounting hole dimensions

Tolerance $\pm 1.0 / \pm 0.39$ (unit: $\mathrm{mm} / \mathrm{in}$.)

2. Case Type

1) Case dimensions for control, expansion, intelligent and link boards

2) Building dimensions

Control board C20R, C20T, and C32T types

Board	$\mathbf{H}(\mathbf{m m} / \mathbf{i n})$.
1 control board	$44.2 / 1.740$
1 control board and 1 expansion board	$63.8 / 2.512$
1 control board and	$85.4 / 3.362$
2 expansion boards	
1 control board and 3 expansion boards	$107.0 / 4.213$
1 control board and 4 expansion boards	$128.6 / 5.063$

Control board C20RC, C20TC, and C32TC types

Board	$\mathbf{H}(\mathbf{m m} / \mathbf{i n})$.
1 control board	$44.2 / 1.740$
1 control board and 1 expansion board	$63.8 / 2.512$
1 control board and	$85.4 / 3.362$
2 expansion boards	
1 control board and 3 expansion boards	$107.0 / 4.213$
1 control board and 4 expansion boards	$128.6 / 5.063$

3) Mounting hole dimensions

8-3. I/O Allocation Table

1. I/O Allocation of Control Boards

- The I/O addresses for the control boards are fixed as follows.

Board type	I/O point	I/O allocation
C20R and C20RC	12 inputs	X0 to XB
	8 outputs	Y0 to Y7
C20T and C20TC	12 inputs	X0 to XB
	8 outputs	Y0 to Y7
C32T and C32TC	16 inputs	X0 to XF
	16 outputs	Y0 to YF

2. I/O Allocation of Expansion Boards

- The I/O addresses for the expansion boards are set by the I/O address setting switches as follows.

Board type	I/O point	I/O address setting switches and I/O allocation			
E20R type I/O address setting switch	12 inputs	X30 to X3B	X50 to X5B	X70 to X7B	X90 to X9B
$\text { Output: } 8 \text { Input: } 12$	8 outputs	Y30 to Y37	Y50 to Y57	Y70 to Y77	Y90 to Y97
M1T-E type I/O address setting switch	24 inputs	$\begin{aligned} & \text { X30 to X3F } \\ & \text { X40 to X47 } \end{aligned}$	$\begin{aligned} & \text { X50 to X5F } \\ & \text { X60 to X67 } \end{aligned}$	$\begin{aligned} & \text { X70 to X7F } \\ & \text { X80 to X87 } \end{aligned}$	$\begin{gathered} \text { X90 to X9F } \\ \text { X100 to X107 } \end{gathered}$
$\text { Output: } 16 \text { Input: } 22$	16 outputs	Y30 to Y3F	Y50 to Y5F	Y70 to Y7F	Y90 to Y9F
M1T-El type I/O address setting switches SW2 SW1	Input block A: 24 inputs (using SW1)	$\begin{aligned} & \text { X30 to X3F } \\ & \text { X40 to X47 } \end{aligned}$	$\begin{aligned} & \text { X50 to X5F } \\ & \text { X60 to X67 } \end{aligned}$	$\begin{aligned} & \text { X70 to X7F } \\ & \text { X80 to X87 } \end{aligned}$	$\begin{aligned} & \text { X90 to X9F } \\ & \text { X100 to X107 } \end{aligned}$
	Input block B: 12 inputs (using SW2)	X30 to X3B	X50 to X5B	X70 to X7B	X90 to X9B
M1T-EO type I/O address setting switches SW2 SW1	Output block A: 16 outputs (using SW1)	Y30 to Y3F	Y50 to Y5F	Y70 to Y7F	Y90 to Y9F
	Output block B: 16 outputs (using SW2)	Y30 to Y3F	Y50 to Y5F	Y70 to Y7F	Y90 to Y9F

Notes:

- When connecting the expansion boards to the control board, be sure not to overlap I/O addresses.
- When connecting the M1T-EI and M1T-EO type expansion boards, I/O address settings for block A and B should be performed separately using the I/O address setting switches SW1 and SW2. Be sure to configure SW1 and SW2 with different settings in order to prevent I/O address overlap.

3. Allocation of Analog I/O, A/D Converter, and D/A Converter Boards

- The data for the analog I/O, A/D converter, and D/A converter boards are stored in specially selected data registers (DT9080 to DT9103) using the board number selector.
- The data for these boards are stored in special data registers as follows.

Board type	Board number	Board number selector position	Input/output	Channel number	Special data register
Analog I/O board	No. 0	OFF OFF OFF OFF	Analog input	0	DT9080
				1	DT9081
				2	DT9082
				3	DT9083
			Analog output	0	DT9096 and DT9097
	No. 1		Analog input	0	DT9084
				1	DT9085
				2	DT9086
				3	DT9087
			Analog output	0	DT9098 and DT9099
	No. 2		Analog input	0	DT9088
				1	DT9089
				2	DT9090
				3	DT9091
			Analog output	0	DT9100 and DT9101
	No. 3		Analog input	0	DT9092
				1	DT9093
				2	DT9094
				3	DT9095
			Analog output	0	DT9102 and DT9103
A/D converter board	No. 0		Analog input	0	DT9080
				1	DT9081
				2	DT9082
				3	DT9083
	No. 1		Analog input	0	DT9084
				1	DT9085
				2	DT9086
				3	DT9087
	No. 2		Analog input	0	DT9088
				1	DT9089
				2	DT9090
				3	DT9091
	No. 3		Analog input	0	DT9092
				1	DT9093
				2	DT9094
				3	DT9095

Note:

[^8]| Board type | Board number | Board number selector position | Input/output | Channel number | Special data register |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D/A converter board | No. 0 | OFF OFF OFF OFF | Analog output | 0 | DT9096 |
| | | ONT | | 1 | DT9097 |
| | No. 1 | ON OFF OFF OFF | Analog output | 0 | DT9098 |
| | | | | 1 | DT9099 |
| | No. 2 | OFF ON OFF OFF | Analog output | 0 | DT9100 |
| | | | | 1 | DT9101 |
| | No. 3 | ON ON OFF OFF | Analog output | 0 | DT9102 |
| | | | | 1 | DT9103 |

Notes:

- Refer to page 201, "8-7. Special Data Registers", for details about special data registers.
- When two or more of these boards are installed, be sure to configure the board number selector in order to prevent special data register overlap. The board number selectors are set to board number 0 (all "OFF" position) when shipped.
- Board number selector upper state is "OFF (\square)" and the lower state is "ON (\square)".

4. Allocation of High-speed Counter Board

- The data for the high-speed counter board are stored in specially selected data registers (DT9104 to DT9121).
- The data for these boards are stored in special data registers as follows.

Board type	Channel number	Data type	Special data register
High-speed counter	Channel 0	Target value 0	DT9104 and DT9105
board		Target value 1	DT9106 and DT9107
		Elapsed value	DT9108 and DT9109
		Capture value	DT911 and DT9111
	Channel 1	Target value 0	DT9112 and DT9113
		Target value 1	DT9114 and DT9115
	Elapsed value	DT9116 and DT9117	
	Capture value	DT9118 and DT9119	
		Control area	DT9120
		Chatus monitor register area	DT9121

5. I/O Allocation of FP-M Transmitter Master Board

- The I/O addresses for the transmitter master board are set according to the operation mode selector as follows.

Board type	$\begin{array}{c}\text { Operation mode } \\ \text { selector position }\end{array}$		I/O point	I/O allocation
	$\mathbf{6} \quad \mathbf{7} \quad \mathbf{8}$			

Notes:

- When connecting the FP-M transmitter master board, be sure not to overlap I/O addresses.
- Switch positions 1 to 5 of the operation mode selector are not ignored.

6. I/O Allocation of FP-M I/O Link Board

- The I/O addresses for the FP-M I/O link board are set according to the operation mode selector as follows.

Board type	Operation mode selector position	I/O point	I/O allocation
	4		
FP-M I/O link board	OFF	64 points	
		32 inputs	X110 to X12F
		32 outputs	Y110 to Y12F
	ON	32 points	
		16 inputs	X110 to X11F
		16 outputs	Y110 to Y11F

Notes:

- When connecting the FP-M I/O link board, be sure not to overlap I/O addresses.
- Switch positions 1 to 3 of the operation mode selector are not ignored.

8-4. Table of Memory Areas

Item	Name and function	Symbol	Numbering	
			2.7 k type	5 k type
Externa I/O relays	External input relay This relay feeds signals to the programmable controllers from an external device such as a limit switch or photoelectric sensor.	X (bit)	$\begin{aligned} & 208 \text { points } \\ & \text { (X0 to X12F) } \end{aligned}$	
		WX (word)	$\begin{gathered} 13 \text { words } \\ \text { (WX0 to WX12) } \end{gathered}$	
	External output relay This relay outputs the program execution result of the programmable controllers and activates an external device such as a solenoid or motor.	Y (bit)	$\begin{aligned} & 208 \text { points } \\ & \text { (Y0 to Y12F) } \end{aligned}$	
		WY (word)	13 words (WY0 to WY12)	
Internal relays	Internal relay This relay does not provide an external output and can be used only within the programmable controllers.	R (bit)	1,008 points (R0 to R62F)	
		WR (word)	$\begin{gathered} 63 \text { words } \\ \text { (WR0 to WR62) } \\ \hline \end{gathered}$	
	Special internal relay This relay is a special internal relay which has specific applications. This relay cannot be used for output. Use it	R (bit)	64 points (R9000 to R903F)	
	only as a contact. Refer to page 198, " 8 -6. Special Internal Relays".	WR (word)	4 words(WR900 to WR903)	
Timer/ counter	Timer contact This contact is the output of a TM (timer) instruction. If a TM instruction has timed out, the contact with the same number turns ON.	T (bit)	100 points (T0 to T99)	
	Counter contact This contact is the output of a CT (counter) instruction. If a CT instruction has counted up, the contact with the same number turns ON.	C (bit)	44 points (C100 to C143)	
	Timer/counter set value The timer/counter set value area is a memory area where the set value of the TM/CT (timer/counter) instructions is stored. Each timer/counter set value area consists of 1 word (1 word = 16 bits). The address of this memory area corresponds to the TM/CT instruction number.	SV (word)	144 words (SV0 to SV143)	
	Timer/counter elapsed value The timer/counter elapsed value area is a memory area where the elapsed value of the TM/CT (timer/counter) instruction is stored. Each timer/counter elapsed value area consists of 1 word (1 word = 16 bits). The address of this memory area corresponds to the TM/CT instruction number.	EV (word)	144 words (EV0 to EV143)	

Notes:

- Timer/counter contacts are represented in decimal.
- Word addresses are represented in decimal.
- The addresses for relay bits (X, Y, and R) are represented by a combination of word addresses (decimal) and hexadecimals. The least significant digit is hexadecimal and the rest of the digits are decimal.

Item	Name and function	Symbol	Numbering	
			2.7 k type	5 k type
Data area	Data register The data register is a memory area for data processed within the programmable controllers and each data register consists of 1 word (1 word = 16 bits).	DT (word)	$\begin{gathered} 1,660 \text { words } \\ \left(\begin{array}{c} \text { DT0 } \\ \text { to } \\ \text { DT1659 } \end{array}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { 6,144 words } \\ \left(\begin{array}{c} \text { DT0 } \\ \text { to } \\ \text { TT6143 } \end{array}\right) \end{gathered}$
	Special data register The special data register is a memory area that has special applications. Refer to page 201, "8-7. Special Data Registers" for details about the special data register.	DT (word)	$\begin{gathered} 112 \text { words } \\ \left(\begin{array}{c} \text { DT9000 to DT9069 } \\ \text { and } \\ \text { DT9080 to DT9121 } \end{array}\right) \end{gathered}$	
Index modifier	Index register The index register can be used as an address and constants modifier.	IX (word) IY (word)	One word each (No numbering system)	
Constant	Decimal constants	K	16-bit constant (word): K-32,768 to K32,767	
			$\begin{gathered} \hline \text { 32-bit constant (double word): } \\ \mathrm{K}-2,147,483,648 \text { to } \\ \mathrm{K} 2,147,483,647 \\ \hline \end{gathered}$	
	Hexadecimal constants	H	16-bit constant (word): H0 to HFFFF	
			32-bit constan HO to HF	(double word) FFFFFF

8-5. System Registers

1. What Are System Registers

- The FP series programmable controller is configured by setting certain parameters. The parameters, which configure the system and special functions, are called system registers.
- Like other registers in the FP series programmable controller, each system register consists of 16 bits. System register addresses are also assigned to each of the system registers.

\square Summarizing the functions of system registers

By function, system registers of the FP series programmable controller are classified into 8 types, as follows:
(1) System register 0:

Size prepared for program capacity (fixed).
The value in this system register cannot be changed when you use an FP-M.
You can use it only for monitoring the program capacity of the FP-M.
(2) System registers 5, 6, 7, 8, and 14:

Characteristics settings of the area for timer/counter instructions and operands.
Performs assignments for numbers of timers/counters and the hold/non-hold area.
(3) System registers 4, 20, and 26: Operation settings when abnormality is detected.

Sets whether the duplicated use of output and a low battery are to be regarded as errors, or whether the programmable controller should execute a program when an operation error occurs.
(4) System registers 31 and 34:

Processing time settings.
Sets the scan time of the programmable controller and the waiting time of computer link communication.
(5) System registers 400, 402, and 403: Input mode settings.

Performs settings of the inputs, such as high-speed counter input, pulse catch inputs, and interrupt inputs.
(6) System registers 404 through 407: Input time filtering settings.

Sets the input time constants in 8-input units.
(7) System registers 410 and 411: Communication settings of port for programming tools (RS422).
Sets the station number, the character length, and the modem compatibility for the programming port.
(8) System registers 412 through 418: Communication settings of RS232C serial port.

Sets the communication specifications of the RS232C serial port, such as communication mode, data format, and modem compatibility.

How to set the system registers

The system registers can be set by a programming tool.

- Using NPST-GR Software Ver. $\mathbf{3 . 1}$

(1) Set the mode of the programmable controller to PROG.
(2) Open the [SYSTEM REGISTER] window using the following procedure:

<If you are using MENU 1 screen type>

Open [NPST MENU] by pressing Esc, and then select "PLC CONFIGURATION" to skip to the [PLC CONFIGURATION] subwindow. Select " 1 . SYSTEM REGISTER" in the [PLC CONFIGURATION] subwindow.

Set the mode of the NPST-GR Software to ONLINE by pressing Ctrl + Esc together.
Open the window you want to set by pressing one of $\mathbf{F 6}$ through $\mathbf{F 1 0}$ or Shift + F6 through $\mathbf{F 1 0}$, and change the value in the system register.
(3) After setting, press $\mathbf{F 1}$ and type " \mathbf{Y} " to save the revised settings to the programmable controller.

- Using the FP Programmer II

(1) Set the mode of the programmable controller to PROG.
(2) Press the keys on the FP Programmer II, as shown on the right.
(3) Input the system register address referring to the example and read the current settings.

EXAMPLE:
When reading system register 400, press the keys as shown on the right.
(4) Input new settings referring to the example.

EXAMPLE:

To input K1, press the keys as shown on the right.

You can also input new settings in hexadecimal by pressing $\left[\begin{array}{c}(\mathrm{BIN}) \\ \text { KH })\end{array}\right]$ before inputting the setting value.

Note:

- The revised settings of the system register become effective soon after the revision. However, in case of changing the modem compatibility, the revised setting become effective after the power is turned from OFF to ON.

2. Table of the System Registers

Address	Name of system register	Default value	Description
0	Program capacity	$\begin{gathered} \text { K3 or } \\ \text { K5 } \end{gathered}$	The program capacity is automatically specified according to the type of the programmable controllers. FP-M 2.7 k type (2,720 steps): K3 FP-M 5 k type (5,000 steps): K5 The value in this system register is fixed.
4	Operation without backup battery	K0	This register specifies the operation of the FP-M when the voltage of the backup battery lowers or when the backup battery disconnects. KO: the conditions above are regarded as errors K1: the conditions above are not regarded as errors
5	Counter instruction starting address	K100	Starting number for counter instructions is specified. - Setting range K0 to K144 - Setting the same value as system register 6 is recommended. - If the maximum value of the setting range is input, all of the areas are used as timers. EXAMPLE: If system register 5 is set to K120: - Timers: T0 to T119 (120 timers) - Counters: C120 to C143 (24 counters)
6	Hold area starting address settings for timer/counter area	K100	Hold area starting address for timer/counter is specified. - Setting range K0 to K144 - Setting the same value as system register 5 is recommended. - If the maximum value of the setting range is input, all of the areas are used as non-hold areas. EXAMPLE: If system register 6 is set to K120: - Non-hold area: 0 to 119 - Hold area: 120 to 143

Address	Name of system register	Default value	Description
7	Hold area starting address settings for internal relays	K10	Hold area starting address for internal relays is specified in word-units. - Setting range K0 to K63 - If the maximum value of the setting range is input, all of the areas are used as non-hold areas. EXAMPLE: If system register 7 is set to K30: - Non-hold area: R0 to R29F - Hold area: R300 to R63F
8	Hold area starting address settings for data registers	K0	Hold area starting address for data registers is specified. - Setting range FP-M 2.7 k type: K0 to K1660 FP-M 5 k type: K0 to K6144 - If the maximum value of the setting range is input, all of the areas are used as non-hold areas. EXAMPLE: If system register 8 of FP-M 2.7 k type is set to K10: - Non-hold area: DT0 to DT9 - Hold area: DT10 to DT165
14	Hold/non-hold settings for step ladder	K1	Hold/non-hold settings for step ladder operation are specified. KO: Hold K1: Non-hold
20	Operation settings for duplicated use of output	K0	This register specifies the operation of the FP-M when a duplicated use of output is programmed. KO: a duplicated use of output is regarded as a total-check error. K1: a duplicated use of output is not regarded as an error.
26	Operation settings when an operation error occurs	K0	This register specifies the operation of the FP-M when an operation error is detected. KO: FP-M stops operation if an operation error occurs. K1: FP-M continues operation even if an operation error occurs.
31	Waiting time settings for multi-frame communication	$\begin{gathered} \mathrm{K} 2600 \\ (6500 \mathrm{~ms}) \end{gathered}$	This register specifies the maximum waiting time between delimiters when multi-frame communication is performed with the computer link. - Setting range (set value: K 4 to K 32760) $\times 2.5 \mathrm{~ms}$ [10 ms to 81900 ms] Note: - When you set this register using NPST-GR Software, set a time that can be divided by 2.5 .

Address	Name of system register	Default value	Description
34	Constant value settings for scan time	K0	This register specifies the constant scan time. - Setting range KO: the constant scan function is not used (normal) K1 to K64: (set value: K1 to K64) $\times 2.5 \mathrm{~ms}$ [2.5 ms to 160 ms] Note: - When you set this register using NPST-GR Software, set a time that can be divided by 2.5 .
400*	High-speed counter mode settings	H0	 Setting for pulse output connection HO: Internally not connected H1: Internally connected - Output pulse internal connection setting: Available for transistor output type FP-Ms (C20T, C20TC, C32T, and C32TC).

- If you are using is the transistor output type FP-Ms, the pulses from Y 6 and Y 7 can be directly input to X 0 and X 1 without external wiring. However, if X 0 and X 1 are used as inputs for pulses from Y 6 and Y 7 , they cannot be used as other input terminals.

Set value	Operation mode
H107	Pulse output Y7 \rightarrow Up input X0 Pulse output Y6 \rightarrow Down input X1 X2 is not used for high-speed counter
H108	Pulse output Y7 \rightarrow Up input X0 Pulse output Y6 \rightarrow Down input X1 X2 is used as reset input

Note:

```
•* When system registers 400, 402, 403,404, and 405 are set at the same time, their priorities are:
    -1st 400 (high-speed counter mode settings)
    -2nd 402 (pulse catch input function settings)
    -3rd 403 (interrupt trigger settings)
    -4th 404 (input time filtering settings)
    -last 405 (input time filtering settings)
```

Address	Name of system register	Default value	Description
402	Pulse catch input function settings (pulse of 500μ s or more duration)	H0	This register specifies the pulse catch inputting function availabilities for X0 to X7. - Settings 0 : standard input mode 1: pulse catch input mode Input the specific value in an order so that the bit corresponding to each input becomes " 1 " when you use the pulse catch function. System register 402 - Setting range All FP-Ms (8 inputs X0 to X7): H0 to HFF EXAMPLE: If the pulse catch function is used for inputs $\mathrm{X} 3, \mathrm{X} 4$, and X5, input H38 as follows: System register 402
403	Interrupt trigger settings	H0	This register specifies inputs of the FP-M as interrupt triggers. - Settings 0 : standard input mode 1: interrupt input mode Input the specific value in an order so that the bit corresponding to each input becomes " 1 " when you use interrupt programs. System register 403 - Setting range All FP-Ms (8 inputs X0 to X7): H 0 to HFF EXAMPLE: If the interrupt input function is used for inputs X 1 and X 2 , input H 6 as follows: System register 403

Address	Name of system register	Default value		Description
404	Input time filtering setting (X0 to X1F)	H 1111(all 2 ms)	Sets the input time filtering in 8 -input units. - Settings	
			Set value	Input time filtering
			H0	1 ms
			H1	2 ms
			H2	4 ms
			H3	8 ms
			H4	16 ms
			H5	32 ms
			H6	64 ms
			H7	128 ms

- Set system registers 404 and 405 , referring to the following:
No. 404 = $\mathrm{H} \square \square \square \square$

No. $405=\mathrm{H}$

EXAMPLE:
If you specify the input time filtering for X 0 to X 7 as 4 ms , for X8 to XF as 1 ms , for X10 to X 17 as 1 ms , and for X18 to X 1 F as 1 ms , input H 1112 to system register 404.

System register 404

Bit position	$15 \cdot$ • 12	11-8	7 • - 4	$3 \cdot$ - 0
Data input	0001	0001	0001	0010
H				\square
		1	1	2
	$\begin{aligned} & \mathrm{X} 18 \text { to } \mathrm{X} 1 \mathrm{~F} \\ & \text { (2 ms) } \end{aligned}$	$\begin{gathered} \mathrm{X} 10 \text { to } \mathrm{X} 17 \\ (2 \mathrm{~ms}) \end{gathered}$	$\begin{gathered} \text { X8 to XF } \\ (2 \mathrm{~ms}) \end{gathered}$	$\begin{gathered} \text { X0 to X7 } \\ (4 \mathrm{~ms}) \end{gathered}$

EXAMPLE:

If you want to set the RS232C serial port as follows, input H2 to system register 413.

- Header: without STX code
- Terminator: CR
- Stop bit: 1 bit
- Parity: odd
- Character bits: 7 bits

System register 413

Note:

- * The settings for the header and the terminator in system register 413 become effective when system register 412 is set to K2 (GENERAL). If you select K1 (COMPTR LNK) or K0 (UNUSED), the settings for the header and the terminator are discarded.

Address	Name of system register	Default value	Description
414	Baud rate settings for RS232C serial port	K1	This register specifies the baud rate of the RS232C serial port. - Settings
			Set value ${ }^{\text {Baud rate }}$ B
			K0
			K1 $\quad 9,600 \mathrm{bps}$
			K2 $4,800 \mathrm{bps}$
			K3 $\quad 2,400 \mathrm{bps}$
			K4 $\quad 1,200 \mathrm{bps}$
			K5 $\quad 600 \mathrm{bps}$
			K6 300 bps
415	Station number (UNIT NO.) settings for RS232C serial port	K1	This register specifies the station number (UNIT NO.) when the RS232C serial port is used for computer link communication. (Refer to system registers 412 and 413, for details about the computer link communication settings.) - Setting range K1 to K32 (UNIT NO. 1 to 32)
416	Modem communication settings for RS232C serial port*	H0	The setting for modem communication compatibility is performed when the RS232C serial port is used. - Settings HO: modem communication disabled H8000: modem communication enabled When modem communication is enabled, set system registers $412,413,415$. Refer to page 224, " 8 -12. Modem Communication".
417	Starting address setting for data received from RS232C serial port	K0	This register specifies the starting address of data registers used as the buffer for data received from the RS232C serial port when general-purpose communication is performed. (Refer to system registers 412 and 413, for details about general-purpose communication settings.) - Setting range FP-M 2.7 k type: K0 to K1660 FP-M 5 k type: K0 to K6144 EXAMPLE: If K 0 is input to system register 417, the number of bytes received from the RS232C serial port is stored in DT0 and the data received are stored starting from DT1.

Note:

- * The system register 416 setting is available only for:
- FP-M C types (C20RC/C20TC/C32TC).
- NPST-GR Software version 3.1 or later.

Address	Name of system register	Default value	Description
418	Buffer capacity setting for data received from RS232C serial port	K1660	This register specifies the number of words to be used as a buffer. (Refer to system register 417 for details about the starting address settings.) - Setting range
			FP-M 2.7 k type: K0 to K1660 FP-M 5 k type: K0 to K6144 EXAMPLE:
			If K0 is input to system register 417 and K100 to system register 418, the number of data received is stored to DT0 and the data received are stored starting from DT1 to DT99.

8-6. Special Internal Relays

The special internal relays are used for special purposes in the FP-M programmable controller.
These special internal relays cannot output. Use special internal relays only as contacts.

Address	Name	Description
R9000	Self-diagnostic error flag	Turns ON when a self-diagnostic error occurs. The self-diagnostic error code is stored in DT9000.
R9005	Battery error flag (Non-hold)	Turns ON for an instant when a battery error occurs.
R9006	Battery error flag (Hold)	Turns ON and keeps the ON state when a battery error occurs.
R9007	Operation error flag (Hold)	Turns ON and keeps the ON state when an operation error occurs. The error address is set in DT9017.
R9008	Operation error flag (Non-hold)	Turns ON for an instant when an operation error occurs. The error address is set in DT9018.
R9009	Carry flag	Turns ON for an instant, - when an overflow or an underflow occurs. -when "1" is set by one of the shift instructions. This is also used as flag for the F60 (CMP) instruction.
R900A	$>$ flag	Turns ON for an instant when the compared results are larger.
R900B	flag	Turns ON for an instant, -when the calculated results become 0 in the high-level instructions. -when the compared results are equal in the high-level instructions.
R900C	< flag	Turns ON for an instant when the compared results are smaller.
R900D	Auxiliary timer instruction (F137)	Turns ON when the set value is decreased and reaches 0.
R900E	Programming tool port error flag	Turns ON when a programming tool port error occurs.
R900F	Constant scan error flag	Turns ON when a constant scan error occurs.
R9010	Always ON relay	Always ON.
R9011	Always OFF relay	Always OFF.

Address	Name	Description
R9012	Scan pulse relay	Turns ON and OFF alternately at each scan.
R9013	Initial ON relay	Turns ON only at the first scan in the operation. Turns OFF from the second scan and maintains the OFF state.
R9014	Initial OFF relay	Turns OFF only at the first scan in the operation. Turns ON from the second scan and maintains the ON state.
R9015	Step ladder initial ON relay	Turns ON only in the first scan of the process the moment step ladder process is started.
R9018	0.01 s clock pulse relay	Repeats ON/OFF operations in 0.01 s cycles. (ON : OFF $=0.005 \mathrm{~s}: 0.005 \mathrm{~s}$)
R9019	0.02 s clock pulse relay	Repeats ON/OFF operations in 0.02 s cycles. (ON : OFF $=0.01 \mathrm{~s}: 0.01 \mathrm{~s}$)
R901A	0.1 s clock pulse relay	Repeats ON/OFF operations in 0.1 s cycles. (ON : OFF = $0.05 \mathrm{~s}: 0.05 \mathrm{~s}$)
R901B	0.2 s clock pulse relay	Repeats ON/OFF operations in 0.2 s cycles. (ON : OFF = $0.1 \mathrm{~s}: 0.1 \mathrm{~s}$)
R901C	1 s clock pulse relay	Repeats ON/OFF operations in 1 s cycles. (ON : OFF = $0.5 \mathrm{~s}: 0.5 \mathrm{~s}$)
R901D	2 s clock pulse relay	Repeats ON/OFF operations in 2 s cycles. (ON : OFF = $1 \mathrm{~s}: 1 \mathrm{~s}$)
R901E	1 min clock pulse relay	Repeats ON/OFF operations in 1 min cycles. (ON : OFF = $30 \mathrm{~s}: 30 \mathrm{~s}$)
R9020	RUN mode flag	ON while mode of the programmable controller is set to RUN. OFF while mode of the programmable controller is set to PROG.
R9026	Message flag	ON while the F149 (MSG) instruction is executed.
R9027	Remote mode flag	ON while mode selector of the FP-M control board is set to REMOTE.
R9029	Forced flag	ON during the forced ON/OFF operation.
R902A	Interrupt flag	ON while external interrupts are enabled. Refer to the ICTL instruction in the FP-M/FP1 Programming Manual.
R902B	Interrupt error flag	Turns ON when an interrupt error occurs.
R9032	RS232C port selection flag	ON while the RS232C port is set to GENERAL (K2) in the system register 412. C types (C20RC/C20TC/C32TC) only.

Address	Name	Description
R9033	Print-out flag	ON while a F147 (PR) instruction is executed. Refer to the F147 (PR) instruction in the FP-M/FP1 Programming Manual.
R9036	I/O link error flag	Turns ON when an I/O link error occurs.
R9037	RS232C error flag	Turns ON when an RS232C error occurs. C types (C20RC/C20TC/C32TC) only
R9038	RS232C receive flag (F144) Turns ON when a terminator is received by the programmable controller using the F144 (TRNS) instruction. Refer to the F144 (TRNS) instruction in the FP-M/FP1 Programming Manual. C types (C20RC/C20TC/C32TC) only	
R9039	RS232C send flag (F144)	OFF while data is not been sent by the F144 (TRNS) instruction. ON after the data is sent by the F144 (TRNS) instruction. Refer to the F144 (TRNS) instruction in the FP-M/FP1 Programming Manual. C types (C20RC/C20TC/C32TC) only
R903A	High-speed counter control flag	ON while a high-speed counter is controlled using the F162 (HC0S), F163 (HC0R), F164(SPD0), and F165 (CAM0) instructions. Refer to the F162 (HC0S), F163 (HCOR), F164(SPD0), and F165 (CAM0) instructions in the FP-M/FP1 Programming Manual.
R903B	Cam control flag	ON while a F165 (CAM0) instruction is executed. Refer to the F165 (CAM0) instruction in the FP-M/FP1 Programming Manual.

8-7. Special Data Registers

- Special data registers are used as a memory area and each data is composed of 16 bits.

Address	Name	Description
DT9000	Self-diagnostic error code register	- The self-diagnostic error code is stored in DT9000 when a self-diagnostic error occurs.
DT9014	Auxiliary register for F105 and F106 instructions	- One shift-out hexadecimal digit is stored in hexadecimal digit position 0 (bit positions 0 to 3) when an F105 (BSR) or F106 (BSL) instruction is executed. - Refer to the F105 (BSR) and F106 (BSL) instructions in the FP-M/FP1 Programming Manual.
DT9015	Auxiliary register for F32, F33, F52, and F53 instructions	- Divided remainder is stored in DT9015 when an F32 (\%) or F52 (B\%) instruction is executed. - Lower 16-bit of divided remainder are stored in DT9015 when an F33 (D\%) or F53 (DB\%) instruction is executed. - Refer to the F32 (\%), F52 (B\%), F33 (D\%), and F53 (DB\%) instructions in the FP-M/FP1 Programming Manual.
DT9016	Auxiliary register for F33 and F53 instructions	- Higher 16-bit of divided remainder is stored in DT9016 when an F33 (D\%) or F53 (DB\%) instruction is executed. - Refer to the F33 (D\%) and F53 (DB\%) instructions in the FP-M/FP1 Programming Manual.
DT9017	Operation error address register (hold)	- An operation error address is stored in DT9017 and held when an operation error is detected.
DT9018	Operation error address register (non-hold)	- The address of the latest operation error is stored in DT9018 when an operation error is detected.
DT9019	2.5 ms ring counter register	- The stored data in DT9019 is increased by one every 2.5 ms . This can be used to determine the elapsed time of some procedures by calculating the time differences.
DT9022	Scan time register (current value)	- Current scan time is stored in DT9022. Scan time is calculated using the formula: Scan time (ms) $=$ data $\times 0.1(\mathrm{~ms})$
DT9023	Scan time register (minimum value)	- Minimum scan time is stored in DT9023. Scan time is calculated using the formula: Scan time (ms) $=$ data $\times 0.1(\mathrm{~ms})$
DT9024	Scan time register (maximum value)	- Maximum scan time is stored in DT9024. Scan time is calculated using the formula: Scan time (ms) $=$ data $\times 0.1(\mathrm{~ms})$

Address	Name	Description					
DT9025	Mask condition monitoring register for input -initiated interrupts (Interrupt program: INTO to INT7)	- The mask conditions are judged by the status of each bit: Interrupt disabled (masked): $0 \quad$ Interrupt enabled (unmasked): 1 - Each bit position of DT9025 (bit positions 0 to 7) falls on an interrupt instruction number. - Refer to the ICTL instruction in the FP-M/FP1 Programming Manual.					
DT9027	Time-initiated interrupt interval monitoring register	- This register is available for monitoring the time-initiated interrupt interval. The interval is calculated using the formula: - K1 to K3000: interval (ms) = data $\times 10$ (ms) - K0: time-initiated interrupt is not used. - Refer to the ICTL instruction in the FP-M/FP1 Programming Manual.					
DT9030	Message 0 register	- The contents of the specified message are stored in DT9030, DT9031, DT9032, DT9033, DT9034, and DT9035 when an F149 (MSG) instruction is executed. - Refer to the F149 (MSG) instruction in the FP-M/FP1 Programming Manual.					
DT9031	Message 1 register						
DT9032	Message 2 register						
DT9033	Message 3 register						
DT9034	Message 4 register						
DT9035	Message 5 register						
DT9037	Work register 1 for F96 instruction	- The number of found data is stored in DT9037 when an F96 (SRC) instruction is executed. - Refer to the F96 (SRC) instruction in the FP-M/FP1 Programming Manual.					
DT9038	Work register 2 for F96 instruction	- The data position found in the first place counting from the first 16-bit area is stored in DT9038 when an F96 (SRC) instruction is executed. - The address stored is counted from the starting address of the register specified by starting 16 -bit area. - Refer to the F96 (SRC) instruction in the FP-M/FP1 Programming Manual.					
DT9040	Manual dial-set register (V0)	Values of the potentiometers (V0 and V1) are stored as:$\begin{aligned} & \text { V0 } \rightarrow \text { DT9040 } \\ & \text { V1 } \rightarrow \text { DT9041 } \end{aligned}$					
DT9041	Manual dial-set register (V1)						

Address	Name	Description
DT9044	High-speed counter elapsed value area (lower 16-bit)	- Lower 16-bit of high-speed counter elapsed value is stored in DT9044.
DT9045	High-speed counter elapsed value area (higher 16-bit)	- Higher 16-bit of high-speed counter elapsed value is stored in DT9045.
DT9046	High-speed counter target value area (lower 16-bit)	- Lower 16-bit of high-speed counter target value is stored in DT9046.
DT9047	High-speed counter target value area (higher 16-bit)	- Higher 16-bit of high-speed counter target value is stored in DT9047.
DT9052	High-speed counter control register	- A register dedicated to control high-speed counter operation. - Refer to the F0 (MV) (high-speed counter control) instruction in the FP-M/FP1 Programming Manual.
DT9053	Clock/calendar monitor register	- Hour and minute data of the clock/calendar are stored in DT9053. This register is available only for monitoring the data. - The hour and minute data is stored in BCD as: - C types (C20RC/C20TC/C32TC) only
DT9054	Clock/calendar monitor and setting register (minute/second)	- Data of the clock/calendar are stored in DT9054, DT9055, DT9056, and DT9057. These registers are available both for settings and for monitoring the clock/calendar. - When setting the clock/calendar by using the F0 (MV) instruction, the
DT9055	Clock/calendar monitor and setting register (day/hour)	revised setting becomes effective from the time when the most significant bit of DT9058 becomes "1". - The data is stored in BCD as:
DT9056	Clock/calendar monitor and setting register (year/month)	
DT9057	Clock/calendar monitor and setting register (day of week)	H01 to H31 (BCD) H00 to H23 (BCD) DT9056 Year H00 to H99 (BCD) Month H01 to H12 (BCD) DT9057 - Day of week H00 to H06 (BCD) - C types (C20RC/C20TC/C32TC) only

Address	Name		Description
DT9080	Digital converted value from analog control board No. 0	$\begin{gathered} \text { Channel } \\ 0 \end{gathered}$	- These registers are used to store the digital converted value of analog
DT9081		Channel 1	I/O board.
DT9082		Channel 2	- The range of digital converted value depends on the type of analog control boards as follows:
DT9083		Channel 3	<When A/D converter board is installed>
DT9084	Digital converted value from analog control board No. 1	Channel 0	K 0 to K 999 (0 to $20 \mathrm{~mA} / 0$ to $5 \mathrm{~V} / 0$ to 10 V) Range of digital converted value (10 bits resolution)
DT9085		Channel 1	Note:
DT9086		Channel 2	- If analog data over the maximum analog value ($20 \mathrm{~mA} / 5 \mathrm{~V} / 10 \mathrm{~V}$) is input, digital data up to $\mathrm{K} 1,023$ is available.
DT9087		$\begin{array}{\|c\|} \hline \text { Channel } \\ 3 \end{array}$	However, be sure to input analog voltage or analog current within the rated range in order to prevent system damages.
DT9088	Digital converted value from analog control board No. 2	$\begin{gathered} \text { Channel } \\ 0 \end{gathered}$	
DT9089		Channel 1	<When Analog I/O board is installed> K0 to K255 (0 to $20 \mathrm{~mA} / 0$ to $5 \mathrm{~V} / 0$ to 10 V)
DT9090		$\begin{array}{\|c\|} \hline \text { Channel } \\ 2 \\ \hline \end{array}$	Range of digital converted value (8 bits resolution) Note:
DT9091		$\begin{array}{\|c\|} \hline \text { Channel } \\ 3 \\ \hline \end{array}$	- Even if analog data outside the specified range is input, digital
DT9092	Digital converted value from analog control board No. 3	$\begin{gathered} \text { Channel } \\ 0 \end{gathered}$	converted value outside K0 to K255 is not available. Be sure to input analog voltage or analog current within the rated range
DT9093		Channel 1	in order to prevent system damages.
DT9094		Channel 2	- Be sure to use the F0 (MV) instruction to transfer data in these special
DT9095		$\begin{gathered} \text { Channel } \\ 3 \end{gathered}$	data registers into other data registers.

- Be sure to use the F0 (MV) instruction to transfer data into these special data registers.

Address	Name		Description
$\begin{aligned} & \text { DT9104 } \\ & \text { DT9105 } \end{aligned}$	High-speed counter board channel 0 area	Target value area 0	- These registers are performed for storing data of the high-speed counter board. - The target values 0 and 1 , elapsed value, and capture value are processed in binary in the range of K-8,388,608 to $8,388,607$.
$\begin{array}{\|l\|} \text { DT9106 } \\ \text { DT9107 } \end{array}$		Target value area 1	Notes:
$\begin{aligned} & \text { DT9108 } \\ & \text { DT9109 } \end{aligned}$		Elapsed value area	- Be sure to use the F1 (DMV) instruction to transfer data in these special data registers to other registers or data in other registers to these special data registers. - When changing data in these special data registers, be sure to specify
DT9110 DT9111		Capture value area	data in the range of K-8,388,608 to K8,388,607. If data outside the range is input, data is handled disregarding bit positions 24 to 31 (bit positions 8 to 15 in the higher 16-bit area of 32 -bit
DT9112 DT9113		Target value area 0	data). <EXAMPLE>
DT9114 DT9115	High-speed counter board	Target value area 1	$\mathrm{K}-8,388,608 .$ Data configuration when $\mathrm{K} 2,147,483,647$ is input: Higher 16-bit area Lower 16-bit area
DT9116 DT9117	channel 1 area	Elapsed value area	
$\begin{aligned} & \text { DT9118 } \\ & \text { DT9119 } \end{aligned}$		Capture value area	K-8,388,608 Data in bit positions 24 to 31 is ignored.

Address	Name	Description
DT9120	High-speed counter board control area	Construction of DT9120 This area specifies the control modes for the high-speed counter board.

*1. Output mode:

The output goes ON or OFF when the elapsed value becomes equal to the target. These bits specify the mode for output transition when the elapsed value becomes equal to the target value. If the output mode is changed, set the target

Bit position	Channel	Corresponding target value	Corresponding output	
0	0	Target 0	OUT00	
1		Target 1	OUT01	
8	1	Target 0	OUT10	
9		Target 1	OUT11	
Bit data 0: OFF \rightarrow ON				
$1:$ ON \rightarrow OFF				

*2. External reset control bit:
These bits (bit positions 3 and 11) are in the ON state, the external reset inputs
(RST.0/RST.1) are ignored as:

By turning ON the external reset enable inputs (RST.E0/RST.E1), you can enable the external reset inputs (RST.0/RST.1). The external reset inputs (RST.0/RST.1) effective are:

- external reset inputs while the external reset enable input is in the ON states.
- the first external reset inputs after the external reset enable input turns OFF.

*3. Target setting:

To preset the target values for the high-speed counter board, first, transfer the set values to the special data registers for the target values. Then, turn the target setting bit from 0 to 1 . A set value is revised at the moment the leading edge of this bit is detected. Therefore, if the bit is already set to 1 , change the bit from 1 to 0 and then change it back to 1 .

*4. Number system selection:

This bit is prepared to select the number system used for the high-speed counter board. If you set this bit to 0 , the data counts the number in the BCD code. However, the FP-M usually handles numbers in binary, so use of the binary number system is recommended.

*1. Output disable input:

This input disables external output even if the high-speed counter is set to the output enable mode by DT9120. While this input is turned ON, the output of the high-speed counter board is not changed even if the elapsed value becomes equal to the target.

*2. Error codes

A BCD error is detected only when data for the high-speed counter board is set to BCD operation using $\mathbf{F 0}$ (MV) and bit position 7 of DT9120.

Bit position				Description
11	10	9	8	
0	0	0	1	BCD error
0	0	1	0	CH 0 overflow/underflow
0	1	0	0	CH 1 overflow/underflow
1	0	0	0	Watchdog timer error

8-8. Table of the Error Codes

- For details about the error checking procedure, refer to page 115, "■ When an ERR. LED is ON".

1. Table of Total-check Error Codes

$\begin{aligned} & \text { Error } \\ & \text { code } \end{aligned}$	Name of error	Program execution when an error occurs	Description	Steps to take
E1	Syntax error (SYNTAX)	Stops	Instruction is incorrectly programmed.	Set the mode of FP-M to PROG. and input the instruction correctly, referring to the description for the instruction.
E2	Duplicated output error (DUP USE)	Stops	Two or more OT and KP instructions are programmed using same relay.	Set the mode of FP-M to PROG. and correct the program so that one relay is not used for two or more OT and KP instructions. This error can be disregarded by changing the system register 20 setting to K1 (ENAB).
E3	Not paired error (PAIR)	Stops	One of the instructions, which must be paired, is missing (e.g., JP and LBL) The paired instruction sets may have been programmed in the incorrect order (e.g., MC and MCE).	Set the mode of FP-M to PROG. and program the missing instruction sets in the proper order, referring to the description of the instruction.
E4	System register parameter error (MISMATCH)	Stops	The operand for the instruction is out of the range set in the system register.	Set the mode of FP-M to PROG. and check the system register parameter using a FP Programmer II (OP50) or NPST-GR Software (1. SYSTEM REGISTER in the PLC CONFIGURATION).
E5	Program area error (PRG AREA)	Stops	The instruction has been programmed in the incorrect position (e.g., INT and IRET instructions are programmed at the address before the ED instruction).	Set the mode of FP-M to PROG. and program the instruction in the proper position, referring to the description of the instruction.
E8	Operand error (OPR COMBI)	Stops	Incorrect operand has been entered for the instruction.	Set the mode of FP-M to PROG. and program the instruction with the proper operand, referring to the description of the instruction.

2. Table of Self-diagnostic Error Codes

$\begin{aligned} & \text { Error } \\ & \text { code } \\ & \hline \end{aligned}$	Name of error	Program execution when an error occurs	Description	Steps to take
E26	ROM error	Stops	Probably an abnormality in the memory (EPROM) or master memory (EEPROM).	Program the memory (EPROM) or master memory (EEPROM) again and try to operate. If the same error is detected, try to operate with another memory (EPROM) or master memory (EEPROM) .
E28	System register error	Stops	Probably an abnormality in the system register.	Set the mode of FP-M to PROG. and initialize the system register.
E31	Interrupt error	Stops	Probably a hardware abnormality or an abnormality caused by noise.	Turn OFF the power of the FPM and check the surrounding noise level.
E32	Interrupt error	Stops	Probably a hardware abnormality or an abnormality caused by noise.	Turn OFF the power of the FPM and check the surrounding noise level.
			Probably an INT (interrupt) program corresponding to the trigger is missing.	Set the mode of FP-M to PROG. and make an INT program which corresponds to the interruption.
E45	Operation error	Selectable by system register 26 (default: stops) S System register 26 KO: FP-M stops K1: FP-M conti	Probably an abnormality was detected when a high-level or basic instruction was executed. settings s operation if an operation error nues operation even if an oper	Check the contents of special data registers (DT9017 and DT9018) to find the program address where the operation error occurred. Then correct the program referring to the description of the instruction. $\begin{aligned} & \text { r occurs. } \\ & \text { ation error occurs. } \end{aligned}$
E50	Battery error	Continues	The voltage of the backup battery dropped or the backup battery has been pulled out from the holder.	Replace the backup battery. The operation without backup battery can be specified by system register 4. System register 4 settings KO: The conditions are regarded as errors. K1: The conditions are not regarded as errors.
E100 to E199 E200 to E299	Self-diagnostic error set by F148 (ERR) instruction	Stops Continues	- The self-diagnostic error code instruction is transferred to D - The contents of the self-diag confirmed using the following - NPST-GR Software: "7. ST - FP Programmer II: "OP-1	specified by the F148 (ERR) 9000. nostic error code can be programming tools. ATUS DISPLAY" in INE mode 10"

8-9. Table of Instructions

1. Basic Instructions

Name	Boolean	Description	Step
Start	ST	Begins a logic operation with a Form A (normally open) contact.	1
Start Not	ST/	Begins a logic operation with a Form B (normally closed) contact.	1
Out	OT	Outputs the operated result to the specified output.	1
Not	I	Inverts the operated result up to this instruction.	1
AND	AN	Connects a Form A (normally open) contact serially.	1
AND Not	AN/	Connects a Form B (normally closed) contact serially.	1
OR	OR	Connects a Form A (normally open) contact in parallel.	1
OR Not	OR/	Connects a Form B (normally closed) contact in parallel.	1
AND stack	ANS	Performs an AND operation on multiple instruction blocks.	1
OR stack	ORS	Performs an OR operation on multiple instruction blocks.	1
Push stack	PSHS	Stores the operated result up to this instruction.	1
Read stack	RDS	Reads the operated result stored by the PSHS instruction.	1
Pop stack	POPS	Reads and clears the operated result stored by the PSHS instruction.	1
Leading edge differential	DF	Turns ON the contact for only one scan when the leading edge of the trigger is detected.	1
Trailing edge differential	DF/	Turns ON the contact for only one scan when the trailing edge of the trigger is detected.	1
Set	SET	Holds the contact (in bit) ON.	3
Reset	RST	Holds the contact (in bit) OFF.	3
Keep	KP	Turns ON the output and maintains its condition.	1
No operation	NOP	No operation.	1
0.01 s units timer	TMR	Sets the ON-delay timer for 0.01 s units (0 to 327.67 s).	3
0.1 s units timer	TMX	Sets the ON-delay timer for 0.1 s units (0 to 3276.7 s).	3
1 s units timer	TMY	Sets the ON-delay timer for 1 s units (0 to 32767 s).	4
Auxiliary timer	$\begin{array}{\|l\|} \hline \text { F137 } \\ \text { (STMR) } \\ \hline \end{array}$	Sets the ON-delay timer for 0.01 s units (0.01 to 327.67 s).	5
Counter	CT	Subtracts the preset counter.	3
UP/DOWN counter	$\begin{array}{\|l\|} \hline \text { F118 } \\ \text { (UDC) } \\ \hline \end{array}$	Sets the UP/DOWN counter.	5
Shift register	SR	Shifts one bit of 16-bit [word internal relay (WR)] data to the left.	1
Left/right shift register	$\begin{array}{\|l} \hline \text { F119 } \\ \text { (LRSR) } \end{array}$	Shifts one bit of the 16-bit data range to the left or to the right.	5
Master control relay	MC	Executes the instructions from MC to MCE when the predetermined	2
Master control relay end	MCE	trigger (I/O) turns ON	2
Jump	JP	Skips to the LBL instruction that has the same number as the JP instruction when the predetermined trigger turns ON.	2
Label	LBL	Label used for execution of JP and LOOP instructions.	1
Loop	LOOP	Skips to the LBL instruction that has the same number as the LOOP instruction and executes what follows it repeatedly until the data of a specified operand becomes " 0 ".	4

[^9]| Name | Boolean | Description | Step |
| :--- | :--- | :--- | :---: |
| End | ED | Indicates the end of a main program. | 1 |
| Conditional end | CNDE | Ends one scan when the predetermined trigger turns ON. | 1 |
| Start step | SSTP | Indicates the start of the step ladder process. | 3 |
| Next step (pulse
 execution type) | NSTP | Opens the process of the step ladder and resets the process
 including the instruction itself. NSTP is executed when the leading
 edge of its trigger is detected. | 3 |
| Next step (scan
 execution type) | NSTL | Opens the process of the step ladder and resets the process
 including the instruction itself. NSTL is executed every scan if its
 trigger is ON. | 3 |
| Clear step | CSTP | Resets the specified process. | 3 |
| Step end | STPE | Closes the step ladder operations and returns to normal ladder
 operation. | 1 |
| Subroutine call | CALL | Executes the specified subroutine. | 2 |
| Subroutine entry | SUB | Indicates the start of the subroutine program. | 1 |
| Subroutine return | RET | Ends the subroutine program and returns to the main program. | 1 |
| Interrupt control | ICTL | Specifies the condition of the interrupt. | 5 |
| Interrupt | INT | Starts an interrupt program. | 1 |
| Interrupt return | IRET | Ends the interrupt program and returns instruction control to the main
 program. | 1 |

Name	Boolean	Operand	Description	Step
Word compare: Start equal	ST =	S1, S2	Performs Start, AND or OR operation by comparing two word data in the following conditions. ON : when $\mathrm{S} 1=\mathrm{S} 2$ OFF: when S1 \neq S2	5
Word compare: AND equal	AN =	S1, S2		5
Word compare: OR equal	OR =	S1, S2		5
Word compare: Start equal not	ST <>	S1, S2	Performs Start, AND or OR operation by comparing two word data in the following conditions. ON : when $\mathrm{S} 1 \neq \mathrm{S} 2$ OFF: when S1 = S2	5
Word compare: AND equal not	AN <>	S1, S2		5
Word compare: OR equal not	OR <>	S1, S2		5
Word compare: Start larger	ST >	S1, S2	Performs Start, AND or OR operation by comparing two word data in the following conditions. ON: when S1 > S2 OFF: when $\mathrm{S} 1 \leqq \mathrm{~S} 2$	5
Word compare: AND larger	AN >	S1, S2		5
Word compare: OR larger	OR >	S1, S2		5
Word compare: Start equal or larger	ST >=	S1, S2	Performs Start, AND or OR operation by comparing two word data in the following conditions. ON : when $\mathrm{S} 1 \geqq \mathrm{~S} 2$ OFF: when $\mathrm{S} 1<\mathrm{S} 2$	5
Word compare: AND equal or larger	AN >=	S1, S2		5
Word compare: OR equal or larger	OR >=	S1, S2		5

- For more about the instructions above, refer to "FP-M /FP1 Programming Manual".

Name	Boolean	Operand	Description	Step
Word compare: Start smaller	ST <	S1, S2	Performs Start, AND or OR operation by comparing two word data in the following conditions. ON : when $\mathrm{S} 1<\mathrm{S} 2$ OFF: when $\mathrm{S} 1 \geqq \mathrm{~S} 2$	5
Word compare: AND smaller	AN <	S1, S2		5
Word compare: OR smaller	OR <	S1, S2		5
Word compare: Start equal or smaller	ST <=	S1, S2	Performs Start, AND or OR operation by comparing two word data in the following conditions. $\mathrm{ON}:$ when $\mathrm{S} 1 \leqq \mathrm{~S} 2$ OFF: when S1 > S2	5
Word compare: AND equal or smaller	AN <=	S1, S2		5
Word compare: OR equal or smaller	OR <=	S1, S2		5
Double word compare: Start equal	STD =	S1, S2	Performs Start, AND or OR operation by comparing two double word data in the following conditions. ON : when $(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$ OFF: when $(\mathrm{S} 1+1, \mathrm{~S} 1) \neq(\mathrm{S} 2+1, \mathrm{~S} 2)$	9
Double word compare: AND equal	AND =	S1, S2		9
Double word compare: OR equal	ORD =	S1, S2		9
Double word compare: Start equal not	STD <>	S1, S2	Performs Start, AND or OR operation by comparing two double word data in the following conditions. ON : when $(\mathrm{S} 1+1, \mathrm{~S} 1) \neq(\mathrm{S} 2+1, \mathrm{~S} 2)$ OFF: when $(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$	9
Double word compare: AND equal not	AND <>	S1, S2		9
Double word compare: OR equal not	ORD <>	S1, S2		9
Double word compare: Start larger	STD >	S1, S2	Performs Start, AND or OR operation by comparing two double word data in the following conditions. $\mathrm{ON}:$ when $(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$ OFF: when $(S 1+1, S 1) \leqq(S 2+1, S 2)$	9
Double word compare: AND larger	AND >	S1, S2		9
Double word compare: OR larger	ORD >	S1, S2		9
Double word compare: Start equal or larger	STD >=	S1, S2	Performs Start, AND or OR operation by comparing two double word data in the following conditions. ON: when $(S 1+1, S 1) \geqq(S 2+1, S 2)$ OFF: when $(S 1+1, S 1)<(S 2+1, S 2)$	9
Double word compare: AND equal or larger	AND >=	S1, S2		9
Double word compare: OR equal or larger	ORD >=	S1, S2		9
Double word compare: Start smaller	STD <	S1, S2	Performs Start, AND or OR operation by comparing two double word data in the following conditions. $\mathrm{ON}:$ when $(\mathrm{S} 1+1, \mathrm{~S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2)$ OFF: when $(\mathrm{S} 1+1, \mathrm{~S} 1) \geqq(\mathrm{S} 2+1, \mathrm{~S} 2)$	9
Double word compare: AND smaller	AND <	S1, S2		9
Double word compare: OR smaller	ORD <	S1, S2		9
Double word compare: Start equal or smaller	STD <=	S1, S2	Performs Start, AND or OR operation by comparing two double word data in the following conditions. ON: when $(\mathrm{S} 1+1, \mathrm{~S} 1) \leqq(\mathrm{S} 2+1, \mathrm{~S} 2)$ OFF: when $(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$	9
Double word compare: AND equal or smaller	AND <=	S1, S2		9
Double word compare: OR equal or smaller	ORD <=	S1, S2		9

- For more about the instructions above, refer to "FP-M /FP1 Programming Manual".

2. High-level Instructions

Number	Boolean	Operand	Description	Flag operation					Step
				$\xrightarrow[R 900 \mathrm{~A}]{ }$		R900C	$\begin{gathered} \hline \mathbf{C Y} \\ \text { R9009 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { ER } \\ \text { R9007 } \\ \text { R9008 } \end{array}$	
F0	MV	S, D	16-bit data move					\uparrow	5
F1	DMV	S, D	32-bit data move					\downarrow	7
F2	MV/	S, D	16-bit data invert and move					$\hat{\imath}$	5
F3	DMV/	S, D	32-bit data invert and move					\downarrow	7
F5	BTM	S, n, D	Bit data move					\imath	7
F6	DGT	S, n, D	Hexadecimal digit move					$\hat{\imath}$	7
F10	BKMV	S1, S2, D	Block move					$\hat{\imath}$	7
F11	COPY	S, D1, D2	Block copy					$\hat{\imath}$	7
F15	XCH	D1, D2	16-bit data exchange					$\hat{\imath}$	5
F16	DXCH	D1, D2	32-bit data exchange					$\hat{\imath}$	5
F17	SWAP	D	Higher/lower byte in 16-bit data exchange					\uparrow	3
F20	+	S, D	16-bit data [D + S \rightarrow D]		$\hat{\imath}$		$\hat{\imath}$	$\hat{\imath}$	5
F21	D+	S, D	32-bit data [(D + 1, D) + (S + 1, S) \rightarrow (D + 1, D)]		$\hat{\imath}$		$\hat{\imath}$	\uparrow	7
F22	+	S1, S2, D	16-bit data [S1 + S2 \rightarrow D]		$\hat{\imath}$		$\hat{\imath}$	\imath	7
F23	D+	S1, S2, D	32-bit data $[(S 1+1, S 1)+(S 2+1, S 2) \rightarrow(D+1, D)]$		\imath		\downarrow	\imath	11
F25	-	S, D	16-bit data [D-S \rightarrow D]		$\hat{\imath}$		$\hat{\imath}$	\downarrow	5
F26	D-	S, D	32-bit data [(D + 1, D) - $(S+1, S) \rightarrow(\mathrm{D}+1, \mathrm{D})$]		$\hat{\imath}$		\downarrow	$\hat{\imath}$	7
F27	-	S1, S2, D	16-bit data [S1-S2 \rightarrow D]		$\hat{\imath}$		\downarrow	$\hat{\imath}$	7
F28	D-	S1, S2, D	$\begin{aligned} & \text { 32-bit data } \\ & {[(S 1+1, S 1)-(S 2+1, S 2) \rightarrow(D+1, D)]} \end{aligned}$		\imath		\imath	\downarrow	11
F30	*	S1, S2, D	16-bit data [S1 \times S2 \rightarrow (D + 1, D)]		$\hat{\imath}$			$\hat{\imath}$	7
F31	D*	S1, S2, D	$\begin{aligned} & 32 \text {-bit data }[(S 1+1, S 1) \times(S 2+1, S 2) \rightarrow \\ & (D+3, D+2, D+1, D)] \end{aligned}$		$\hat{\imath}$			\downarrow	11
F32	\%	S1, S2, D	16-bit data [S1/S2 \rightarrow D...(DT9015)]		$\hat{\imath}$		$\stackrel{\rightharpoonup}{2}$	$\hat{\imath}$	7
F33	D\%	S1, S2, D	$\begin{aligned} & \text { 32-bit data }[(S 1+1, S 1) /(S 2+1, S 2) \rightarrow \\ & (D+1, D) \ldots(D T 9016, D T 9015)] \end{aligned}$		\imath		\imath	\downarrow	11
F35	+1	D	16-bit data increment [D + 1 \rightarrow D]		$\hat{\imath}$		$\hat{\imath}$	$\hat{\imath}$	3
F36	D+1	D	32-bit data increment [(D + 1, D) + \rightarrow ($\mathrm{D}+1, \mathrm{D})$]		$\hat{\imath}$		$\hat{\imath}$	$\hat{\imath}$	3
F37	-1	D	16-bit data decrement [D-1 \rightarrow D]		$\hat{\imath}$		$\hat{\imath}$	$\hat{\imath}$	3
F38	D-1	D	32-bit data decrement [(D + 1, D) -1 \rightarrow ($\mathrm{D}+1, \mathrm{D})$]		$\hat{\imath}$		\imath	$\hat{\imath}$	3
F40	B+	S, D	4-digit BCD data [D + S \rightarrow]]		$\hat{\imath}$		$\hat{\imath}$	$\hat{\imath}$	5
F41	DB+	S, D	8-digit BCD data $[(D+1, D)+(S+1, S) \rightarrow(D+1, D)]$		$\hat{\imath}$		\downarrow	\downarrow	7
F42	B+	S1, S2, D	4-digit BCD data [S1 + S2 \rightarrow D]		$\hat{\imath}$		$\hat{\imath}$	$\hat{\imath}$	7
F43	DB+	S1, S2, D	8-digit BCD data $[(S 1+1, S 1)+(S 2+1, S 2) \rightarrow(D+1, D)]$		$\hat{\imath}$		\imath	\downarrow	11
F45	B-	S, D	4-digit BCD data [D-S \rightarrow D]		$\hat{\imath}$		$\hat{\imath}$	$\hat{\imath}$	5

- Specification of flag operation in the above table:
[1]: The flag (special relay) available for the instruction (turns ON/OFF according to the condition).
[](blank): The flag (special relay) not available for the instruction (keeps the state regardless of the instruction).
- For more about the instructions above, refer to "FP-M /FP1 Programming Manual".

Number	Boolean	Operand	Description	Flag operation					Step
				R900A	$\begin{gathered} \overline{=} \\ \text { R900B } \end{gathered}$	R900C	$\begin{gathered} \text { CY } \\ \text { R900 } \end{gathered}$	$\begin{array}{\|c\|c} \hline \text { ER } \\ \text { R9007 } \\ \text { R9008 } \end{array}$	
F46	DB-	S, D	8-digit BCD data $[(D+1, D)-(S+1, S) \rightarrow(D+1, D)]$		\imath		$\hat{\imath}$	\downarrow	7
F47	B-	S1, S2, D	4-digit BCD data [S1-S2 \rightarrow D]		\downarrow		$\hat{\imath}$	\imath	7
F48	DB-	S1, S2, D	$\left[\begin{array}{l} 8 \text {-digit BCD data } \\ {[(S 1+1, S 1)-(S 2+1, S 2) \rightarrow(D+1, D)]} \end{array}\right.$		\downarrow		\downarrow	\imath	11
F50	B*	S1, S2, D	4-digit BCD data [S1 \times S2 \rightarrow (D + 1, D)]		\downarrow			\imath	7
F51	DB*	S1, S2, D	$\begin{aligned} & 8 \text {-digit } B C D \text { data }[(S 1+1, S 1) \times(S 2+1, S 2) \rightarrow \\ & (D+3, D+2, D+1, D)] \end{aligned}$		\imath			\imath	11
F52	B\%	S1, S2, D	4-digit BCD data [S1/S2 \rightarrow D...(DT9015)]		\downarrow			\imath	7
F53	DB\%	S1, S2, D	8 -digit BCD data $[(\mathrm{S} 1+1, \mathrm{~S} 1) /(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow$ (D + 1, D)...(DT9016, DT9015)]		\imath			\imath	11
F55	B+1	D	4-digit BCD data increment [D + \rightarrow D]		\downarrow		\downarrow	$\hat{\imath}$	3
F56	DB+1	D	8-digit BCD data increment $[(D+1, D)+1 \rightarrow(D+1, D)]$		\imath		\imath	\imath	3
F57	B-1	D	4-digit BCD data decrement [D-1 \rightarrow D]		\imath		$\hat{\imath}$	\imath	3
F58	DB-1	D	8-digit BCD data decrement $[(D+1, D)-1 \rightarrow(D+1, D)]$		\imath		\imath	\imath	3
F60	CMP	S1, S2	16-bit data compare	\imath	$\hat{\imath}$	\imath	$\hat{\imath}$	$\hat{\imath}$	5
F61	DCMP	S1, S2	32-bit data compare	$\hat{\imath}$	\imath	\imath	$\hat{\imath}$	\imath	9
F62	WIN	S1, S2, S3	16-bit data band compare	\imath	$\hat{\imath}$	\imath		$\hat{\imath}$	7
F63	DWIN	S1, S2, S3	32-bit data band compare	\imath	$\hat{\imath}$	\imath		\imath	13
F64	BCMP	S1, S2, S3	Block data compare		\imath			\imath	7
F65	WAN	S1, S2, D	16-bit data AND		$\hat{\imath}$			$\hat{\imath}$	7
F66	WOR	S1, S2, D	16-bit data OR		$\hat{\imath}$			$\hat{\imath}$	7
F67	XOR	S1, S2, D	16-bit data exclusive OR		$\hat{\imath}$			$\hat{\imath}$	7
F68	XNR	S1, S2, D	16-bit data exclusive NOR		$\hat{\imath}$			$\hat{\imath}$	7
F70	BCC	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	Block check code calculation					\imath	9
F71	HEXA	S1, S2, D	Hexadecimal data \rightarrow ASCII code					$\hat{\imath}$	7
F72	AHEX	S1, S2, D	ASCII code \rightarrow Hexadecimal data					$\hat{\imath}$	7
F73	BCDA	S1, S2, D	BCD data \rightarrow ASCII code					$\hat{\imath}$	7
F74	ABCD	S1, S2, D	ASCII code \rightarrow BCD data					$\hat{\imath}$	9
F75	BINA	S1, S2, D	16-bit data \rightarrow ASCII code					$\stackrel{\rightharpoonup}{2}$	7
F76	ABIN	S1, S2, D	ASCII code \rightarrow 16-bit data					$\stackrel{\rightharpoonup}{2}$	7
F77	DBIA	S1, S2, D	32-bit data \rightarrow ASCII code					$\hat{\imath}$	11
F78	DABI	S1, S2, D	ASCII code \rightarrow 32-bit data					$\hat{\imath}$	11
F80	BCD	S, D	16-bit data \rightarrow 4-digit BCD data					\imath	5
F81	BIN	S, D	4-digit BCD data \rightarrow 16-bit data					\imath	5
F82	DBCD	S, D	32-bit data $\rightarrow 8$-digit BCD data					$\hat{\imath}$	7
F83	DBIN	S, D	8-digit BCD data \rightarrow 32-bit data					\imath	7
F84	INV	D	16-bit data invert					$\hat{\imath}$	3

- Specification of flag operation in the above table:
[$\hat{\imath}$]: The flag (special relay) available for the instruction (turns ON/OFF according to the condition).
[](blank): The flag (special relay) not available for the instruction (keeps the state regardless of the instruction).
- For more about the instructions above, refer to "FP-M /FP1 Programming Manual".

Number	Boolean	Operand	Description	Flag operation					Step
				$\underset{\text { R900A }}{>}$	$\begin{gathered} \overline{=} \\ \text { R900B } \end{gathered}$	R900C	$\begin{gathered} \text { CY } \\ \text { R9009 } \end{gathered}$	$\begin{gathered} \text { ER } \\ \text { R9007 } \\ \text { R9008 } \end{gathered}$	
F85	NEG	D	16-bit data two's complement					$\hat{\imath}$	3
F86	DNEG	D	32-bit data two's complement					$\hat{\imath}$	3
F87	ABS	D	16-bit data absolute				$\hat{\imath}$	$\hat{\imath}$	3
F88	DABS	D	32-bit data absolute				$\hat{\imath}$	\uparrow	3
F89	EXT	D	16-bit data sign extension					\downarrow	3
F90	DECO	S, n, D	Decode					$\hat{\imath}$	7
F91	SEGT	S, D	16-bit data 7-segment decode					$\hat{\imath}$	5
F92	ENCO	S, n, D	Encode					\imath	7
F93	UNIT	S, n, D	16-bit data combine					\imath	7
F94	DIST	S, n, D	16-bit data distribute					$\hat{\imath}$	7
F95	ASC	S, D	Character \rightarrow ASCII code					\imath	15
F96	SRC	S1, S2, S3	Table data search					$\hat{\imath}$	7
F100	SHR	D, n	Right shift of 16-bit data in bit units				$\hat{\imath}$	$\hat{\imath}$	5
F101	SHL	D, n	Left shift of 16-bit data in bit units				\imath	\imath	5
F105	BSR	D	Right shift of one hexadecimal digit (4 bits) of 16-bit data					\imath	3
F106	BSL	D	Left shift of one hexadecimal digit (4 bits) of 16-bit data					$\hat{\imath}$	3
F110	WSHR	D1, D2	Right shift of one word (16 bits) of 16-bit data range					\imath	5
F111	WSHL	D1, D2	Left shift of one word (16 bits) of 16-bit data range					\imath	5
F112	WBSR	D1, D2	Right shift of one hexadecimal digit (4 bits) of 16-bit data range					\imath	5
F113	WBSL	D1, D2	Left shift of one hexadecimal digit (4 bits) of 16-bit data range					$\hat{\imath}$	5
F118	UDC	S, D	UP/DOWN counter		$\hat{\imath}$		$\hat{\imath}$		5
F119	LRSR	D1, D2	Left/right shift register				$\hat{\imath}$	$\hat{\imath}$	5
F120	ROR	D, n	16-bit data right rotate				$\hat{\imath}$	\downarrow	5
F121	ROL	D, n	16-bit data left rotate				$\hat{\imath}$	\imath	5
F122	RCR	D, n	16-bit data right rotate with carry flag data				$\hat{\imath}$	$\hat{\imath}$	5
F123	RCL	D, n	16-bit data left rotate with carry flag data				$\hat{\imath}$	$\hat{\imath}$	5
F130	BTS	D, n	16-bit data bit set					$\hat{\imath}$	5
F131	BTR	D, n	16-bit data bit reset					\imath	5
F132	BTI	D, n	16-bit data bit invert					$\hat{\imath}$	5
F133	BTT	D, n	16-bit data test		\imath			\imath	5
F135	BCU	S, D	Number of ON bits in 16-bit data					$\hat{\imath}$	5
F136	DBCU	S, D	Number of ON bits in 32-bit data					$\hat{\imath}$	7
F137	STMR	S, D	Auxiliary timer						5
F138	HMSS	S, D	Hours, minutes, and seconds data to seconds data					$\hat{\imath}$	5
F139	SHMS	S, D	Seconds data to hours, minutes, and seconds data					$\hat{\imath}$	5
F140	STC	-	Carry flag (R9009) set				$\hat{\imath}$		1
F141	CLC		Carry flag (R9009) reset				$\hat{\imath}$		1

- Specification of flag operation in the above table:
[र̂]: The flag (special relay) available for the instruction (turns ON/OFF according to the condition).
[](blank): The flag (special relay) not available for the instruction (keeps the state regardless of the instruction).
- For more about the instructions above, refer to "FP-M /FP1 Programming Manual".

Number	Boolean	Operand	Description	Flag operation					Step
					$\stackrel{\overline{\bar{R}}}{\mathrm{R} 90 \mathrm{~B}}$	R900C	$\begin{gathered} \hline \text { CY } \\ \text { R9009 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { ER } \\ \text { R9007 } \\ \text { R9008 } \end{array}$	
F143	IORF	D1, D2	Partial I/O update					\downarrow	5
F144	TRNS	S, n	Serial communication FP-M C types (C20RC/C20TC/C32TC) only					\downarrow	5
F147	PR	S, D	Parallel printout FP-M transistor output type only					\imath	5
F148	ERR	n	Self-diagnostic error set					\imath	3
F149	MSG	S	Message display						13
F157	CADD	S1, S2, D	$\begin{aligned} & \text { Time addition } \\ & {[(S 1+2, S 1+1, S 1)+(S 2+1, S 2) \rightarrow(D+2, D+1, D)]} \end{aligned}$					\imath	9
F158	CSUB	S1, S2, D	$\begin{aligned} & \text { Time subtraction } \\ & {[(\mathrm{S} 1+2, \mathrm{~S} 1+1, \mathrm{~S} 1)-(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+2, \mathrm{D}+1, \mathrm{D})]} \end{aligned}$					\imath	9
F0	MV	S, DT9052	High-speed counter control					\imath	5
F1	DMV	$\begin{array}{\|c\|} \hline \text { S, DT9044 } \\ \text { or } \\ \text { DT9044, D } \end{array}$	Change and read of the elapsed value of highspeed counter					\imath	7
F162	HCOS	S, Yn	High-speed counter output set					$\hat{\imath}$	7
F163	HC0R	S, Yn	High-speed counter output reset					$\hat{\imath}$	7
F164	SPD0	S	Pulse output control FP-M transistor output type only Pattern output control					\imath	3
F165	CAM0	S	Cam control					$\hat{\imath}$	3

- Specification of flag operation in the above table:
[$\hat{\imath}$]: The flag (special relay) available for the instruction (turns ON/OFF according to the condition).
[](blank): The flag (special relay) not available for the instruction (keeps the state regardless of the instruction).
- For more about the instructions above, refer to "FP-M /FP1 Programming Manual".

8-10. Table of Binary/BCD Expressions

Decimal number	Binary data (hexadecimal expression)					BCD data (BCD H code)				
0	0000	0000	0000	0000	(H 000000$)$	0000	0000	0000	0000	(H 000000$)$
1	0000	0000	0000	0001	(H0001)	0000	0000	0000	0001	(H 000001$)$
2	0000	0000	0000	0010	(H 00002)	0000	0000	0000	0010	(H 00002$)$
3	0000	0000	0000	0011	(H 00003)	0000	0000	0000	0011	$(\mathrm{H} 0003)$
4	0000	0000	0000	0100	(H 00004)	0000	0000	0000	0100	(H 00004)
5	0000	0000	0000	0101	(H 0005)	0000	0000	0000	0101	(H 00005)
6	0000	0000	0000	0110	(H 00006)	0000	0000	0000	0110	(H 00006)
7	0000	0000	0000	0111	(H 0007)	0000	0000	0000	0111	(H0007)
8	0000	0000	0000	1000	(H 00008)	0000	0000	0000	1000	(H 00008$)$
9	0000	0000	0000	1001	(H 00009)	0000	0000	0000	1001	(H 00009)
10	0000	0000	0000	1010	(H 000 A)	0000	0000	0001	0000	(H 00010$)$
11	0000	0000	0000	1011	(H 000 B)	0000	0000	0001	0001	(H 000111$)$
12	0000	0000	0000	1100	(H 000 C)	0000	0000	0001	0010	(H0012)
13	0000	0000	0000	1101	(H 000 D)	0000	0000	0001	0011	(H 00013$)$
14	0000	0000	0000	1110	(H 000 E)	0000	0000	0001	0100	(H0014)
15	0000	0000	0000	1111	(H 000 F)	0000	0000	0001	0101	(H0015)
16	0000	0000	0001	0000	(H 00100)	0000	0000	0001	0110	(H0016)
17	0000	0000	0001	0001	(H00011)	0000	0000	0001	0111	(H 00017$)$
18	0000	0000	0001	0010	(H0012)	0000	0000	0001	1000	(H0018)
19	0000	0000	0001	0011	(H 00013$)$	0000	0000	0001	1001	(H 00019$)$
20	0000	0000	0001	0100	(H0014)	0000	0000	0010	0000	(H0 O 20)
63	0000	0000	0011	1111	(H 003 F)	0000	0000	0110	0011	(H0063)
255	0000	0000	1111	1111	(H 00 FF)	0000	0010	0101	0101	(H0 25 5)
9999	0010	0111	0000	1111	(H 270 F)	1001	1001	1001	1001	(H9999)

8-11. Versions of Programming Tools

1. Differences Between NPST-GR Ver. 2.4 and 3.1

NPST-GR Software Ver. 3.1 is designed to support all the functions of the FP series programmable controllers described in this manual. However, compared with previous NPST-GR Software, version 3.1 requires an additional system. For this reason, NPST-GR Ver. 2.4 has been introduced for computers without the system required for Ver. 3.1.

The differences in functions and requirements between NPST-GR Ver. 2.4 and 3.1 are explained in the table below.

■ System requirements

Item	NPST-GR Ver. 2.4 (AFP266528)	NPST-GR Ver. 3.1 (AFP266538)	
Type of computer	IBM PC-AT or 100\% compatible		
CPU	i80286, i80386, or i80486	i80386 or i80486 recommended	
Hard Disk Space	2 MB or more if installed in your hard disk drive. [If your computer has two floppy disk drives (including RAM drive), no hard disk drive is required.]	Approx. 2 MB or more	
Floppy Disk Drive	One disk drive for 3.5-inch 2HD floppies formatted at 1.44 MB or one for 5.25-inch 2HD floppies formatted at 1.2 MB.		
Main Memory	500 KB or more free	550 KB or more free	
EMS	Not required	800 KB or more free	
Video Mode	EGA or VGA (CGA type can also be used if the time chart monitoring function is not used.)		
RS232C port	COM 1 or COM 2		
Operating System	PC-DOS or MS-DOS version 3.3 or later ANSI. SYS required	PC-DOS or MS-DOS version 3.3 or later (version 5.0 is recommended) ANSI. SYS required for installation EMS driver based on LIM V4.0	

■ Functions

Item		NPST-GR Ver. 2.4 (AFP266528)	NPST-GR Ver. 3.1 (AFP266538)
Programmable controllers supported		 FP1: 0.9 k FP1/FP-M: 2.7 k FP1/FP-M: 5 k FP3: 10 k FP3/FP-C: 16 k FP5: 16 k	0.9 k FP1: 5 l FP1/FP-M: 2.7 k FP1/FP-M: 5 k FP3: 10 k FP3/FP-C: 16 k FP5: 16 k FP10/FP10S: 30 k FP10: 60 k
Instructions	36 comparison instructions	36 comparison instructions (ST=, AN <, etc.) not available	All the instructions of an FP-M can be programmed.
Modem communication settings		Not available. Modem communication parameters cannot be set. (System register 416 for the RS232C port and 411 for the RS422 port cannot be set using NPST-GR Ver. 2.4.)	Available. Modem communication parameters can be set. (System register 416 for the RS232C port and 411 for the programming tool port)
Error clear function		Not available.	Available.
Battery error disregarding function		Operation without backup battery cannot be selected. (System register 4 cannot be set using NPST-GR Ver. 2.4.)	Operation without backup battery can be selected. (System register 4 can be modified.)

2. Differences Between the FP Programmer and FP Programmer II

The FP Programmer II is designed to support all the functions of the FP series programmable controllers described in this manual. Differences in functions between the FP Programmer and the FP Programmer II are explained in the table.

FP Programmer (AFP1112 and AFP1112A) and FP Programmer II (AFP1114)

Item	FP Programmer (AFP1112)	FP Programmer (AFP1112A)	FP Programmer II (AFP1114)
Programmable controllers supported	FP1, FP3, FP5	FP1, FP3, FP5	FP-M, FP-C, FP1, FP3, FP5, FP10S, FP10
Communication parameters	Fixed as: $\begin{array}{ll}\text { Baud rate: } 19,200 \mathrm{bps} \\ \text { Character } \\ \text { bits: } & 8 \text { bits } \\ \text { Parity: } & \text { ODD } \\ \text { Stop bit: } & 1 \text { bit }\end{array}$	The parameters areautomatically adjustedwhen connected to theprogrammablecontroller.Baud rate:$19,200 \mathrm{bps}$ or $9,600 \mathrm{bps}$ Character bits: Parity: $\quad 7$ bits or Stop bit: $\quad 1$ bDD	The parameters areautomatically adjustedwhen connected to theprogrammablecontroller.Baud rate:$19,200 \mathrm{bps}$ or $9,600 \mathrm{bps}$Character bits: 8 bits or 7 bits Parity: ODD Stop bit: 1 bit
36 comparison instructions (ST = etc.)	Not available	Not available	Available
NSTL instruction	Not available	Available	Available
F12 (ICRD)/P12 (PICRD), F13 (ICWT)/P13 (PICWT), F14 (PGRD)/P14 (PPGRD) instructions	Not available	Not available	Available
F64 (BCMP)/P64 (PBCMP), F98 (CMPR)/ P98 (PCMPR), F99 (CMPW)/P99 (PCMPW), F157 (CADD)/P157 (PCADD), F158 (CSUB)/ P158 (PCSUB) instructions	Not available. These instructions cannot be programmed. However, you can monitor the instructions with it.	Available	Available

Item	FP Programmer (AFP1112)	FP Programmer (AFP1112A)	FP Programmer II (AFP1114)
OP 21 (route number settings)	Available Only routes 1 to 3 can be selected.	Available Routes 1 to 6 can be selected.	Available Routes 1 to 6 can be selected.
OP 72 (password enabled/disabled settings)	Not available	Available	Available
OP 73 (password registration function)	Not available	Not available	Available
OP 74 (password forcing clear function)*	Not available	Available	
OP 91 (program/system register read/write function)	Not available	Not available	Available
OP 92 (system register read/write function)	Not available		
OP 99 (EEPROM write function)	Available. However, "BCC ERR" is displayed on the LCD if a program with more than 11 k steps is written to EEPROM.	Available	Available
OP 112 (Error			
cancellation function)	Not available	Not available	Available

Note:

- *If the OP 74 function is executed, the program stored in the programmable controller will be deleted.

8-12. Modem Communication

FP-M programmable controllers have modem communication functions.
This allows data transfer and long-distance communication between a personal computer and an FP-M.
This function is available not only for the computer link function but also when NPST-GR Software is used.
Using C-NET adapters, you can control up to 32 programmable controllers with one computer.

1. Using the Programming Tool Port (FP-M control board all types)

When modem communication is performed using the programming tool port of an $\mathrm{FP}-\mathrm{M}$, not only computer link but also programming with NPST-GR Software can be performed.
To perform modem communication using the programming tool port, set system registers 410 and 411 as follows:

- System register 410......Station number setting

Setting: K1 through K32 (See notes.)

- System register 411Communication format and modem setting

Setting: H8000 or H8001

H8000 means
Modem communication: enabled
Character bit: 8 bits

H8001 means
Modem communication: enabled
Character bit: 7 bits

Notes:

- With NPST-GR Software version 3.0 or higher, you cannot set system register 411 to the modem enable mode.
- The baud rate is fixed at $2,400 \mathrm{bps}$ and the setting in system register 414 is ignored.
- The same station number (UNIT NO.) cannot be assigned to FP-Ms in the same network.
- Since initialization of the modem is performed only by a FP-M whose UNIT NO. (system register 410) is set to K1, pay attention to the following when station numbers (UNIT NO.s) are assigned to FP-Ms:
- when one computer communicates with one FP-M, system register 410 should be set to K1.
- when one computer communicates with two or more FP-Ms, no two FP-Ms can have the same station number (UNIT NO.) and one of the FP-Ms in the network must be assigned as station number 1 (UNIT NO. 1).
- Modem initialization is performed only when the mode of the programmable controller is set from PROG. to RUN or when the power turns ON in the RUN mode by an FP-M whose UNIT NO. (system register 410) is set to K1. Therefore, be sure to apply power to the modem, before the FP-M is turned ON.
- Once the modem is initialized successfully, it will not re-initialize if the mode of the programmable controller is set to RUN from PROG. again.
- When one computer communicates with two or more programmable controllers, set the modem to the mode without character echo.
- Be sure to set the computer and C-NET adapters to the same communication format.

■ How to set system registers 410 and 411

- Using NPST-GR Software version 3.1
<If you are using MENU 1 screen type>
Open the [NPST MENU] by pressing Esc, and then select "PLC CONFIGURATION" to skip to the [PLC CONFIGURATION] subwindow. In the [PLC CONFIGURATION] subwindow, select "1. SYSTEM REGISTER".
<If you are using MENU 2 screen type> Open [NPST FUNCTION MENU] by pressing Esc, and then select "R. SYSTEM REGISTER".

Open the [SYSTEM REGISTER]-[SET RS422 PORT] window by pressing $\mathbf{S i f t}+\mathbf{F 9}$ together. The following is displayed:

410	UNIT NO.	$[1](1-32) \ldots S e t ~ K 1$.
411	RS422 FORMAT DATA LENGTH	[8BIT/ 7BIT]........Select 8-bit or 7-bit.
	RS422 MODEM CONNECTION	[ENAB / DISA].....Select ENAB.

After setting, save the status of system registers by pressing F1.

- Using FP Programmer II

Press the keys on the FP Programmer II as follows.

- System register 410

- System register 411

or

System configuration: One computer and one FP-M control board

The following diagrams show the pin layout of the cables for modem communication.

Cable pin layout

Cable 1:

- Between IBM PC-AT (9 pins) and a modem (25 pins)

IBM PC-AT (9 pins)		Modem (25 pins)	
Pin No.	Abbreviation	Pin No.	Abbreviation
1	CD (DCD)	8	CD (DCD)
2	RD (RXD)	3	RD (RXD)
3	SD (TXD)	2	SD (TXD)
4	ER (DTR)	20	ER (DTR)
5	SG	7	SG
6	DR (DSR)	6	DR (DSR)
7	RS (RTS)	4	RS (RTS)
8	CS (CTS)	5	CS (CTS)
9	RI (CI)	22	RI (CI)

- Between a personal computer (25 pins) and a modem (25 pins)

Personal computer (25 pins)		Modem (25 pins)	
Pin No.	Abbreviation	Pin No.	Abbreviation
1	FG	1	FG
2	SD (TXD)	2	SD (TXD)
3	RD (RXD)	3	RD (RXD)
4	RS (RTS)	4	RS (RTS)
5	CS (CTS)	5	CS (CTS)
6	DR (DSR)	6	DR (DSR)
7	SG	7	SG
8	CD (DCD)	8	CD (DCD)
20	ER (DTR)	20	ER (DTR)

Cable 2: Between a modem and RS232C interface adapter

Modem (25 pins)		RS232C interface adapter (25 pins)	
Pin No.	Abbreviation	Pin No.	Abbreviation
1	FG	1	FG
2	SD (TXD)	2	SD (TXD)
3	RD (RXD)	3	RD (RXD)
4	RS (RTS)	4	RS (RTS)
5	CS (CTS)	5	CS (CTS)
6	DR (DSR)	6	DR (DSR)
7	SG	7	SG
8	CD (DCD)	8	CD (DCD)
20	ER (DTR)	20	ER (DTR)

2. Using the RS232C Port [FP-M C type control boards (C20RC/C20TC/C32TC)]

When modem communication is performed using the RS232C port, the computer link function can be performed.
To perform modem communication using the RS232C port, set system registers $412,413,415$, and 416 as follows:

- System register 412......K1 (select computer link)
- System register 413...... Data format

Start bit: 1 (fixed, no need to set this)
Character bits: 7 bits or 8 bits
Parity bit: \quad None or 1 bit (ODD or EVEN)
Stop bit: $\quad 1$ bit or 2 bits
Set the character bits, parity bit, and stop bit so that the total number of bits used to send a character adds up to 10 bits.
Control code
Header: NO STX or STX
Terminator: CR, CR + LF, or ETX
These settings are ignored when the computer link is selected.

- System register 415......K1 though K32 (See notes below.)
- System register 416..... H8000 (RS232C MODEM CONNECTION ENABLED)

Notes:

- With NPST-GR Software version 3.0 or higher, you cannot set system register 416 to the modem enable mode.
- The baud rate is fixed at $2,400 \mathrm{bps}$ and the setting of system register 414 is ignored.
- The same station number (UNIT NO.) cannot be assigned to FP-Ms in the same network.
- Since initialization of the modem is performed only by an FP-M whose UNIT NO. (system register 415) is set to K1, pay attention to the following when station numbers (UNIT NO.s) are assigned to FP-Ms:
- when one computer communicates with one FP-M, system register 415 should be set to K1.
- when one computer communicates with two or more FP-Ms, no two FP-Ms can have same station number (UNIT NO.) and one of the FP-Ms in the network must be assigned as station number 1 (UNIT NO. 1).
- Modem initialization is performed only when the mode of the programmable controller set to RUN from PROG., or when the power is turned ON in the RUN mode by an FP-M whose UNIT NO (system register 415) is set to K1. Therefore, be sure to apply power to the modem, before the FP-M is turned ON.
- Once the modem is initialized successfully, it will not re-initialize if the mode of the programmable controller is set to RUN from PROG. again.
- When one computer communicates with two or more programmable controllers, set the modem to the mode without character echo.
- Be sure to set the computer and C-NET adapters to the same communication format.

How to set system registers 412, 413, 416, and 415

- Using NPST-GR Software version 3.1
<If you are using MENU 1 screen type>
Open [NPST MENU] by pressing Esc , and then select "PLC CONFIGURATION" to skip to the [PLC CONFIGURATION] subwindow. In the [PLC CONFIGURATION] subwindow, select "1. SYSTEM REGISTER".
<If you are using MENU 2 screen type> Open [NPST FUNCTION MENU] by pressing Esc, and then select "R. SYSTEM REGISTER".

Open the [SYSTEM REGISTER]-[SET RS232C] window by pressing Shift + F8 together. The following is displayed:
412 RS232C PORT SELECTION [UNUSED / COMPUTER LNK / GENERAL]Select COMPUTER LNK.
413 RS232C SEND FORM
[7BIT / 8BIT]........Select 7-bit or 8-bit.
PARITY CHK [NONE / WITH]Select with or without parity check
[ODD / EVEN]Select ODD or EVEN when the parity, above, is selected.
STOP BIT [1BIT/2BIT]........Select 1-bit or 2-bit.
TERMINATOR
[CR / CR+LF / CR / ETX] [NO STX / STX]
Terminator and header settings are ignored in the computer link mode.
[1]
[]........................This setting is ignored when the modem connection is selected.
416 RS232C MODEM CONNECTION
[ENAB / DISA]......Select "ENAB".
Open the [SYSTEM REGISTER]-[COMPUTER LNK] window by pressing Shift + F7 together and the following is displayed:
415 UNIT NO.
[1] \qquad Select K1 though K32.

After setting, save the status of the system registers by pressing $\mathbf{F 1}$.

Note:

- *Set the character length, parity check, and stop bit so that the total number of bits used to send a character add up to 10 bits.
EXAMPLES

Start bit	Character bits		Parity bit		Stop bits		Total	
1	+	7	+	1	+	1	$=$	10 bits
1	+	7	+	0	+	2	$=$	10 bits
1	+	8	+	0	+	1	$=$	10 bits

- Using FP Programmer II

Press the keys on the FP Programmer II as follows.

- System register 412

- System register 413

* The specifications for communication will be:

Character bits Parity Stop bits

- when $2(\mathrm{H})$ is input, $\quad 7$-bit Odd parity 1-bit
- when $6(\mathrm{H})$ is input, 7-bit Even parity 1-bit
- when $8(\mathrm{H})$ is input, \quad-bit \quad None 2-bit
- when $1(\mathrm{H})$ is input, $\quad 8$-bit None 1-bit
- System register 415

UNIT NO. (station number 1 through 32)

- System register 416

System configuration: One computer and one FP-M control board

The following diagrams show the pin layout of the cables for modem communication.

Cable pin layout

Cable 1:

- Between IBM PC-AT (9 pins) and a modem (25 pins)
- Between a personal computer (25 pins) and a modem (25 pins)

IBM PC-AT (9 pins)		Modem (25 pins)	
Pin No.	Abbreviation	Pin No.	Abbreviation
1	CD (DCD)	8	CD (DCD)
2	RD (RXD)	3	RD (RXD)
3	SD (TXD)	2	SD (TXD)
4	ER (DTR)	20	ER (DTR)
5	SG	7	SG
6	DR (DSR)	6	DR (DSR)
7	RS (RTS)	4	RS (RTS)
8	CS (CTS)	5	CS (CTS)
9	$\mathrm{RI}(\mathrm{Cl})$	22	RI (CI)

Personal computer (25 pins)		Modem (25 pins)	
Pin No.	Abbreviation	Pin No.	Abbreviation
1	FG	1	FG
2	SD (TXD)	2	SD (TXD)
3	RD (RXD)	3	RD (RXD)
4	RS (RTS)	4	RS (RTS)
5	CS (CTS)	5	CS (CTS)
6	DR (DSR)	6	DR (DSR)
7	SG	7	SG
8	CD (DCD)	8	CD (DCD)
20	ER (DTR)	20	ER (DTR)

Cable 2: Between a modem and RS232C port of FP-M control board

Modem (25 pins)		RS232C port (25 pins) of FP-M control board	
Pin No.	Abbreviation	Pin No.	Abbreviation
1	FG	1	FG
2	SD (TXD)	2	SD (TXD)
3	RD (RXD)	3	RD (RXD)
4	RS (RTS)	4	RS (RTS)
5	CS (CTS)	5	CS (CTS)
7	SG	7	SG
8	CD (DCD)	8	-
20	ER (DTR)	9	ER (DTR)
22	$\mathrm{RI}(\mathrm{Cl})$	6	-

System configuration: One computer and two or more FP-M control board

The following diagrams show the pin layout of the cables for modem communication.
Cable pin layout
Cable 1:

- Between IBM PC-AT (9 pins) and a modem (25 pins)

IBM PC-AT (9 pins)		Modem (25 pins)	
Pin No.	Abbreviation	Pin No.	Abbreviation
1	CD (DCD)	8	CD (DCD)
2	RD (RXD)	3	RD (RXD)
3	SD (TXD)	2	SD (TXD)
4	ER (DTR)	20	ER (DTR)
5	SG	7	SG
6	DR (DSR)	6	DR (DSR)
7	RS (RTS)	4	RS (RTS)
8	CS (CTS)	5	CS (CTS)
9	$\mathrm{RI}(\mathrm{Cl})$	22	$\mathrm{RI}(\mathrm{Cl})$

- Between a personal computer (25 pins) and a modem (25 pins)

Personal computer (25 pins)		Modem (25 pins)	
Pin No.	Abbreviation	Pin No.	Abbreviation
1	FG	1	FG
2	SD (TXD)	2	SD (TXD)
3	RD (RXD)	3	RD (RXD)
4	RS (RTS)	4	RS (RTS)
5	CS (CTS)	5	CS (CTS)
6	DR (DSR)	6	DR (DSR)
7	SG	7	SG
8	CD (DCD)	8	CD (DCD)
20	ER (DTR)	20	ER (DTR)

Cable 2: Between a modem and RS232C port of FP-M control board

Modem (25 pins)		RS232C port (25 pins) of C-NET adapter	
Pin No.	Abbreviation	Pin No.	Abbreviation
1	FG	1	FG
2	SD (TXD)	2	SD (TXD)
3	RD (RXD)	3	RD (RXD)
4	RS (RTS)	4	RS (RTS)
5	CS (CTS)	5	CS (CTS)
7	SG	7	SG
8	CD (DCD)	8	-
20	ER (DTR)	9	ER (DTR)
22	$\mathrm{RI}(\mathrm{Cl})$	6	-

8-13. Terminology

address:
ambient temperature:
American Wire Gauge (AWG): A standard system used for designating the size of electrical conductors.

AND:

ASCII:
asynchronous:

AWG:
backplane:
backup:
battery backup:
battery low:
baud:

BCC:
BCD:

Larger gauge numbers have smaller diameter.
An alphanumeric value that identifies where data is stored.
The temperature of the air surrounding a system.

A Boolean operation that produces a logic " 1 " output if all inputs are " 1 ", and a logic " 0 " if any input is " 0 ".

American Standard Code for Information Interchange. ASCII is normally used when alphanumeric (letters and decimal numbers) and control codes are sent as information to printers, etc. ASCII can be represented using 7 or 8 bits and is often expressed in a 2-digit hexadecimal form converted from specific binary expressions. ASCII expressed in 2-digit hexadecimals is called "ASCII HEX code". For details about actual ASCII codes, refer to the table for ASCII.
[EXAMPLE] When a letter " M " is expressed in ASCII code:
7-bit ASCII : 1001101 (binary)
ASCII HEX code: 4D (hexadecimal)

Not synchronous. Repeated operations that take place in patterns unrelated over time.

See American Wire Gauge (AWG).
A printed circuit board located in the back of a chassis, that contains a data bus, power bus, and mating connectors for units. For FP3, FP5, FP10S and FP10 programmable controllers, two types of backplanes are available:

Master Backplane
Expansion Backplane
A device that is kept available to replace something that may fail during operation.

A battery or set of batteries that will provide power to the processor memory only when system power is lost. All FP-Ms and FP1 C24, C40, C56, and C72 series programmable controllers have a battery backup system.

A condition that exists when the backup battery voltage drops low enough to require battery replacement. For all FP-Ms and FP1 C24, C40, C56, and C72 series, the ERR. LED turns ON.

Formally defined as the shortest pulse width in data communication. However, usually used to refer to the number of binary bits transmitted per second (bps) during serial data communication.

See Block Check Code.

See Binary Coded Decimal.

binary:

In general, programmable controllers work with binary numbers in one form or another to represent various codes or quantities. The binary number system uses the number 2 as the base and the only allowable symbols are " 0 " and " 1 ". There are no $2 \mathrm{~s}, 3 \mathrm{~s}$, etc. Each digit of binary is called as "bit". "Bit" means "binary digit". A group of 8 bits is called a "byte" and a group of 16 bits (two bytes) is called a "word".

The binary number " 0000000000101011 " is expressed in decimal as follows:

$$
\begin{aligned}
& 1 \times 2^{0}+1 \times 2^{1}+0 \times 2^{2}+1 \times 2^{3}+0 \times 2^{4}+1 \times 2^{5}+\cdots \cdots+0 \times 2^{15} \\
& =1+2+0+8+0+32+\cdots \cdot+0 \\
& =43
\end{aligned}
$$

Binary Coded Decimal (BCD): One of the codes expressed in binary. BCD is a binary code in which each decimal digit from 0 to 9 is represented by four binary digits (bits). The four positions have a weighted value of $1,2,4$, and 8 , respectively, starting with the least significant bit. A thumbwheel switch is specified as a BCD device, and when connected to a programmable controller, each decimal digit requires four inputs.
BCD is usually expressed grouping four bits as one digit in the same way as the hexadecimal constant H . When BCD is grouped in four bit units, the $B C D$ is expressed by adding the prefix \mathbf{H} to the data. Since the weight of each BCD H code is same as that of decimals, be sure to pay attention not to be confused with hexadecimal numbers when BCD H code is handled.

Example: When K1993 (decimal) is expressed in BCD.

binary number system:

Block Check Code (BCC):

buffer:
bug:
bus:
Central Processing Unit:
character:
complement:
computer link:

CPU:
CRT:
debug:

A number system that uses two symbols, " 0 " and " 1 ". Each digit position has a weighted value of $1,2,4,8,16,32,64$, and so on begining with the least significant (right-most) digit.

The sum of N 0 through Nn is the decimal equivalent of the number in base " 2 ".
This code is used to detect errors in message transmissions. It is created by Exclusive ORing all of the codes from the header though the last text character, then translating the result (8-bit) data into two ASCII characters.

A group of registers used for temporary data storage. This is used for data transmission and works effectively when there are transmission rate differences between sending and receiving devices.

Software errors which will cause unexpected actions.
Power distribution conductors.

The Central Processing Unit is usually referred to as the CPU.
The CPU controls system activities of the programmable controller.
A symbol such as a letter of the alphabet or decimal number. An ASCII character is most commonly used to express characters using binary.

A logical operation that inverts a signal or bit. The complement of " 1 " is " 0 ", and the complement of " 0 " is " 1 ".

One of the communication methods between a computer and programmable controllers. In a computer link, the computer is the host, and it can control programmable controllers using a protocol. For FP series programmable controllers, communication between a computer and programmable controllers is performed using the MEWTOCOL-COM, a half-duplex communication protocol. From the computer, you can read, write, or monitor data stored in the memory of a programmable controller.

See Central Processing Unit.
Abbreviation for cathode-ray tube.
Removing errors from a program.
duplex:
EEPROM:

EPROM:

FIFO:
First-In-First-Out:
flag:
full-duplex:
half-duplex:

hexadecimal:

hold:

interrupt:

The decimal number system uses the number 10 as the base and the allowable symbols are " 0 ", " 1 ", " 2 ", " 3 ", " $4 ", " 5 ", " 6 ", " 7 ", " 8 "$, and " 9 ". Each digit position has a weighted value of $1,10,100,1000$, and so on, begining with the least significant (right-most) digit.

See full-duplex.
Electrically Erasable Programmable Read Only Memory. EEPROM can be programmed and erased by electrical pulses.

Erasable Programmable Read Only Memory. EPROM can be reprogrammed after being entirely erased with the use of an ultra-violet light source.

See First-In-First-Out.

The order that data is written in, and read from registers.

A relay used to detect and remember certain events in the programmable controller. In FP series programmable controllers, some of the special internal relays are used as flags.

A communication link in which data can be transmitted and received at the same time.

A communication link in which transmission is limited to one direction at a time.

The hexadecimal number system uses 16 as the base. The allowable symbols are numbers 0 through 9 and letters A through F . The letters are substituted for numbers 10 to 15 , respectively, to represent all 16 numbers in one digit. The binary number system can easily be represented in hexadecimal with 4 bit groups. In this manner, a very large binary number can be represented by a hexadecimal number with significantly fewer digits.

The memory area whose contents will not be lost or modified if operating power is lost or if the mode of the programmable controller is changed from RUN to PROG.

The act of performing a more urgent task by putting off the presently executing task. FP series programmable controllers have three types of interrupts, as follows:

- input initiated interrupt
- high-speed counter initiated interrupt
- time initiated interrupt

I/O:	Abbreviation of Input/Output.
I/O update:	Taking the input data at the input interface into the memory for program execution and outputting the result of program execution to the output interface.
ladder diagram:	A standard for representing relay-logic systems.
LCD:	Abbreviation for Liquid Crystal Display.
leading edge differential:	A programming technique to operate a bit only for one scan at the moment its input condition turns ON from the OFF state.
Least Significant Bit (LSB):	The bit which represents the smallest value in a byte, word, or double-word.
Least Significant Digit (LSD):	The digit which represents the smallest value in a number.
LED:	Abbreviation for Light-Emitting Diode.
malfunction:	Incorrect function.
Master Control Relay:	A relay which controls any series of programs with its operation. If the master control relay is de-energized, all of the contacts and devices controlled by the master control relay are de-energized.
MEWTOCOL-COM:	A half-duplex communication protocol for FP series programmable controllers that performs communication between a computer and programmable controllers.
modem:	Abbreviation for MOdulator/DEModulator. The modem modulates digital signals and transmits them through a telephone line.
Most Significant Bit (MSB):	The bit which represents the greatest value in a byte, word, or double-word.
Most Significant Digit (MSD):	The digit which represents the greatest value in a number.
multidrop link:	A communication link in which one host can communicate with two or more stations.
noise:	Random, unexpected electrical signals, that are caused by radio waves or by electrical or magnetic fields.
non-hold:	The memory area whose contents will be lost or modified if operating power is lost or if the mode of the programmable controller is changed from RUN to PROG.
normally-closed contact:	A contact which is closed when the coil of the relay is not activated.
normally-open contact:	A contact which is open when the coil of the relay is not activated.
offline:	Not being in continuous communication with another processor.
online:	Being in continuous communication with another processor.
overflow:	The act of exceeding the maximum limit in a registers capacity.

self-diagnostic function:

serial communication:

stop bit:

system errors:
system register:
two's complement:

A check method for the number of 1 s in a character when data communication is performed. The parity check is performed by calculating the number of ones in a character.

Devices that are connected to the programmable controller.
Abbreviation for Programmable Logic Controller. See programmable controller.

A simple transducer which works based on resistance change. The FP-M manual-set registers work according to the potentiometers named "V0", "V1", "V2", or "V3".

A control device which can be programmed to control process or machine operations. A programmable controller is often referred to as a PLC when abbreviated.

Random Access Memory. RAM provides an excellent means for easily creating and altering a program. Many of the FP series programmable controllers use RAM with battery backup for the application memory.

A unit of memory for various types of data. A register is usually 16 bits wide.
Read Only Memory. See EEPROM and EPROM.
An EIA communication standard for data transmission media that is less than 15 m . Most common serial communication standard.

An EIA communication standard for data transmission media.
Term for a ladder program. A rung refers to the programmed instructions that drive one output.

Time required to read all inputs, execute the program, and update local and remote information.

A function within the programmable controller which monitors operation and indicates any fault that is detected.

A communication style in which data is transmitted bit by bit serially.
The last bit when a character is transmitted.
Errors resulting from the device or the environment.
The registers used only for system settings of the programmable controller.
A programming technique to operate a bit only for one scan at the moment its input condition turns OFF from the ON state.

A number system used to express positive and negative numbers in binary. In this system, the number becomes negative if the most significant bit of the data is " 1 ". In FP series programmable controllers, numbers are expressed using the two's complement.

The act of going below the minimum limit in a register's capacity.

watchdog timer:

word:

A timer that monitors processing time of the programmable controller. If the program does not time out, the processor is assumed to be faulty.

A unit of bits which is usually executed at the same time. A word is composed of 16 bits.

8-14. Product Types

1. Case Type

■ Refer to the part numbers below when using a case type control board.

Type	Combination of control board and case	Memory (program capacity)	Description				$\begin{gathered} \text { Part } \\ \text { number } \end{gathered}$
			Operating voltage	I/O point	Input	Output	
C20R	Control Board: AFC12212 Case: AFC18011	RAM $(2.7 \mathrm{k}$ steps $)$	24 V DC	Total: 20 Input: 12 Output: 8	24 V DC	$\begin{aligned} & \text { Relay } \\ & 2 \mathrm{~A} \end{aligned}$	AFC10212
C20RC	Control Board: AFC22212C Case: AFC18011	RAM (5 k steps)	24 V DC	Total: 20 Input: 12 Output: 8	24 V DC	$\begin{aligned} & \text { Relay } \\ & 2 \mathrm{~A} \end{aligned}$	AFC20212C
C20T	Control Board: AFC12242 Case: AFC18012	RAM (2.7 k steps)	24 V DC	Total: 20 Input: 12 Output: 8	24 V DC	Transistor 0.8 A NPN type	AFC10242
	Control Board: AFC12252 Case: AFC18012			Total: 20 Input: 12 Output: 8	24 V DC	Transistor 0.8 A PNP type	AFC10252
C20TC	Control Board: AFC22242C Case: AFC18012	RAM (5 k steps)	24 V DC	Total: 20 Input: 12 Output: 8	24 V DC	Transistor 0.8 A NPN type	AFC20242C
	Control Board: AFC22252C Case: AFC18012			Total: 20 Input: 12 Output: 8	24 V DC	Transistor 0.8 A PNP type	AFC20252C
C32T	Control Board: AFC12342 Case: AFC18013	RAM(2.7 k steps)	24 V DC	Total: 32 Input: 16 Output: 16	24 V DC	Transistor 0.8 A NPN type	AFC10342
	Control Board: AFC12352 Case: AFC18013			Total: 32 Input: 16 Output: 16	24 V DC	Transistor 0.8 A PNP type	AFC10352
C32TC	Control Board: AFC22342C Case: AFC18013	RAM (5 k steps)	24 V DC	Total: 32 Input: 16 Output: 16	24 V DC	Transistor 0.8 A NPN type	AFC20342C
	Control Board: AFC22352C Case: AFC18013			Total: 32 Input: 16 Output: 16	24 V DC	Transistor 0.8 A PNP type	AFC20352C

■ Use the appropriate case below when expanding a case type board (expansion, intelligent and link board).

Type	Description	Part number
Case for expansion board	Install the case between stacked boards Spacers supplied (18 mm, AFB8803): 4 pieces	AFC1802
Skirt case	Install the case on the bottom of the boards Spacers supplied (18 mm, AFB8803): 4 pieces	AFC1803

Notes:

- Since the lengths of the attached spacers for case and board types are different, use the spacers attached to the case.

Spacers: case type 8 mm , board type 20 mm

- The case type consists of the control board, case, mounting plate (AFB6804) with 4 screws and the following packing parts.

Packing parts:
Screws
for control board
(8 mm): 2 screws;
for connector board
(20 mm): 2 screws
Backup battery
(AFB8801): 1 piece
Jumper cable
(AFB8505): 1 piece

व||(1)

Spacers (8 mm, AFB88032): 4 pieces

Power supply cable (APL9511): 1 piece

Connector board (This board is already connected in C20RC and C32TC types when shipped.)

■ Structure of case type

(1) Case for the control board
(2) Screws (8 mm)
(3) Screws (20 mm)
(4) Connector P.C.B.
(5) Control board
(6) Spacers (18 mm)
(7) Case for expansion board
(8) Expansion board
(9) Skirt case
(10) Expansion board
(11) Spacers (8 mm)
(12) Mounting plate
(13) Screws

2. Board Type

■ Control boards

Type	Memory (program capacity)	Description				$\begin{gathered} \text { Part } \\ \text { number } \end{gathered}$
		Operating voltage	I/O point	Input	Output	
C20R	RAM (2.7 k steps)	24 V DC	Total: 20 Input: 12 Output: 8	24 V DC Sink/source	$\begin{aligned} & \text { Relay } \\ & 2 \mathrm{~A} \end{aligned}$	AFC12212
C20RC	RAM (5 k steps)	24 V DC				AFC22212C
C20T	RAM(2.7 k steps)	24 V DC	Total: 20 Input: 12 Output: 8	24 V DC Source	$\begin{aligned} & \text { Transistor } \\ & 0.8 \mathrm{~A} \\ & \text { NPN type } \\ & \hline \end{aligned}$	AFC12242
				$\begin{aligned} & \hline 24 \text { V DC } \\ & \text { Sink } \end{aligned}$	Transistor 0.8 A PNP type	AFC12252
C20TC	RAM (5 k steps)	24 V DC	Total: 20 Input: 12 Output: 8	24 V DC Source	$\begin{array}{\|l\|} \hline \text { Transistor } \\ 0.8 \mathrm{~A} \\ \text { NPN type } \\ \hline \end{array}$	AFC22242C
				$\begin{aligned} & \hline 24 \text { V DC } \\ & \text { Sink } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Transistor } \\ 0.8 \mathrm{~A} \\ \text { PNP type } \\ \hline \end{array}$	AFC22252C
C32T	RAM (2.7 k steps)	24 V DC	Total: 32 Input: 16 Output: 16	24 V DC Source	$\begin{aligned} & \text { Transistor } \\ & 0.8 \mathrm{~A} \\ & \text { NPN type } \\ & \hline \end{aligned}$	AFC12342
				$\begin{aligned} & \hline 24 \text { V DC } \\ & \text { Sink } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Transistor } \\ 0.8 \mathrm{~A} \\ \text { PNP type } \\ \hline \end{array}$	AFC12352
C32TC	RAM (5 k steps)	24 V DC	Total: 32 Input: 16 Output: 16	24 V DC Source	$\begin{aligned} & \text { Transistor } \\ & 0.8 \mathrm{~A} \\ & \text { NPN type } \\ & \hline \end{aligned}$	AFC22342C
				$\begin{aligned} & \hline 24 \text { V DC } \\ & \text { Sink } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Transistor } \\ 0.8 \mathrm{~A} \\ \text { PNP type } \\ \hline \end{array}$	AFC22352C

Notes:

- The board type consists of the control board and packing parts.

Packing parts:

- Screws for control board (8 mm): 2 screws; for connector board (20 mm): 2 screws
- Spacers (20 mm, AFB88021): 4 pieces
- Backup battery (AFB8801): 1 piece
- Power supply cable (APL9511): 1 piece
- Jumper cable (AFB8505): 1 piece
- Connector board (This board is already connected in C20RC and C32TC types when shipped.)
- Since the lengths of the attached spacers for case and board types are different, use the spacers attached to the board.

Spacers: board type 20 mm , case type 8 mm

- 12 V DC type operating voltage is also available. Please contact your dealer.

■ Expansion I/O boards

Type	Description				$\begin{gathered} \text { Part } \\ \text { number } \end{gathered}$
	Operating voltage	I/O point	Input type	Output type	
Expansion I/O Board E20R	24 V DC	Total: 20 Input: 12 Output: 8	24 V DC Sink/source	$\begin{aligned} & \text { Relay } \\ & 2 \mathrm{~A} \end{aligned}$	AFC13012
Expansion I/O Board M1T-E	24 V DC	Total: 40 Input: 24 Output: 16	24 V DC Source	Transistor 0.8 A NPN type	AFB6342
			$\begin{aligned} & \hline 24 \text { V DC } \\ & \text { Sink } \end{aligned}$	$\begin{array}{\|l} \hline \text { Transistor } \\ 0.8 \mathrm{~A} \\ \text { PNP type } \\ \hline \end{array}$	AFB6342P
Expansion Input Board M1T-EI	24 V DC	Total: 36 Input: 36	24 V DC Source		AFB6392
Expansion Output Board M1T-EO	24 V DC	Total: 32 Output: 32		Transistor 0.8 A NPN type	AFB6340

■ Intelligent boards

Type	Description	Part number
Analog I/O Board	Operating voltage: 24 V DC Number of I/O channels: - Input: 4 channels, Output: 1 channel I/O range: 0 to $5 \mathrm{~V}, 0$ to 10 V , and 0 to 20 mA Resolution: $1 / 256$ (8 bits)	AFB6480
A/D Converter Board	Operating voltage: 24 V DC Number of input channels: 4 channels Input range: 0 to $5 \mathrm{~V}, 0$ to 10 V , and 0 to 20 mA Resolution: $1 / 1000$ (10 bits)	AFB6400
D/A Converter Board	Operating voltage: 24 V DC Number of output channels: 2 channels Output range: 0 to $5 \mathrm{~V}, 0$ to 10 V , and 0 to 20 mA Resolution: $1 / 1000$ (10 bits)	AFB6410
High-speed Counter	Counter points: 2 points (channel 0 and 1) Bax. counting speed:	AFB6420

Note:

- The expansion I/O and intelligent boards consist of the preceding board and spacers ($20 \mathrm{~mm}, \mathrm{AFB8802}$): 4 pieces.

■ Link boards

Type	Description		Part number
FP-M Transmitter Master Board (MEWNET-TR)	FP-M transmitter master board enables the FP-M to exchange I/O information with slave stations at remote site using a twisted pair cable. Connecting with another FP-M transmitter master board or with an FP3 transmitter master unit, you can exchange I/O information with another FP-M at remote site. Communication medium (RS485 port): twisted pair cable up to 32 inputs and 32 outputs can be controlled per board.		AFC1752
FP I/O Transmitter Unit	Operating voltage: 24 V DC Input type	4 points	AFP87525
		8 points	AFP87521
		16 points	AFP87522
	Operating voltage: 24 V DC Output type (transistor NPN type, 0.5 A)	4 points	AFP87527
		8 points	AFP87523
		16 points	AFP87524
FP I/O Terminal Unit (with an expansion cable APL 2510)	Operating voltage: 24 V DC Input type	8 points	AFP87425
		16 points	AFP87426
	Operating voltage: 24 V DC Output type (transistor NPN type, 0.5 A)	8 points	AFP87427
		16 points	AFP87428
FP-M I/O Link Board	This board is an interface board for exchanging I/O information between an FP3/FP5 and an FP-M. When an FP-M control board is connected to the FP3/FP5 remote I/O system via this board, you can exchange I/O information using 2 -conductor cable. Controllable I/O points: Max. total 64 points (Input: 32 points, Output: 32 points) Operating voltage: 24 V DC		AFC1732
C-NET Adapter standard type	Operating voltage: 24 V DC/100 to 240 V AC RS485 \leftrightarrow RS422/RS232C signal converter Used for communication between an FP-M and your computer using a shielded twisted pair or 2-conductor cable.		AFP8532 $(24$ V DC $)$ AFP8536 $(100$ to 240 V AC$)$
C-NET Adapter S2 type	RS485 \leftrightarrow RS232C signal converter for FP-M only Used for communication between the C-NET adapter standard type and an FP-M control board.		AFP15402

Notes:

- When setting the I/O allocation of an FP-M transmitter master board and an FP-M I/O link board using the operation mode selector, be sure not to overlap I/O addresses.
- The FP-M transmitter master board and FP-M I/O link board (board type) consist of the board and four spacers ($20 \mathrm{~mm}, \mathrm{AFB8802} \mathrm{)}$.

■ Structure of board type

(1) Screws (8 mm)
(2) Screws (20 mm)
(3) Connector P.C.B.
(4) Control board
(5) Spacers (20 mm , AFB88021)
(6) Expansion board
(7) Spacers (20 mm, AFB8802)

3. Programming Tools

■ FP Programmer II

Type	Description	Part number
FP Programmer II	Hand held programming tool for FP programmable controller.	AFP1114
FP-M Peripheral Cable	Cable needed for connection,	AFC8521
(for FP Programmer II)	- between the programming tool port of FP-M control board and	$(1 \mathrm{~m} / 3.3 \mathrm{ft})$.
(See note.)	FP Programmer II communication port (RS232C interface).	AFC8523
	- between the FP-M control board and FP data access unit.	$(3 \mathrm{~m} / 9.8 \mathrm{ft})$.

- NPST-GR Software

Type	Description	Part number
NPST-GR Software Ver.3	Program editing software used System required: IBM PC-AT or 100 \% compatible with 2 MB or more hard disk drive, MS-DOS Ver. 3.30 or higher, and EGA or VGA display mode	AFP266538
FP-M Personal Computer Cable (for NPST-GR) (See note.)	Cable needed for connection between the programming tool port of FP-M control board and D-SUB 25 connector of RS232C interface adapter.	AFC8513 $(3 \mathrm{~m} / 9.8 \mathrm{ft}$.)
RS232C Interface Adapter	Adapter needed for connection between the programming tool port of FP-M personal computer cable (for NPST-GR) and RS232C interface (9 or 25 pins) of personal computer. Refer to example of adapter specifications on page 245.	Needs to be made to match your computer
RS232C Cable (See note.)	Cable needed for connections between the RS232C port of C C type control boards (C20RC/C20TC/C32TC) and RS232C interface (9 or 25 pins) of your personal computer.	Needs to be made to match your computer

Note:

- The specifications for each cable used for communications are shown on page 246 to 248.

■ Memory

Type	Description	Part number
Memory (EPROM)	Memory for storing the programs. Writing is done with a commercial ROM programmer. EPROM (27C256 type or equivalent)	AFP5202 (2 pieces in a set)
	We recommend Aval Data Corporation's ROM programmer, "PECKER 11".	
Master memory (EEPROM)	Memory for copying and transmitting the programs. Writing is done with a master memory attached to an FP-M control board. EEPROM (28C256 type or equivalent)	AFP5207 (1 piece in a set)

Peripheral devices

Type	Description	Part number
FP Panel Mounting Cord	A cord that can be mounted on the panel to extend the programming tool connector of the FP-M control board. Refer to specifications for cord on page 249.	AFC8531 $(1 \mathrm{~m} / 3.3 \mathrm{ft}$. . AFC8532
FP Data Access Unit	A unit for monitoring and changing values of timer/counter/data registers after the programmable controller has been installed to the machine.	AFP1682.

■ Pin layout diagram of RS232C interface adapter

The following diagrams show pin layout examples for the RS232C interface adapter.

Example 1:

FP-M personal computer cable (for
NPST-GR) to IBM PC-AT (9 pins)

RS232C interface adapter

Example 2:

FP-M personal computer cable (for
NPST-GR) to personal computer (25 pins)

RS232C interface adapter

FP-M personal computer cable RS232C interface 25 pins, male		Personal computer RS232C interface 25 pins, female	
Pin No.	Abbreviation	Pin No.	Abbreviation
1	FG	1	FG
2	SD (TXD)	2	SD (TXD)
3	RD (RXD)	3	RD (RXD)
4	RS (RTS)	4	RS (RTS)
5	CS (CTS)	5	CS (CTS)
6	DR (DSR)	6	DR (DSR)
7	SG	7	SG
8	CD (DCD)	8	CD (DCD)
20	ER (DTR)	20	ER (DTR)

Specifications for cable and cord

- FP-M peripheral cable (for FP Programmer II)
- Programming tool port of FP-M control board to connector (RS232C interface) of FP Programmer II
- Programming tool port of FP-M control board to connector of FP data access unit

Pin No.	Abbreviation	Pin No.	Abbreviation
-	FG	-	FG
1	SG	2	SG
2	SD	3	RD
3	RD	11	SD
4	-	4	-
5	+5 V	1	+5 V
FP-M control board		5	-
		6	-
		7	-
		8	-
		9	-
		10	SG
		12	-
		13	-
		14	-
		15	-

FP Programmer II or
FP data access unit

- FP-M personal computer cable (for NPST-GR)

Connects the programming tool port of the FP-M control board to the D-SUB 25 connector of the RS232C interface adapter

- RS232C cable

Connects the RS232C port of a C type control board (C20RC/C20TC/C32TC) to the RS232C interface (9 or 25 pins) of a personal computer
RS232C port of C20RC/C20TC/C32TC types to RS232C interface (9 pins) of personal computer

RS232C port (9 pins) of C20RC/C20TC/C32TC types

Pin No.	Abbreviation	Pin No.	Abbreviation
1	FG	1	CD (DCD)
2	SD (TXD)	2	RD (RXD)
3	RD (RXD)	3	SD (TXD)
4	RS (RTS)	4	ER (DTR)
5	CS (CTS)	5	SG
6	$\mathrm{RI}(\mathrm{Cl})$	6	DR (DSR)
7	SG	7	RS (RTS)
8	CD (DCD)	8	CS (CTS)
9	ER (DTR)	9	RI (CI)

RS232C port of C20RC/C20TC/C32TC types to RS232C interface (25 pins) of personal computer

Pin No.	Abbreviation	Pin No.	Abbreviation
1	FG	1	FG
2	SD (TXD)	2	SD (TXD)
3	RD (RXD)	3	RD (RXD)
4	RS (RTS)	4	RS (RTS)
5	CS (CTS)	5	CS (CTS)
6	RI (CI)	6	DR (DSR)
7	SG	7	SG
8	CD (DCD)	8	CD (DCD)
9	ER (DTR)	20	ER (DTR)

- FP panel mounting cord

Dimensions

Mounting hole dimensions

(unit: mm/in.)

4. Wiring Parts for I/O Terminal

- Applicable boards:
- Control boards: C20R and C20RC types
- Expansion board: E20R type
- Intelligent boards: Analog I/O, A/D converter, and D/A converter boards

■ Solderless terminal

Type	Description	Part number
Solderless terminal	Applicable wire: AWG28 to AWG16 $\left(0.08 \mathrm{~mm}^{2}\right.$ to $\left.2.5 \mathrm{~mm}^{2}\right)$	AFC8805 $(100$ pieces in a set $)$

5. Wiring Parts for I/O Connectors (MIL connectors)

- Applicable boards:
- Control boards: C20T, C20TC, C32T, and C32TC types
- Expansion boards: M1T-E, M1T-EI, and M1T-EO types
- Intelligent board: High-speed counter board

■ CT-2 connector terminal (DIN rail mounting type)

Board type	Connector	CT-2 connector terminal
		Part number
C20T/C20TC	Output connector (16-pin)	CT2-20
	Input connector (20-pin)	
C32T/C32TC	Output connector (34-pin)	CT2-34
	Input connector (30-pin)	CT2-30
M1T-E	Output connector (34-pin)	CT2-34
	Input connector (40-pin)	CT2-40
M1T-EI	Input connector B (20-pin)	CT2-20
	Input connector A (40-pin)	CT2-40
M1T-EO	Output connector B (34-pin)	CT2-34
	Output connector A (34-pin)	

Cable for CT-2 connector terminal

Product name	Applicable I/O connector (number of pins)	Part number	
		$1 \mathrm{~m} / 3.3 \mathrm{ft}$.	$2 \mathrm{~m} / 6.6 \mathrm{ft}$.
Cable with connector	Output connector (16-pin) for C20T and C20TC types	AYT51163	AYT51165
	Input connector (20-pin) for C20T and C20TC types	AYT51203	AYT51205
	Input connector B (20-pin) for M1T-El type		
	Input connector (30-pin) for C32T and C32TC types	AYT51303	AYT51305
	Output connector (34-pin) for C32T, C32TC, and M1T-E types	AYT51343	AYT51345
	Output connector A and B (34-pin) for M1T-EO type		
	Input connector (40-pin) for M1T-E type	AYT51403	AYT51405
	Input connector A (40-pin) for M1T-El type		

■ RT-2 relay terminal

Board type		Connector
		RT-2 relay terminal
C20T/C20TC	Output connector (16-pin)	DIN rail mounting type: RT1S-OD08-24V-S
C32T/C32TC	Output connector (34-pin)	DIN rail mounting type: RT2S-OD16-24V
M1T-E	Output connector (34-pin)	Direct mounting type: RT2S-M-OD16-24V
M1T-EO	Output connector B (34-pin)	
	Output connector A (34-pin)	

Cable for RT-2 relay terminal

Applicable I/O connector (number of pins)	Part number	
	$\mathbf{1 ~ m} / \mathbf{3 . 3} \mathbf{~ f t . ~}$	$\mathbf{2 ~ m} / \mathbf{6 . 6} \mathbf{f t .}$
Output connector (16-pin) for C20T and C20TC types	AY15723	AY15725
Output connector (34-pin) for C32T, C32TC, and M1T-E types		AY25523
Output connector A and B (34-pin) for M1T-EO type		

■ Wire-press socket

Board type	Connector		Part number	
		Housing	Cover	Contact
C20T/C20TC	Output connector (16-pin)	AXW1164A	AXW61601A	AXW7221
	Input connector (20-pin)	AXW1204A	AXW62001A	
C32T/C32TC	Output connector (34-pin)	AXW1344A	AXW63401A	
	Input connector (30-pin)	AXW1304A	AXW63001A	
M1T-E	Output connector (34-pin)	AXW1344A	AXW63401A	
	Input connector (40-pin)	AXW1404A	AXW64001A	
M1T-El	Input connector B (20-pin)	AXW1204A	AXW62001A	
	Input connector A (40-pin)	AXW1404A	AXW64001A	
M1T-EO	Output connector B (34-pin)	AXW1344A	AXW63401A	
	Output connector A (34-pin)			

■ Flat cable connector (flat cable with one side connector)

Board type	Connector	Part number	
		$\mathbf{1 m / 3 . 3} \mathrm{ft}$.	$\mathbf{2 ~ m / 6 . 6 ~ f t . ~}$
C20T/C20TC	Output connector (16-pin)	APL9531	APL9532
	Input connector (20-pin)	APL9541	APL9542
C32T/C32TC	Output connector (34-pin)	AFB8531	AFB85322
	Input connector (30-pin)	AFB8521	AFB8522
M1T-E	Output connector (34-pin)	AFB8531	AFB8532
	Input connector (40-pin)	AFB8541	AFB8542
M1T-EI	Input connector B (20-pin)	APL9541	APL9542
	Input connector A (40-pin)	AFB8541	AFB8542
M1T-EO	Output connector B (34-pin)	AFB8531	AFB8532
	Output connector A (34-pin)		

Connector

Applicable I/O connector (number of pins)	Part number
Output connector (16-pin) for C20T and C20TC types	AXM116415
Input connector (20-pin) for C20T and C20TC types Input connector B (20-pin) for M1T-El type	AXM120415
Input connector (30-pin) for C32T and C32TC types	AXM130415
Output connector (34-pin) for C32T, C32TC, and M1T-E types Output connector A and B (34-pin) for M1T-EO type	AXM134415
Input connector (40-pin) for M1T-E type Input connector A (40-pin) for M1T-El type	AXM140415

6. Accessories

Type	Description	Part number
Case for control board	Put the case on top of the control board. Spacers supplied ($8 \mathrm{~mm}, \mathrm{AFB} 88032$): 4 pieces	C20R type: AFC18011
		C20T type: AFC18012
		C32T type: AFC18013
Case for expansion board	Install the case between stacked boards. Spacers supplied (18 mm, AFB8803): 4 pieces	AFC1802
Skirt case with spacers	Install the case on the bottom of boards. Spacers supplied (18 mm , AFB8803): 4 pieces	AFC1803
I/O number label for expansion I/O board	To indicate I/O location of expansion board. The seal is on the side of case.	E20R type: AFC18062
		M1T-E type: AFC18061
		M1T-El type: AFC18063
		M1T-EO type: AFC1806
Mounting plate with screws	This metal plate attaches the boards. Attached 4 screws Refer to page 35, "2-2. Dimensions, 2. Case Type" for mounting hole dimensions.	AFB6804
DIN rail	DIN standard rail (width $35 \mathrm{~mm} /$ length 1 m)	AT8-DLA1
Fastening plate	To fix FP-M on the DIN rail	ATA4806

7. Maintenance Parts

Type	Description	Part number
Spare battery for FP-M	Replacement for backup battery BR2032/CR2032 or equivalent	AFB8801
Power supply cable	Available with control board	APL9511
Jumper cable	Available with control board	AFB8505
Spacers	For case type	Shape: \square, Length: 8 mm
		Shape: $\square \square$, Length: 18 mm

INDEX

A	
A/D converter board	
dimensions	134
parts terminology	135,136
pin layout	137
programming	143 to 147
restriction of expansion	134
specifications	133
type	10
wiring	137
Advanced control functions	3 to 5
ALARM LED	117
Analog I/O board	129
dimensions	130,131
parts terminology	132
pin layout	143 to 147
programming	129
restriction of expansion	128
specifications	10
type	132
wiring	22 to $27,84,100$
B	219
Backup battery	32
Baud rate selector	
Binary/BCD expressions	125
Board type structure	

$\frac{C}{\text { C-NET adapter (standard type/S2 type) }} 6,11$
C20R and C20RC type control boards
dimensions 33
I/O allocation 38
internal circuit 63
parts terminology 22, 23
pin layout 63
types9
wiring

E20R, M1T-E, M1T-EI, and M1T-EO types	33, 177
intelligent and link boards	178
mounting hole (board/case type)	34, 35, 179, 180
E	
E20R type expansion I/O board	
dimensions	33
I/O allocation	39
internal circuit	68
parts terminology	28
pin layout	68
type	10
wiring	48, 49, 68
ERR. LED	115
Error	
battery error	113
duplicated output error	113
operation error	113
"PLC = COMM. ERR"	121
"PROTECT ERROR"	122
self-diagnostic error	112
system watchdog timer error	112
total-check error	112
Error codes	210, 211
Expansion	12, 13
F	
Features	2
Flat cable connector	55, 60
Forced ON/OFF control function	5
FP I/O terminal unit	11
FP I/O transmitter unit	11
FP Programmer II	14, 100 to 102
FP ROM writer	15
FP-M I/O link board (MEWNET-F)	
dimensions	166
parts terminology	167, 168
restriction of expansion	166
specifications	166
type	11

E20R type expansion I/O board
\quad dimensions
I/O allocation 39
internal circuit 68
parts terminology 28
pin layout 68
type
48, 49, 68
ERR. LED115

Error
battery error 113
duplicated output error 113
operation error 113
"PLC = COMM. ERR" 121
"PROTECT ERROR" 122
self-diagnostic error 112
112
or codes 210, 211
Expansion 12, 13

FP-M transmitter master board (MEWNET-TR) dimensions 162
parts terminology 163,164
restriction of expansion 162
specifications 162
type 11
G

General communication	8
General specification	18
Grounding	47

H	
High-speed counter board	150
dimensions	153,154
I/O allocation	156
internal circuit	151,152
parts terminology	156
pin layout	157 to 160
programming	150
restriction of expansion	148 to 150
specifications	10
type	156

High-speed counter function 3
How to program
programming
with FP Programmer II 100 to 102
programming with
NPST-GR Software 84 to 99
ROM
$15,16,107$ to 109
$\frac{I}{38 \text { to } 40,181 \text { to } 184}$
Input/output terminal 28,61,130
Input time filtering function 4
Input wiring examples
LED-equipped limit switch53

LED-equipped reed switch 53
photoelectric sensors 52
two-wire type sensor 53
Inrush current 54

Installation	
cautions	45
DIN rail mount	44
panel mount (board/case type)	44
Instructions	212 to 218
Internal circuit	63 to 72
Interrupt input function	4
M	
M1T-E type expansion I/O board	
dimensions	33
I/O allocation	39
internal circuit	69, 70
parts terminology	29
pin layout	69
type	10
wiring	50, 51, 69, 70
M1T-EI type expansion input board	
dimensions	33
I/O allocation	39
internal circuit	71
parts terminology	30
pin layout	71
type	10
wiring	50, 51, 71
M1T-EO type expansion output board	
dimensions	33
I/O allocation	39
internal circuit	72
parts terminology	31
pin layout	72
type	10
wiring	50, 51, 72
Maintenance	
backup battery	125
check items	126
Manual dial-set register control fun	ction 4
Memory areas	185, 186
Memory (ROM) type	
master memory (EEPROM)	15, 106, 107
memory (EPROM)	15, 106, 107

RT-2 relay terminal	55, 58
S	
Safety	
power supply wiring	47
momentary power drop	47
Self-diagnostic error codes	
E26 (ROM error)	124
E28 (system register error)	124
E31 (interrupt error)	124
E32 (interrupt error)	124
E45 (operation error)	124
E50 (battery error)	124
E100 to E299 (self-diagnostic errors)) 124
Self-diagnostic function	112,118
Solderless terminal	61
Spacer	42, 43
Special data registers 2	201 to 209
Special internal relays 1	198 to 200
Specifications (control and expansion boards)	
general	18
input	20
output	20
performance	18
Stacking	
board type	42
case type	43
System registers 1	189 to 197
T	
Total-check error codes	
E1 (syntax error)	123
E2 (duplicated output error)	123
E3 (not paired error)	123
E4 (system register parameter error)) 123
E5 (program area error)	123
E8 (operand error)	123
Troubleshooting 1	114 to 122
W	
Wire-press socket	55, 59

Wiring	
I/O connectors (MIL connector)	55 to 60
I/O power supply	48 to 51
I/O terminals	61
power supply	46
programming tool port	62
RS232C port	62
wiring example	63 to 72

RECORD OF CHANGES

ACG No.	Date	
ACG-M0045-1	DEC. 1994	First edition

Matsushita Electric Works, Ltd.

Automation Controls Company

■ Head Office: 1048, Kadoma, Kadoma-shi, Osaka 571-8686, Japan

- Telephone: +81-6-6908-1050

■ Facsimile: +81-6-6908-5781

[^0]: - Refer to C-NET LINK UNIT Technical Manual for details about computer link.

[^1]: - No capacitor connected between DC terminal and frame ground terminal when the breakdown voltage and insulation resistance test is performed.
 - The actual number of points that can be used is the total number of I / O points of the control board and the expansion board.

[^2]: - Keep 100 mm (3.937 in .) or more clearance between the FP-M and other equipment in order to avoid heat radiation.

[^3]: - After modifying the CONFIG.SYS file, reset the personal computer so that your changes take effect.
 - Note that the directory in which the ANSI.SYS exists must match the pathname used for the DEVICE command.

[^4]: Set the mode selector of the FP-M control board from PROG. to RUN.

[^5]: - When the FP-M control board mode selector is set to the PROG. mode or an error occurs, the analog output data becomes 0 .

[^6]: - INA: A-phase pulse input, INB: B-phase pulse input

[^7]: - The controllable I/O points are set by the operation mode selector.
 - Controllable slave stations are determined by the number of unit l/O points used by system.

[^8]: - Board number selector upper state is "OFF (\square)" and the lower state is "ON (\square)".

[^9]: - For more about the instructions above, refer to "FP-M /FP1 Programming Manual".

