

PROGRAMMABLE CONTROLLER FP-M Hardware

FP-M Hardware ACG-M0045-1 94.12

Matsushita Electric Works, Ltd.

Safety Precautions

Observe the following notices to ensure personal safety or to prevent accidents. To ensure that you use this product correctly, read this User's Manual thoroughly before use. Make sure that you fully understand the product and information on safe. This manual uses two safety flags to indicate different levels of danger.

WARNING

If critical situations that could lead to user's death or serious injury is assumed by mishandling of the product.

- -Always take precautions to ensure the overall safety of your system, so that the whole
- system remains safe in the event of failure of this product or other external factor.
- -Do not use this product in areas with inflammable gas. It could lead to an explosion.
- -Exposing this product to excessive heat or open flames could cause damage to the lithium battery or other electronic parts.

CAUTION

If critical situations that could lead to user's injury or only property damage is assumed by mishandling of the product.

- -To prevent abnormal exothermic heat or smoke generation, use this product at the values less
- than the maximum of the characteristics and performance that are assure in these specifications.
- -Do not dismantle or remodel the product. It could lead to abnormal exothermic heat or smoke generation.
- -Do not touch the terminal while turning on electricity. It could lead to an electric shock..
- -Use the external devices to function the emergency stop and interlock circuit.
- -Connect the wires or connectors securely.
- The loose connection might cause abnormal exothermic heat or smoke generation
- -Do not allow foreign matters such as liquid, flammable materials, metals to go into the inside of the product. It might cause exothermic heat or smoke generation.
- -Do not undertake construction (such as connection and disconnection) while the power supply is on.

Copyright / Trademarks

- -This manual and its contents are copylighted.
- -You may not copy this manual, in whole or part, without written consent of Matsushita Electric Works, Ltd.
- -Windows and Windows NT are registered trademarks of Microsoft Corporation in the United States and/or other countries.
- -All other company names and product names are trademarks or registered trademarks of their respective owners.
- -Matsushita Electric Works,Ltd. pursues a policy of continuous improvement of the Design and performance of its products, therefore,we reserve the right to change the manual/ product without notice.

CONTENTS

CHAPTER 1: FEATURES

1-1.	Features and Functions	2
	1. Features	2
	2. Functions	3
	1) Advanced control functions	3
	2) Network	
1-2.	Product Types	9
	1. Control Boards	
	2. Expansion Boards	10
	3. Intelligent Boards	
	4. Link Boards and Adapters	
1-3.	Expansion and Configurations	
	1. Expansion of FP-Ms	
	2. Restriction of Expansion	
	1) Expansion boards	
	2) Intelligent boards	
	3) Link boards	
	3. Combination of Boards	13
	1) Combination of relay output type control and expansion boards	13
	2) Combination of transistor output type control and expansion boards	
1-4.	Programming Tools for FP-Ms	
	1. Programming Tools	
	1) NPST-GR Software	14
	2) FP Programmer II	
	2. Tools for Making a Programmed ROM	
	1) Writing a program to memory (EPROM) with an FP ROM writer	
	2) Writing a program to memory (EPROM) with NPST-GR Software	
	and a commercially available ROM programmer	15
	3) Writing a program to the memory (EPROM) via the master memory	
	(EEPROM) with a commercially available ROM programmer	16

CHAPTER 2: SPECIFICATIONS AND PARTS TERMINOLOGY

2-1.	Specifications of Control Board and Expansion Board	18
	1. General	
	2. Performance	
	3. Input	20
	4. Output	
	1) Relay output type	
	2) Transistor output type (PNP and NPN open collector)	
2-2.	Parts Terminology	22
	1. Control Boards	22
	1) C20R and C20RC types	
	2) C20T and C20TC types	
	3) C32T and C32TC types	
	2. Expansion Boards	
	1) E20R type	

	2) M1T-E type	29
	3) M1T-EI type	
	4) M1T-EO type	
	3. Board and Case Structure	
	1) Board type	
	2) Case type	
2-3.	Dimensions	
	1. Board Type	
	1) Control boards	
	2) Expansion boards	
	3) Building dimensions	
	4) Mounting hole dimensions	
	2. Case Type	
	1) Case dimensions for control, expansion, intelligent and link boards.	
	2) Building dimensions	
	3) Mounting hole dimensions.	
	-,	

CHAPTER 3: I/O ALLOCATION

3-1.	I/O Allocation of Control Boards
3-2.	I/O Allocation of Expansion Boards
3-3.	I/O Allocation Examples

CHAPTER 4: INSTALLATION AND WIRING

4-1.	Stacking the Boards	42
	1. Board Type	42
	2. Case Type	43
4-2.	Installation	44
	1. Panel Mount	44
	1) Board type mounting method (without mounting plate)	44
	2) Case type mounting method (using mounting plate)	44
	2. DIN Rail Mount	44
	3. Cautions	45
4-3.	Wiring	46
	1. Power Supply Wiring	46
	1) Wiring for power supply	46
	2) Power supply lines	46
	3) Grounding	47
	4) Momentary power drop	47
	5) Safety	
	2. Input and Output Wiring (Control and Expansion Boards)	48
	1) Wiring for I/O power supply	
	(C20R control board and E20R expansion board)	48
	2) Wiring description for I/O power supply	
	(C20R control board and E20R expansion board)	49
	3) Wiring for I/O power supply	
	(C20T, C32T, M1T-E, M1T-EI, and M1T-EO series)	50
	4) Wiring description for I/O power supply	
	(C20T, C32T, M1T-E, M1T-EI, and M1T-EO series)	51
	5) Wiring for I/O connectors (MIL connector)	55
	6) Wiring for I/O terminals	61
	7) Wiring for programming tool port	62
	8) Wiring for RS232C port	62

CONTENTS

Wiring Diagram and Pin Layouts	63
1) Control boards	
2) Expansion boards	

CHAPTER 5: BEFORE PROGRAMMING

3.

5-1.	Operating Principles of the Programmable Controller	74
	1. Basic Configuration	74
	2. Basic Operation	76
5-2.	Before Turning the Power ON	78
	1. Things to Check Before Turning the Power ON	78
	2. Operation Procedure	79
5-3.	How to Program the Programmable Controller	80
	1. Making a Ladder Diagram	80
	2. Relays and Timer/Counter Contacts in the FP-M	81
	3. I/O Allocation in the FP-M	83
	1) Control boards	83
	2) Expansion boards	83
5-4.	Programming with NPST-GR Software	
	1. System Configuration	
	2. Features of NPST-GR Software Ver. 3	85
	3. NPST-GR Configuration	86
	1) Overview of the programming screen	86
	2) Overview of the menu window	88
	4. NPST-GR Installation and Configuration	89
	1) Preparing for installation	89
	2) NPST-GR installation	90
	3) How to use NPST-GR effectively	92
	4) NPST-GR startup	
	5) Configuring NPST-GR	93
	5. Exiting NPST-GR	95
	6. Basic Key Operation for Programs	96
	7. Downloading a Program to the Programmable Controller	97
	8. Saving a Program to Disk	
	9. Printing	
5-5.	Programming with FP Programmer II	100
	1. System Configuration	
	2. Downloading a Program to the Programmable Controller	101
5-6.	RAM and ROM Operations	
	1. RAM and ROM Operations	
	2. Operation Without Backup Battery Enabled	
	3. Notes on Operation with Memory (ROM Operation)	105
5-7.	How to Program ROM	
	1. Memory (ROM) Type	
	2. Install the Memory (ROM)	
	3. How to Program ROM	107
	1) Writing a program to the memory (EPROM) via master memory	
	(EEPROM) with a commercially available ROM programmer	107
	2) Writing a program to the memory (EPROM) with NPST-GR	
	Software and a commercially available ROM programmer	109

CHAPTER 6: TROUBLESHOOTING AND MAINTENANCE

6-1.	Self-diagnostic Function	11	2
------	--------------------------	----	---

2. Operation Status When an Error Occurs. 113 1) Duplicated output error (total-check error) 113 2) Battery error (self-diagnostic error) 113 3) Operation error (self-diagnostic error) 113 6-2. Troubleshooting 114 1. Points to be Checked When an Error Occurs 114 6-3. Error Codes 123 1. Table of Total-check Error Codes 123 2. Table of Self-diagnostic Error Codes 124 6-4. Maintenance 125 1. Replacement of Backup Battery 125 2. Using backup battery type 125 3. How to replace backup battery 125 2. Check Items 125		1. Operation Monitor LEDs When an Error Occurs	112
2) Battery error (self-diagnostic error)1133) Operation error (self-diagnostic error)1136-2. Troubleshooting1141. Points to be Checked When an Error Occurs1146-3. Error Codes1231. Table of Total-check Error Codes1232. Table of Self-diagnostic Error Codes1246-4. Maintenance1251. Replacement of Backup Battery1252) Using backup battery type1253) How to replace backup battery125		2. Operation Status When an Error Occurs	113
3) Operation error (self-diagnostic error)1136-2. Troubleshooting1141. Points to be Checked When an Error Occurs1146-3. Error Codes1231. Table of Total-check Error Codes1232. Table of Self-diagnostic Error Codes1246-4. Maintenance1251. Replacement of Backup Battery1251.) Battery life1252.) Using backup battery type1253) How to replace backup battery125		1) Duplicated output error (total-check error)	113
6-2. Troubleshooting 114 1. Points to be Checked When an Error Occurs 114 6-3. Error Codes 123 1. Table of Total-check Error Codes 123 2. Table of Self-diagnostic Error Codes 124 6-4. Maintenance 125 1. Replacement of Backup Battery 125 1. Battery life 125 2. Using backup battery type 125 3. How to replace backup battery 125		2) Battery error (self-diagnostic error)	113
6-2. Troubleshooting 114 1. Points to be Checked When an Error Occurs 114 6-3. Error Codes 123 1. Table of Total-check Error Codes 123 2. Table of Self-diagnostic Error Codes 124 6-4. Maintenance 125 1. Replacement of Backup Battery 125 1. Battery life 125 2. Using backup battery type 125 3. How to replace backup battery 125		3) Operation error (self-diagnostic error)	113
6-3. Error Codes1231. Table of Total-check Error Codes1232. Table of Self-diagnostic Error Codes1246-4. Maintenance1251. Replacement of Backup Battery1251) Battery life1252) Using backup battery type1253) How to replace backup battery125	6-2.		
1. Table of Total-check Error Codes1232. Table of Self-diagnostic Error Codes1246-4. Maintenance1251. Replacement of Backup Battery1251) Battery life1252) Using backup battery type1253) How to replace backup battery125		1. Points to be Checked When an Error Occurs	114
 2. Table of Self-diagnostic Error Codes	6-3.	Error Codes	123
6-4. Maintenance1251. Replacement of Backup Battery1251) Battery life1252) Using backup battery type1253) How to replace backup battery125		1. Table of Total-check Error Codes	123
1. Replacement of Backup Battery1251) Battery life1252) Using backup battery type1253) How to replace backup battery125		2. Table of Self-diagnostic Error Codes	124
1) Battery life1252) Using backup battery type1253) How to replace backup battery125	6-4.	Maintenance	125
2) Using backup battery type		1. Replacement of Backup Battery	125
3) How to replace backup battery125		1) Battery life	125
3) How to replace backup battery125		2) Using backup battery type	125
2. Check Items			
		2. Check Items	126

CHAPTER 7: INTELLIGENT AND LINK BOARDS

Analog I/O Board	128
1. Specifications	128
1) General	128
2) Performance	128
3) Restriction of expansion	129
2. Dimensions	129
3. Parts Terminology	130
4. Wiring	132
A/D Converter Board	133
1. Specifications	133
1) General	133
2) Performance	133
3) Restriction of expansion	134
2. Dimensions	134
3. Parts Terminology	135
4. Wiring	137
D/A Converter Board	138
1. Specifications	138
1) General	138
2) Performance	138
3) Restriction of expansion	139
2. Dimensions	139
3. Parts Terminology	140
4. Wiring	142
Programming for Analog I/O, A/D Converter, and D/A Converter Boards	143
1. Digital Values of Analog Input	143
2. Digital Values of Analog Output	144
3. Specification of Analog I/O Data	146
4. Applications	147
High-speed Counter Board	148
1. Specifications	148
1) General	148
2) Performance	148
3) Differences in specifications between high-speed counter function	
with FP-M control board and high-speed counter board	149
4) Restriction of expansion	150
	 Specifications

CONTENTS

	2. Dimensions	150
	3. Parts Terminology	151
	4. I/O Allocation	
	5. Wiring	156
	6. Programming for High-speed Counter Board	157
	1) High-speed counter board related instructions F0 (MV), F1 (DMV)	157
	2) Notes on programming the high-speed counter	158
	3) Applications	159
7-6.	FP-M Transmitter Master Board (MEWNET-TR)	161
	1. Specifications	162
	1) General	162
	2) Performance	162
	3) Restriction of expansion	162
	2. Dimensions	162
	3. Parts Terminology	163
7-7.	FP-M I/O Link Board (MEWNET-F)	165
	1. Specifications	166
	1) General	166
	2) Performance	166
	3) Restriction of expansion	166
	2. Dimensions	166
	3. Parts Terminology	167

CHAPTER 8: APPENDIX

8-1.	Performance Specifications	170
	1. Control and Expansion Board Specifications	170
	2. Intelligent Boards Specifications	173
	1) Analog I/O board specifications	173
	2) A/D converter and D/A converter board specifications	174
	3) High-speed counter board specifications	175
	4) FP-M transmitter master board (MEWNET-TR) specifications	176
	5) FP-M I/O link board (MEWNET-F) specifications	176
8-2.	Dimensions	177
	1. Board Type	177
	1) Control boards	177
	2) Expansion boards	177
	3) Intelligent and link boards	178
	4) Building dimensions	179
	5) Mounting hole dimensions	179
	2. Case Type	180
	1) Case dimensions for control, expansion, intelligent and link boards	180
	2) Building dimensions	180
	3) Mounting hole dimensions	180
8-3.	I/O Allocation Table	181
	1. I/O Allocation of Control Boards	181
	2. I/O Allocation of Expansion Boards	
	3. Allocation of Analog I/O, A/D Converter, and D/A Converter Boards	
	4. Allocation of High-speed Counter Board	
	5. I/O Allocation of FP-M Transmitter Master Board	184
	6. I/O Allocation of FP-M I/O Link Board	184
8-4.	Table of Memory Areas	185
8-5.	System Registers	187
	1. What Are System Registers	187
	2. Table of the System Registers	189

8-	5. Special Internal Relays	
8-	7. Special Data Registers	
8-		
	1. Table of Total-check Error Codes	
	2. Table of Self-diagnostic Error Codes	
8-	9. Table of Instructions	
	1. Basic Instructions	
	2. High-level Instructions	
8-	10. Table of Binary/BCD Expressions	
	11. Versions of Programming Tools	
	1. Differences Between NPST-GR Ver. 2.4 and 3.1	
	2. Differences Between the FP Programmer and FP Programmer II	
8-	12. Modem Communication	
	1. Using the Programming Tool Port (FP-M control board all types)	
	2. Using the RS232C Port	
	[FP-M C type control boards (C20RC/C20TC/C32TC)]	
8-	13. Terminology	232
8-	14. Product Types	239
	1. Case Type	239
	2. Board Type	241
	3. Programming Tools	
	4. Wiring Parts for I/O Terminal	250
	5. Wiring Parts for I/O Connectors (MIL connectors)	250
	6. Accessories	252
	7. Maintenance Parts	253
INDEX		254
KECORD OF CHAN	GES	258

CHAPTER 1

FEATURES

1-1. Features and Functions	2
1. Features	2
2. Functions	
1-2. Product Types	9
1. Control Boards	9
2. Expansion Boards	10
3. Intelligent Boards	10
4. Link Boards and Adapters	11
1-3. Expansion and Configurations	12
1. Expansion of FP-Ms	12
2. Restriction of Expansion	12
3. Combination of Boards	13
1-4. Programming Tools for FP-Ms	14
1. Programming Tools	14
2. Tools for Making a Programmed ROM	15

1-1. Features and Functions

1. Features

• Excellent performance in a compact body

Succeeding the advanced functions of the FP1 programmable controller, the FP-M is designed to fulfill machine building requirements. The advantages of compact size, expandability, and time-tested dependability are convincing reasons to consider the FP-M as an alternative to the control systems with which you are familiar.

· Greatly increased program memory and high execution speed

FP-M surpasses the competition with a basic instruction execution speed of $1.6 \,\mu$ s/step and an ample program capacity of 2,720 and 5,000 steps. The board is driven by battery-backed RAM (EEPROM or EPROM program back-up option is also available). Types with an additional RS232C port and clock/calender (C types) are available to boost the range of applications possible.

• Smart system expandability

Up to four expansion boards can be stacked under the control board, but no additional mounting space is needed. This module enables you to add discrete I/O points and intelligent functions such as analog control, high-speed counter control, and link functions easily.

Available expansion boards are:

Transistor I/O, Relay I/O, Analog I/O, A/D, D/A, High-speed Counter, I/O Link, and FP-M Transmitter Master Boards.

	Total I/O points							
Control board	0 expansion	1 expansion	2 expansions	3 expansions	4 expansions			
*C20R	20	40	60	80	100			
(Relay output)	12 inputs/8 outputs	24 inputs/16 outputs	36 inputs/24 outputs	48 inputs/32 outputs	60 inputs/40 outputs			
*C20T	20	60	100	140	180			
(Transistor output)	12 inputs/8 outputs	36 inputs/24 outputs	60 inputs/40 outputs	84 inputs/56 outputs	108 inputs/72 outputs			
*C32T	32	72	112	152	192			
(Transistor output)	16 inputs/16 outputs	40 inputs/32 outputs	64 inputs/48 outputs	88 inputs/64 outputs	112 inputs/80 outputs			

I/O Expansion Example

For details about expansion refer to page 12.

* In the table above, the twenty I/O point relay type expansion board is used for the C20R and the forty I/O point transistor type is used for the C20T and C32T.

• Easy programming environment

NPST-GR changes your personal computer into a powerful programming support tool. This editing software is fully compatible with FP series programmable controllers.

2. Functions

1) Advanced control functions

■ High-speed counter function

The built-in high-speed counter function supports four modes: two-phase input, UP, DOWN, and UP/DOWN. The FP-M can read the input regardless of the scan time.

Max. counting speed	1-phase: 10 k Hz
	(when duty cycle ratio 50 %)
	2-phase: 10 k Hz
Counting range	-8,388,608 to 8,388,607

Start Signal Speed { Y0 Y1 Stop Signal

Application: Pattern output function This function of the control board allows the setting

of a maximum of eight output patterns with 15 level settings of the high-speed counter. Can also be applied to multi-stage speed control with use of an invertor.

■ Pulse output function (transistor output type)

This function allows the output of a direct pulse (45 Hz to 4.9 k Hz) from the FP-M. In combination with a drive, a motor can be controlled. As direct pulse is possible, an additional positioning controller is not necessary. As the FP-M has two pulse outputs, it also supports motor drives with one input for forward driving and the other input for reverse driving. To prevent incorrect forward/reverse driving, create an interlock circuit outside of the FP-M. In addition, since the built-in high-speed counter can internally take the pulse output, no external wiring for feedback control is required.

• Wiring example for a drive with one pulse input and one direction input:

• Wiring example for a drive with two pulse inputs:

■ Interrupt input function

This function executes an interrupt program immediately after an external interrupt input (minimum pulse width of 0.2 ms) occurs, regardless of the input timing. It enables high-speed processing at a fixed timing and is not affected by scan time. Therefore it is useful when performing control which would be disrupted by variations in processing time due to such factors as timing synchronization.

■ Pulse catch input function

This function catches input pulse signals down to a minimum width of 0.5 ms. It is effective for situations such as when the sensor detects the moving target at a high-speed.

■ Adjustable input time filtering function

This function allows the input response time (input time constant) of the control board to be changed within a range of 1 to 128 ms in accordance with the input device connected. This prevents input errors due to such causes as limit switch chattering noise.

Manual dial-set register control function

This function makes it possible to change the values of special data registers DT9040 and DT9041 within a range of 0 to 255 using the potentiometers on the control board. Input settings involving analog-type numerical data such as analog timer and pulse output frequency changes can be performed.

■ Forced ON/OFF control function

This function allows the state of the input and output contacts to be forced ON or OFF with a programming tool (NPST-GR Software, etc.). By forcing the output contact ON or OFF, the connection on the output side can be checked. By forcing the input contact ON or OFF, the program can be checked.

Password protection function

This function forbids reading and writing of the program and system registers. It can be used for program protection and when secrecy is required.

■ Constant length scan setting function

The duration of one scan is fixed by setting it to units of 2.5 ms, eliminating variation in the scan time.

■ Clock/Calendar control function (C20RC, C20TC, and C32TC types)

By means of year, month, day, hour, minute, second, and day of the week settings, this function makes it possible to change temporal elements of control. It can be used for temporal control of such items as lighting, air conditioning, and equipment.

2) Network

Computer link function (MEWTOCOL)

This function allows the reading and writing of FP-M contact information and data register content from a host computer. It can be used for such applications as data collection and the monitoring of operating conditions. The computer program is written in BASIC and C languages.

Communication between one computer and one FP-M control board

• Using RS232C port (C20RC, C20TC, and C32TC types) The RS232C port can be used for direct connection to a

personal computer.

When connected to an I.O.P. using the computer link

function, the I.O.P.'s data can be read as the FP-M's

operations as production control.

• Using programming tool port (all series)

connection to a personal computer.

Note:

internal relay or data register. This can be used for such

The programming tool port can also be used for direct

RS232C port (C20RC, C20TC, and C32TC types), various combinations can be created by making a

computer link with the programming tool port and

connecting another device with the RS232C port.

• When using a control board equipped with an

Communication between one computer and 32 FP-M control boards

Using a C-NET adapter, a maximum of 32 FP-M control boards can be connected with one personal computer. If a bar code reader is connected via the RS232C port, this system can be used for the collection of various production control information.

• Refer to C-NET LINK UNIT Technical Manual for details about computer link.

■ MEWNET-TR (distributed I/O) system

I/O information can be exchanged between the master and several slave stations at a remote site. A maximum of 32 inputs and 32 outputs can be controlled per master board.

This system supports a total communication distance of 700 m per port using a twisted-pair cable. Master to master communication is also available.

Master-slave communication

■ MEWNET-F (distributed I/O) system

Using a FP-M I/O link board, this function allows the exchange of I/O information with the master unit of the FP series programmable controller through a two-conductor cable.

Note:

• Refer to "REMOTE I/O SYSTEM Technical Manual" for details about MEWNET-F (remote I/O) system.

■ General communication using RS232C port (C20RC, C20TC, and C32TC types)

This function allows data input and output when connected to a device having an RS232C port. Data reading from a bar code reader, data output to a printer, and bilateral data exchange with the image checker are all possible.

■ Modem communication

Using a modem, the FP-M can perform long-distance communication with a personal computer to monitor and change data and also to change the program. Using C-NET adapters, you can control up to 32 programmable controllers from a personal computer. Through the RS232C port, the FP-M can initiate a call to a computer via modems for alarm purposes.

1-2. Product Types

1. Control Boards

5	Series				Descrip	tion	
		Built-in	I/O point	Operating	Input type	Output type	Part number
		memory		voltage			
C20R	Standard	RAM	20	24 V DC	Sink/source	Relay, 2A 250 V AC	Board: AFC12212
	type	(2.7 k steps)	Input: 12				Case: AFC10212
			Output: 8				
	C20RC	RAM	20	24 V DC	Sink/source	Relay, 2A 250 V AC	Board: AFC22212C
	type*	(5 k steps)	Input: 12 Output: 8				Case: AFC20212C
C20T	Standard	RAM	20	24 V DC	Source	Transistor, 0.8 A	Board: AFC12242
	type	(2.7 k steps)	Input: 12			(NPN open collector)	Case: AFC10242
			Output: 8		Sink	Transistor, 0.8 A	Board: AFC12252
						(PNP open collector)	Case: AFC10252
	C20TC	RAM	20	24 V DC	Source	Transistor, 0.8 A	Board: AFC22242C
	type*	(5 k steps)	Input: 12			(NPN open collector)	Case: AFC20242C
			Output: 8		Sink	Transistor, 0.8 A	Board: AFC22252C
						(PNP open collector)	Case: AFC20252C
C32T	Standard	RAM	32	24 V DC	Source	Transistor, 0.8 A	Board: AFC12342
	type	(2.7 k steps)	Input: 16			(NPN open collector)	Case: AFC10342
			Output: 16		Sink	Transistor, 0.8 A	Board: AFC12352
						(PNP open collector)	Case: AFC10352
	C32TC	RAM	32	24 V DC	Source	Transistor, 0.8 A	Board: AFC22342C
	type*	(5 k steps)	Input: 16			(NPN open collector)	Case: AFC20342C
			Output: 16		Sink	Transistor, 0.8 A	Board: AFC22352C
						(PNP open collector)	Case: AFC20352C

Notes:

• * CPUs with a RS232C port and clock/calendar function (C20RC, C20TC and C32TC types).

• Board types include AFB88021 (4 spacers, 20 mm), APL9511 (power supply cable), AFB8505 (jumper cable) and 4 screws (20 mm × 2, 8 mm × 2).

• Case types include the control board, case for control board (C20R type for AFC18011, C20T type for AFC18012 and C32T type for AFC18013), AFB88032 (4 spacers, 8 mm), APL9511 (power supply cable), AFB8505 (jumper cable), 4 screws (20 mm × 2, 8 mm × 2), and AFB6804 (mounting plate).

• 12 V DC operating voltage type is also available.

2. Expansion Boards

Series		Description							
	I/O point	Operating	Input type	Output type	Part number				
		voltage							
E20R	20	24 V DC	Sink/source	Relay	AFC13012				
expansion	Input: 12								
I/O board	Output: 8								
M1T-E	40	24 V DC	Source	Transistor (NPN open collector)	AFB6342				
expansion	Input: 24			, , , , , , , , , , , , , , , , , , ,					
I/O board	Output: 16		Sink	Transistor (PNP open collector)	AFB6342P				
M1T-EI	36	24 V DC	Source		AFB6392				
expansion	Input: 36								
input board									
M1T-EO	32	24 V DC		Transistor (NPN open collector)	AFB6340				
expansion	Output: 32								
output board									

Note:

• Operating voltage 12 V DC type is also available.

3. Intelligent Boards

Туре	Description	Operating voltage	Part number
Analog I/O board	Input: 4 channels/board	24 V DC	AFB6480
	Output: 1 channel/board		
	Input/output range: 0 to 5 V, 0 to 10 V, 0 to 20 mA		
	Resolution: 1/256 (8 bits)		
A/D converter board	Input: 4 channels/board	24 V DC	AFB6400
	Analog input range: 0 to 5 V, 0 to 10 V, 0 to 20 mA		
	Digital output range: K0 to K999		
D/A converter board	Output: 2 channels/board	24 V DC	AFB6410
	Analog output range: 0 to 5 V, 0 to 10 V, 0 to 20 mA		
	Digital input range: K0 to K999		
High-speed counter	Input: 2 channels		AFB6420
board	Counting range: -8,388,608 to 8,388,607		
	Max. counting speed:		
	1-phase mode: 20 k Hz		
	2-phase mode: 5 k Hz		

4. Link Boards and Adapters

Туре	Description		Operating voltage	Part number	
MEWNET-TR	FP-M transmitter master board enables th	e FP-M to	24 V DC	AFC1752	
FP-M transmitter	exchange I/O information with slave static				
master board	remote site using a twisted-pair cable. Co	nnecting			
	with another FP-M transmitter master boa	rd or with			
	an FP3 transmitter master unit, you can e	xchange			
	I/O information with another FP-M at remo	ote site.			
	Communication medium (RS485 port): tw	sted-pair			
	cable up to 32 inputs and 32 outputs can	ре			
	controlled per board.				
FP I/O	Input type	4 points	24 V DC	AFP87525	
transmitter unit		8 points		AFP87521	
		16 points	-	AFP87522	
	Output type	4 points	24 V DC	AFP87527	
	(Transistor, 0.5 A, NPN open collector)	8 points		AFP87523	
		16 points		AFP87524	
FP I/O terminal unit	Input type	8 points	24 V DC	AFP87425	
(with an expansion		16 points	-	AFP87426	
cable APL2510)	Output type	8 points	24 V DC	AFP87427	
	(Transistor, 0.5 A, NPN open collector)	16 points	-	AFP87428	
MEWNET-F	The FP-M I/O link board is the interface be	bard for	24 V DC	AFC1732	
FP-M I/O link board	exchanging I/O information between an F	P3/FP5			
	and an FP-M.				
	When the FP-M is connected to the MEW				
	system (FP3/FP5) via the FP-M I/O link be				
	can exchange I/O information using a 2-co				
	cable.				
C-NET adapter	RS485 ↔ RS422/RS232C signal converte	er	24 V DC	AFP8532	
standard type	Used for communication between the prog	grammable			
	controller and your computer.				
	Communication medium (RS485 port): 2-0	conductor	100 V to	AFP8536	
	cable or twisted pair cable		240 V AC		
C-NET adapter S2 type	RS485 ↔ RS232C signal converter for pr	ogramming		AFP15402	
(for FP-M control board	tool port of FP-M control board.				
only)	Used for communication between the C-N	ET			
	adapter and FP-M control board.				

1-3. Expansion and Configurations

1. Expansion of FP-Ms

- A total of 4 boards (expansion boards, intelligent boards, and link boards) can be stacked under the control board.
- Total number of I/O points:
 - C20R series: Max. 100 points*, C20T series: Max. 180 points, C32T series: Max. 192 points**
 - * Expansion board of the relay type is used.
 - ** Max. 256 points using 3 transmitter master boards (MEWNET-TR).

	Total number of I/O points			
10 m	C20R series	C20T series	C32T series	
Control board	Max. 100 points	Max. 180 points	Max. 192 points	
Control board	- 20 points	20 points	32 points	
Max. 4 boards (Expansion boards, intelligent boards, and link boards) Note:	. 80 points	160 points	160 points	
There are no restrict and transistor output				

2. Restriction of Expansion

Be sure to check that the boards are added according to the following restrictions:

1) Expansion boards

- Expansion I/O board (E20R)
- Number of expandable boards: 4 boards
- Total number of I/O points:
- C20R and C20T series: Max. 100 points
- C32T series: Max. 112 points
- Expansion I/O board (M1T-E series)
- Number of expandable boards: 4 boards
- Total number of I/O points:
- C20R and C20T series: Max. 180 points
- C32T series: Max. 192 points
- Expansion Input board (M1T-EI)
- Number of expandable boards: 2 boards
- Total number of I/O points:
- C20R and C20T series: Max. 92 points
- C32T series: Max. 104 points
- Expansion Output board (M1T-EO series)
- Number of expandable boards: 2 boards
- Total number of I/O points:
- C20R and C20T series: Max. 84 points
- C32T series: Max. 96 points

Note:

2) Intelligent boards

- Analog I/O board (M1T-A), A/D converter board (M1T-AD), and D/A converter board (M1T-DA)
- Number of expandable boards: 4 boards
- High-speed counter board (M1T-HSC)
- Number of expandable boards: 1 board

3) Link boards

- FP-M transmitter master board
- Number of expandable boards: 3 boards
- FP-M I/O link board
- Number of expandable boards: 1 board

• Refer to page 13, "3. Combination of Boards" for details about combination of control boards and expansion boards.

3. Combination of Boards

Total	Reque	ested I/O	point	Number of boards		
number of boards	Total	al Input Outpu		Control board C20R series (I: 12, O: 8)	Expansion board E20R series (I: 12, O: 8)	
1	20	12	8	1		
2	40	24	16	1	1	
3	60	36	24	1	2	
4	80	48	32	1	3	
5	100	60	40	1	4	

1) Combination of relay output type control and expansion boards

2) Combination of transistor output type control and expansion boards

Total	Reque	ested I/O	point		Nu	umber of boards	er of boards			
number				Control board Ex			Expansion board			
of boards	Total	Input	Output	C20T series (I: 12, O: 8)	C32T series (l: 16, O: 16)	M1T-E (l: 24, O: 16)	M1T-EI (I: 36)	M1T-EO (O: 32)		
1	20	12	8	1						
	32	16	16		1					
2	52	12	40	1				1		
	56	48	8	1			1			
	60	36	24	1		1				
	64	16	48		1			1		
	68	52	16		1		1			
	72	40	32		1	1				
3	84	12	72	1				2		
	88	48	40	1			1	1		
	92	36	56	1		1		1		
		84	8	1			2			
	96	72	24	1		1	1			
		16	80		1			2		
	100	60	40	1		2				
		52	48		1		1	1		
	104	40	64		1	1		1		
		88	16		1		2			
	108	76	32		1	1	1			
	112	64	48		1	2				
4	120	48	72	1			1	2		
	124	84	40	1			2	1		
	132	60	72	1		2		1		
		52	80		1		1	2		
	136	96	40	1		2	1			
		40	96		1	1		2		
		88	48		1		2	1		
	140	84	56	1		3				
	144	64	80		1	2		1		
	148	100	48		1	2	1			
	152	88	64		1	3				
5	156	84	72	1			2	2		
	168	96	72	1		2	1	1		
		88	80		1		2	2		
	180	108	72	1		4				
		100	80		1	2	1	1		
	192	112	80		1	4				

Notes:

• You can combine both relay output type and transistor output type control boards and expansion boards.

• Intelligent boards can also be combined with the control board.

1-4. Programming Tools for FP-Ms

1. Programming Tools

Program editing can be done with a commercially available personal computer and FP Programmer II.

1) NPST-GR Software

Using the NPST-GR program editing software, programs can be easily created with any personal computer.

Necessary tools

- Computer: Commercially available personal computer (IBM PC-AT or 100% compatible machine)
 - System required:
 - Main memory: 550 KB or more free
 - EMS: 800 KB or more free
 - Hard disk space: 2 MB or more
 - Operating system MS-DOS Ver. 3.30 or higher - Video mode (display mode): EGA or VGA
- NPST-GR Software Ver. 3: AFP266538
- FP-M personal computer cable: 3 m/9.843 ft.: AFC8513

Notes:

- The .EXE files in NPST-GR Software are compressed in the system disks. When installing NPST-GR, you will have to expand them.
- When using NPST-GR Software Ver. 2, refer to page 220, "1. Differences Between NPST-GR Ver. 2.4 and Ver. 3.1."
- Refer to page 106, "5-7. How to Program ROM" and "NPST-GR Manual", for details about writing programs using NPST-GR Software.
- Refer to page 239, "8-14. Product Types", for details about FP-M personal computer cable and RS232C interface adapter.

2) FP Programmer II

With the hand-held FP Programmer II, such operations as writing, reading, and retrieval of programs can be performed.

Necessary tools

- FP Programmer II: AFP1114
- FP-M peripheral cable (for FP Programmer II) 1 m/3.281 ft.: AFC8521 3 m/9.843 ft.: AFC8523

Notes:

- Refer to page 106, "5-7. How to Program ROM" and "FP PROGRAMMER II Operation Manual", for details about writing programs using the FP Programmer II.
- Refer to page 239, "8-14. Product Types", for details about FP-M peripheral cable (for FP Programmer II).

2. Tools for Making a Programmed ROM

- Using an FP ROM writer or a commercially available ROM programmer, the contents of the FP-M control board's internal RAM can be written to ROM (memory).
- The following types of ROM (memory) are available:
- Memory (EPROM): AFP5202
 Memory for storing programs. Writing is done with an FP ROM writer or a commercially available ROM programmer.
- Master memory (EEPROM): AFP5207

Memory for copying programs. Writing is done with attaching a master memory on the user memory socket.

1) Writing a program to memory (EPROM) with an FP ROM writer

• The content of the FP-M control board's internal RAM is written directly to the memory (EPROM).

Necessary tools

- FP ROM writer: AFP5651
- Memory (EPROM): AFP5202
- FP1 peripheral cable

0.5 m/1.640 ft.: AFP15205 3 m/9.843 ft.: AFP1523

Note:

• Refer to page 106, "5-7. How to Program ROM" and "FP ROM WRITER Technical Manual", for details about programming ROM.

2) Writing a program to memory (EPROM) with NPST-GR Software and a commercially available ROM programmer

[Program with NPST-GR Software → Commercially available ROM programmer's internal memory → Memory (EPROM)]

Necessary tools

- Computer: Commercially available personal computer (IBM PC-AT or 100 % compatible machine) System required:
- Main memory: 550 KB or more free
- EMS: 800 KB or more free
- Hard disk space: 2 MB or more
- Operating system: MS-DOS Ver. 3.30 or higher - Video mode (display mode): EGA or VGA
- NPST-GR Software Ver. 3: AFP266538
- RS232C cable: Needs to be made to match the specifications of the commercially available ROM programmer.
- Commercially available ROM programmer: We recommend Aval Data Corporation's PECKER 11.
- Memory (EPROM): AFP5202

Note:

• The .EXE files of NPST-GR Software are compressed in the system disks. When installing NPST-GR, you will have to expand them.

3) Writing a program to the memory (EPROM) via the master memory (EEPROM) with a commercially available ROM programmer

[Program in FP-M control board's internal RAM → Master memory (EEPROM) → Commercially available ROM programmer's internal memory → Memory (EPROM)]

Necessary tools

- FP Programmer II: AFP1114
- FP-M peripheral cable (for FP Programmer II) 1 m/3.281 ft.: AFC8521 3 m/9.843 ft.: AFC8523
- Commercially available ROM programmer: We recommend Aval Data Corporation's PECKER 11.
- Master memory (EEPROM): AFP5207
- Memory (EPROM): AFP5202

Note:

• Refer to page 106, "5-7. How to Program ROM" and "FP PROGRAMMER II Operation Manual", for details about programming ROM.

SPECIFICATIONS AND PARTS TERMINOLOGY

2-1. Specifications of Control Board and Expansion Board	118
1. General	18
2. Performance	18
3. Input	20
4. Output	
2-2. Parts Terminology	
1. Control Boards	
2. Expansion Boards	
3. Board and Case Structure	
2-3. Dimensions	
1. Board Type	
2. Case Type	

2-1. Specifications of Control Board and Expansion Board

1. General

Item	Description		
Ambient temperature	0°C to +55°C (32°F to +131°F)		
Ambient humidity	30 % to 85 % RH (non-condensing)		
Storage temperature	-20°C to +70°C (-4°F to +158°F)		
Storage humidity	30 % to 85 % RH (non-condensing)		
Breakdown voltage (See note.)	Transistor output type: 500 V rms for 1 min Between DC terminal and frame ground terminal		
	Relay output type: 1,500 V rms for 1 min Between output terminal and frame ground terminal		
Insulation resistance (See note.)	Min. 100 M Ω (measured with a 500 V DC megger) Between DC terminal and frame ground terminal		
Vibration resistance	10 Hz to 55 Hz, 1 cycle/min: double amplitude of 0.75 mm (0.030 in.), 10 min on 3 axes		
Shock resistance	Shock of 98 m/s ² or more, 4 times on 3 axes		
Noise immunity	1,000 Vp-p with pulse widths 50 ns and 1 μ s (based on in-house measurements)		
Operating environment	Must be free from corrosive gases and excessive dust.		
Rated operating voltage	24 V DC		
Operating voltage range	Controller power supply: 21.6 to 26.4 V DC Input/output power supply: 20.4 to 26.4 V DC (C20T, C32T series) 22.8 to 26.4 V DC (C20R series)		
Current consumption	Controller power supply: 0.2 A or less Input/output power supply: Approx. 5 mA per an input point Approx. 3 mA per an output point (except load current)		

2. Performance

	ltem	Description
Programming method		Relay symbol
Control method		Cyclic operation
Program memory		Built in RAM (lithium battery backup)
		EEPROM (master memory)/EPROM (memory) [optional items]
Program capacity		2.7 k type: 2,720 steps
		5 k type: 5,000 steps
Operation	speed	1.6 μ s/step, basic instruction
Kinds of	Basic	81
instruction	High-level	111
External in	put (X)	208 points (See note.)
External ou	utput (Y)	208 points (See note.)

Notes:

- No capacitor connected between DC terminal and frame ground terminal when the breakdown voltage and insulation resistance test is performed.
- The actual number of points that can be used is the total number of I/O points of the control board and the expansion board.

	Item	Description		
Internal relay (R)		1,008 points		
Special internal relay (R)		64 points		
Timer/counter (T/C)		144 points		
Auxiliary tir	mer	Unlimited number of points (0.01 s to 327.67 s)		
Data regist	ter (DT)	2.7 k type: 1,660 words		
		5 k type: 6,144 words		
Special da	ta register (DT)	112 words (For control board: 70 words, for intelligent boards: 42 words)		
Index regis	ster (IX, IY)	2 words		
MCR point	s	32 points		
Number of	labels (JMP,LOOP)	64 points		
Differential	points (DF or DF/)	Unlimited number of points		
Number of	step ladders	128 stages		
Number of	subroutines	16 subroutines		
Number of	interrupt programs	9 programs		
Advanced	High-speed counter			
control	(1 channel)	Counting input mode: up mode, down mode, up/down mode, 2-phase mode		
functions		Counting range: -8,388,608 to 8,388,607		
		Max. counting speed: up/down mode 10 k Hz, 2-phase mode 10 k Hz		
		Min. input pulse width: 1 phase 50 μ s • 2 phases 50 μ s		
	Manual dial-set	2 potentiometers		
	register			
	Pulse catch input	Total 8 points (X0 to X7)		
	Interrupt input			
	Periodical interrupt			
	RS232C port	Communication speed: 300/600/1,200/2,400/4,800/9,600/19,200 bps		
	(See note.)	Communication distance per port: 15 m/49.213 ft.		
		Connector: D-SUB 9 pins connector		
	Clock/calendar	Clock/calendar function available		
	(See note.)			
	I/O link	64 I/O points (32 inputs and 32 outputs) or 32 I/O points (16 inputs and 16 outputs)		
	Pulse output	2 points (Y6 and Y7)		
	(See note.)	Pulse output frequency range:		
	-	360 to 5,000 Hz/180 to 5,000 Hz/90 to 5,000 Hz/45 to 5,000 Hz		
Constant scan		2.5 ms × set value (160 ms or less)		
Adjustable input time filtering		1 to 128 ms		
	osis function	Watchdog timer, battery detection, program check, and others		
Memory backup (at 25°C)		Approx. 27,000 h (C types: C20RC, C20TC and C32TC)		
		Approx. 53,000 h (except C types: C20R, C20T and C32T)		

Notes:

- The RS232C port and clock/calendar functions are available for the C types (C20RC, C20TC and C32TC).
- The pulse output function is available for the transistor output type.
- The two pulse outputs, Y6 and Y7 cannot be used at the same time.

3. Input

Item	Description
Rated input voltage	24 V DC
Operating voltage range	20.4 V to 26.4 V DC
ON voltage/current	19.2 V or less/3 mA or less (19.2 V or less/3.6 mA: C32T series only)
OFF voltage/current	2.4 V or more/1 mA or more
Input impedance	Control board: Approx. 4.8 kΩ
	Expansion board: Approx. 4.4 k Ω
Response time ON ↔ OFF	2 ms or less (at normal input) (See note.)
	50 μ s or less (in setting high-speed counter)
	200 μ s or less (in setting interrupt input)
	500 μ s or less (in setting pulse catch)
Operating mode indicator	LED
Insulation method	Optical coupler

Notes:

• Input response time can be changed using the input time filtering function to 1, 2, 4, 8, 16, 32, 64, or 128 ms in unit of 8 inputs. However, for expansion boards, the input response time is fixed at 2 ms (or less).

4. Output

1) Relay output type

Item	Description
Rated operating voltage	24 V DC
Operating voltage range	22.8 V to 26.4 V DC
Output type	Normally open (1 Form A), 2 points/common
Rated control capacity	2 A 250 V AC, 2 A 30 V DC (resistive) (See note 1.)
Response time $OFF \rightarrow ON$	8 ms or less
$ON \rightarrow OFF$	10 ms or less
Mechanical life time	2×10^7 operations or more
Electrical life time	10 ⁵ operations or more
Surge absorber	None
Operating mode indicator	LED

Item	Description
Insulation method	Optical coupler
Rated load voltage	24 V DC
Operating load voltage range	20.4 V to 26.4 V DC
Max. load current	0.8 A/point (at 24 V DC) (See note 2.)
OFF state leakage current	100 μA or less
ON state voltage drop	1.5 V or less
Response time $OFF \rightarrow ON$	1 ms or less
$ON \rightarrow OFF$	1 ms or less (100 μ s or less: Y6 and Y7)
Surge absorber	Zener diode
Operating mode indicator	LED

2) Transistor output type (PNP and NPN open collector)

Notes:

2-2. Parts Terminology

1. Control Boards

1) C20R and C20RC types

■ C20R type

(1) Power supply connector:	Power supply conne	ector for 24 V DC	
(2) Expansion power supply connector:		(24 V DC) to the expansion board using expansion	
	power supply cable.		
③ Input terminal:		ield devices (e.g., limit switch).	
		ypes: 12 input points	
	Use a solderless terr	•	
④ Output terminal:		field devices (e.g., solenoid).	
	Use a solderless terr	ypes: 8 output points	
5 Programming tool port (RS232C):		programming tools (e.g., FP Programmer II or	
(b) i rogramming toor port (KS252C).	personal computer).		
6 Baud rate selector (9600/19200):		e for communication with a programming tool.	
() 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ording to the connected programming tools.	
		er (AFP1112): 19,200 bps	
		er (AFP1112A): 19,200 bps or 9,600 bps	
		er II (AFP1114): 19,200 bps or 9,600 bps	
	- Personal comp		
⑦ Expansion connector:	Connects the expan		
(8) Potentiometers (V0 and V1):		ver, the potentiometers allow manually adjusting the	
		ture makes input an analog value ranging from K0 to	
		ie is stored respectively in manual dial-set registers	
(9) User memory socket	(V0: DT9040 and V1: DT9041). Use this socket to install the memory (EPROM) and master memory		
(EPROM/EEPROM):	(EEPROM).	istant the memory (Er Row) and master memory	
10 Memory selector	Select the used memory type.		
(EPROM/EEPROM):	EPROM: memory		
	EEPROM: master		
(1) Mode selector	RUN mode:	The control board executes programs.	
(RUN/REMOTE/PROG.):	REMOTE mode:	The RUN or PROG. mode can be changed using	
		programming tools.	
(a) On another maniton I EDa	PROG. mode: RUN LED ON:	Used for editing program.	
(2) Operation monitor LEDs (RUN/PROG./ERR./ALARM):	Flashes:	Turns on when program is executed. Turns on when forced ON/OFF operation is	
(KUN/I KOG./EKK./ALAKWI).	Tashes.	executed in RUN mode.	
	PROG. LED ON:	Turns on when the control board halts program	
		execution.	
	ERR. LED ON:	Turns on when a self-diagnostic error occurs.	
	ALARM LED ON	: Turns on when an abnormality is detected or	
		watchdog timer error occurs.	
(3) Backup battery holder:		up battery. Refer to page 125, "6-4. Maintenance", for	
	-	p battery replacment.	
(14) Input indicators (LED):	Indicates the input (
	X0 X2 X4 X6 X 0 0 0 0 0		
	00000		
	X1 X3 X5 X7 X	9 XB	
(5) Output indicators (LED):	Indicates the output	ON/OFF states.	
	00000	ę	
	Y0 Y1 Y2 Y3 Y4		
(6) RS232C port (C20RC type only):		nect peripheral devices with RS232C port	
	(e.g., I.O.P. and bar	-code reader).	

2) C20T and C20TC types

C20T type

(1) Power supply connector:	Power supply conne		
② Expansion power supply		(24 V DC) to the expansion board using expansion	
connector:	power supply cable.		
③ Input connector (20-pin):	_	field devices (e.g., limit switch).	
		sed. Use a terminal, wire-press socket and flat cable	
	connector for wiring		
		ypes: 12 input points	
(4) Output connector (16-pin):		t field devices (e.g., solenoid).	
		sed. Use a terminal, wire-press socket and flat cable	
	connector for wiring	6	
		ypes: 8 output points	
(S) Programming tool port (KS252C)	personal computer).	e programming tools (e.g., FP Programmer II or	
6 Baud rate selector (9600/19200):		e for communication with a programming tool.	
() Datu Fate selector (9000/19200).		ording to the connected programming tools.	
		er (AFP1112): 19,200 bps	
		er (AFP1112A): 19,200 bps or 9,600 bps	
		er II (AFP1114): 19,200 bps or 9,600 bps	
	- Personal comp		
⑦ Expansion connector:	Connects the expansion boards.		
(8) Potentiometers (V0 and V1):	Set with a screwdriv	ver, the potentiometers allow manually adjusting the	
		ture makes input an analog value ranging from K0 to	
		ie is stored respectively in manual dial-set registers	
	(V0: DT9040 and V	·	
(9) Mode selector	RUN mode:	The control board executes programs.	
(RUN/REMOTE/PROG.):	REMOTE mode:	The RUN or PROG. mode can be changed using	
	DDOC	programming tools.	
	PROG. mode: RUN LED ON:	Used for editing program.	
10 Operation monitor LEDs (RUN/PROG./ERR./ALARM):	Flashes:	Turns on when program is executed. Turns on when forced ON/OFF operation is	
(KUN/FKUG./EKK./ALANIVI):	Plastics.	executed in RUN mode.	
	PROG. LED ON:	Turns on when the control board halts program	
		execution.	
	ERR. LED ON:	Turns on when a self-diagnostic error occurs.	
	ALARM LED ON	: Turns on when an abnormality is detected or	
		watchdog timer error occurs.	
(1) User memory socket	Use this socket to install the memory (EPROM) and master memory		
(EPROM/EEPROM):	(EEPROM).		
12 Memory selector	Select the used memory type.		
(EPROM/EEPROM):	EPROM: memory	•	
	EEPROM: master	-	
(3) Backup battery holder:	Holder for the backup battery. Refer to page 125, "6-4. Maintenance", fo details about backup battery replacement.		
(4) Input indicators (LED):	Indicates the input (
(4) Input indicators (LED):		E 3	
	X0 X1 X2 X3 X4 X5 X6 X	-	
(5) Output indicators (LED):	Indicates the output ON/OFF states.		
(<u></u> ,	0000000		
	Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y		
16 RS232C port (C20TC type only):	Use this port to con	nect peripheral devices with RS232C port	
	(e.g., I.O.P. and bar	-code reader).	

3) C32T and C32TC types

■ C32T type

supply connector

(1) Power supply connector:	Power supply connector for 24 V DC		
(2) Expansion power supply connector:			
	power supply cable.		
③ Input connector (30-pin):	Connects the input field devices (e.g., limit switch). MIL connector is used. Use a wire-press socket and flat cable connector		
	for wiring.	ed. Use a wire-press socket and that cable connector	
	C32T and C32TC ty	vpes: 16 input points	
④ Output connector (34-pin):		field devices (e.g., solenoid).	
() Output connector (34-pm).		ed. Use a wire-press socket and flat cable connector	
	for wiring.	I I I I I I I I I I I I I I I I I I I	
		pes: 16 output points	
⑤ Programming tool port (RS232C):	Use this port for the programming tools (e.g., FP Programmer II or		
	personal computer).		
	This interface is for	RS232C transmission.	
(6) Baud rate selector (9600/19200):	Selects the baud rate for communication with a programming tool.		
		ording to the connected programming tools.	
		r (AFP1112): 19,200 bps	
		r (AFP1112A): 19,200 bps or 9,600 bps	
		r II (AFP1114): 19,200 bps or 9,600 bps	
	- Personal comp		
7 Expansion connector:	Connects the expanse		
8 Potentiometers (V0 and V1):		ver, the potentiometers allow manually adjusting the ure makes input an analog value ranging from K0 to	
		e is stored respectively in manual dial-set registers	
User memory seeket	(V0: DT9040 and V1: DT9041). Use this socket to install the memory (EPROM) and master memory		
④ User memory socket (EPROM/EEPROM):	(EEPROM).		
10 Memory selector	Select the used memory type.		
(EPROM/EEPROM):	EPROM: memory		
	EEPROM: master r		
(1) Mode selector	RUN mode:	The control board executes programs.	
(RUN/REMOTE/PROG.):	REMOTE mode:	The RUN or PROG. mode can be changed using	
		programming tools.	
	PROG. mode:	Used for editing program.	
12 Operation monitor LEDs	RUN LED ON:	Turns on when program is executed.	
(RUN/PROG./ERR./ALARM):	Flashes:	Turns on when forced ON/OFF operation is executed	
	DDOC LED ON	in RUN mode.	
	PROG. LED ON:	Turns on when the control board halts program execution.	
	ERR. LED ON:	Turns on when a self-diagnostic error occurs.	
		Turns on when an abnormality is detected or	
		watchdog timer error occurs.	
(13) Backup battery holder:	Holder for the backu	up battery. Refer to page 125, "6-4. Maintenance", for	
©		battery replacement.	
(4) Input indicators (LED):	Indicates the input C	DN/OFF states.	
	X0 X2 X4 X6 X8	XA XC XE _	
	00000		
	0 0 0 0 0 X1 X3 X5 X7 X9	Uner LEDS red	
(15) Output indicators (LED):	Indicates the output		
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e e e e e e e e e e e e e e e e e e e	
(DS222C nont (C22TC time only)		nect peripheral devices with RS232C port	
(6) RS232C port (C32TC type only):	(e.g., I.O.P. and bar-		
		<i>,</i>	

2. Expansion Boards

1) E20R type

(1) Expansion power supply connector:	Connected to the control board, the power is supplied to the expansion board through this.
② Input terminal (15-pin):	Connects the input field devices (e.g., limit switch). This terminal block is removable.
③ Output terminal (12-pin):	Connects the output field devices (e.g., solenoid). This terminal block is removable.
④ Output indicators (LED):	Indicates the output ON/OFF states.
(5) Expansion connector:	Connects the control board with internal circuit.
(6) I/O address setting switch:	The I/O addresses for the expansion boards are set using this switch. Refer to page 39, "3-2. I/O Allocation of Expansion Boards", for details.
⑦ Input indicators (LED):	Indicates the input ON/OFF states.

2) M1T-E type

(1) Expansion power supply connector:	Connected to the control board, the power is supplied to the expansion board through this.
② Input connector (40-pin):	Connects the input field devices (e.g., limit switch). MIL connector is used. Use a wire-press socket and flat cable connector for wiring.
③ Output connector (34-pin):	Connects the output field devices (e.g., solenoid). MIL connector is used. Use a wire-press socket and flat cable connector for wiring.
(4) Output indicators (LED):	Indicates the output ON/OFF states.
(5) Expansion connector:	Connects the control board with the internal circuit.
⑥ I/O address setting switches:	The I/O addresses for the expansion boards are set using this switch. Refer to page 39, "3-2. I/O Allocation of Expansion Boards", for details.
⑦ Input indicators (LED):	Indicates the input ON/OFF states.

3) M1T-EI type

4) M1T-EO type

3. Board and Case Structure

1) Board type

Note:

• The connector board is already connected on C20RC, C20TC and C32TC types when shipped.

2-3. Dimensions

1. Board Type

1) Control boards

■ C20R and C20RC types

e.g.) C20R type

■ C32T and C32TC types

e.g.) C32T type

2) Expansion boards

■ M1T-E20R type

■ C20T and C20TC types

e.g.) C20TC type

■ M1T-E, M1T-EI, and M1T-EO types e.g.) M1T-EI type

(unit: mm/in.)

3) Building dimensions

Control board C20R, C20T, C20TC, and C32T types

Board	H (mm/in.)
1 control board	43.6/1.717
1 control board and	65.2/2.567
1 expansion board	
1 control board and	86.8/3.417
2 expansion boards	
1 control board and	108.4/4.268
3 expansion boards	
1 control board and	130.0/5.118
4 expansion boards	

Control board C20RC and C32TC types

Board	H (mm/in.)
1 control board	45.5/1.791
1 control board and	67.1/2.642
1 expansion board	
1 control board and	88.7/3.492
2 expansion boards	
1 control board and	110.3/4.343
3 expansion boards	
1 control board and	131.9/5.193
4 expansion boards	
	131.9/5.193

4) Mounting hole dimensions

2. Case Type

1) Case dimensions for control, expansion, intelligent and link boards

2) Building dimensions

Control board C20R, C20T, and C32T types

Board	H (mm/in.)
1 control board	44.2/1.740
1 control board and	63.8/2.512
1 expansion board	
1 control board and	85.4/3.362
2 expansion boards	
1 control board and	107.0/4.213
3 expansion boards	
1 control board and	128.6/5.063
4 expansion boards	

Control board C20RC, C20TC, and C32TC types

Board	H (mm/in.)
1 control board	44.2/1.740
1 control board and	63.8/2.512
1 expansion board	
1 control board and	85.4/3.362
2 expansion boards	
1 control board and	107.0/4.213
3 expansion boards	
1 control board and	128.6/5.063
4 expansion boards	

3) Mounting hole dimensions

Tolerance±1.0/±0.39 (unit: mm/in.)

I/O ALLOCATION

3-1.	I/O Allocation of Control Boards	.38
3-2.	I/O Allocation of Expansion Boards	.39
3-3.	I/O Allocation Examples	.40

3-1. I/O Allocation of Control Boards

Board type	I/O point	I/O allocation
C20R and C20RC	12 inputs	X0 to XB
	8 outputs	Y0 to Y7
C20T and C20TC	12 inputs	X0 to XB
	8 outputs	Y0 to Y7
C32T and C32TC	16 inputs	X0 to XF
	16 outputs	Y0 to YF

• The I/O addresses for the control boards are fixed as follows.

Note:

• The lowest digit for these relay addresses is expressed in hexadecimals and the second and higher digits are expressed in decimals as shown below.
x 🛄 🗌
Y 🛄
Decimal (word address)
<u> </u>
Hexadecimal

0, 1, 2, 3 ······ 9, A, B, ····· F

3-2. I/O Allocation of Expansion Boards

• The I/O addresses for the expansion boards are set by the I/O address setting switches. Be sure to allocate I/O addresses of the expansion boards before installation, referring to following.

■ E20R type

Notes:

- When connecting expansion boards to the control board, be sure not to overlap I/O addresses.
- When connecting an input or output board to a control board, I/O address settings for blocks A and B should be performed separately using SW1 and SW2. Be sure to configure I/O address setting switches SW1 and SW2 with different settings in order to prevent I/O address overlap.

3-3. I/O Allocation Examples

• Example 1

Board	I/O address setting switch	I/O allocation
Control board C20T type		X0 to XB Y0 to Y7
Expansion I/O board M1T-E type I/O address setting switch	ON 0FF 1 2 3 4 5	X30 to X3F X40 to X47 Y30 to Y3F
Expansion I/O board E20R type I/O address setting switch	ON 0FF 1 2 3 4 5	X50 to X5B Y50 to Y57

• Example 2

	Board	I/O address setting switch	l/O allocation
	Control board C32T type		X0 to XF
	Output: 16 Input: 16		Y0 to YF
	Expansion I/O board		X30 to X3F
	M1T-E type I/O address setting switch		X40 to X47
	Output: 16 Input: 24	000 OFF 1 2 3 4 5	Y30 to Y3F
	Expansion I/O board		X50 to X5F
	M1T-E type		X60 to X67
	I/O address setting switch	ON 1 2 3 4 5	Y50 to Y5F
	Expansion output board M1T-EO type	SW1 for block A	Y70 to Y7F
X	I/O address setting switches	ON 0FF 1 2 3 4 5	
	Output Output block B: 16 block A: 16	SW2 for block B ON 1 2 3 4 5	Y90 to Y9F
	SW2 SW1 Output Output	SW2 for block B	Y90 to Y9F

CHAPTER 4

INSTALLATION AND WIRING

4-	1. Stacking the Boards	42
	1. Board Type	42
	2. Case Type	
4-	2. Installation	44
	1. Panel Mount	44
	2. DIN Rail Mount	44
	3. Cautions	45
4-	3. Wiring	46
	1. Power Supply Wiring	46
	2. Input and Output Wiring (Control and Expansion Boards)	
	3. Wiring Diagram and Pin Layouts	

4-1. Stacking the Boards

1. Board Type

• The procedure for assembling boards is as follows. **Example:** 1 control board and 4 expansion boards

Spacers

Shape	Length	Description	Part number
	20 mm	4 spacers attached to a control board	AFB88021
	20 mm	4 spacers attached to an expansion board	AFB8802

Procedure

- 1. Assemble each expansion board using the AFB8802 spacers.
- 2. When adding a control board to the expansion board, mount using the AFB88021 spacers and 8 mm screws. After attaching the connector board to the control board, tighten with the 20 mm screws. Note that the C type control board is shipped with the connector board already attached.
- 3. Insert the backup battery in the backup battery holder as shown in the drawing.

Notes:

- The lengths of the spacers for the board type and the case type are different, so be sure not to get them confused.
- Do not touch the boards directly with your hands when handling. When it is necessary to touch the board, first touch a grounded metal object to discharge any static electricity. Do not touch any electronic parts or connectors directly.

2. Case Type

• The procedure for assembling cases is as follows. **Example:** 1 control board and 4 expansion boards

Spacers

Shape	Length	Description	Part number
	18 mm	4 spacers attached to an expansion and control boards	AFB8803
	8 mm	4 spacers attached to a mounting plate	AFB88032

Procedure

- 1. Using the four screws of the mounting plate, attach the mounting plate with AFB88032 spacers.
- 2. Assemble the expansion board using the skirt case and AFB8803 spacers.
- 3. Assemble the remaining expansion boards using the case for expansion board and AFB8803 spacers.
- 4. After connecting the connector board to the control board, attach the control board using the 20 mm and 8 mm screws. Note that the C type control board is shipped with the connector board already attached.
- 5. Insert the backup battery in the backup battery holder as shown in the drawing.
- 6. Finally, mount the case for control board.

Notes:

- The lengths of the spacers for the board type and the case type are different, so be sure not to get them confused.
- Do not touch the boards directly with your hands when handling. When it is necessary to touch the board, first touch a grounded metal object to discharge any static electricity. Do not touch any electronic parts or connectors directly.

4-2. Installation

1. Panel Mount

1) Board type mounting method (without mounting plate)

• Mount the stacked boards on the panel with four M3 size screws as follows.

2) Case type mounting method (using mounting plate)

• Mount the mounting plate on the panel with four M4 size screws as follows.

Mounting hole dimension

2. DIN Rail Mount

■ Attachment

• Put the claw of the FP-M mounting plate on the DIN rail and attach the FP-M on the rail.

Detachment

• To detach the FP-M from the DIN rail, pull the lever down with a slotted screwdriver.

3. Cautions

- Install and remove the boards when all power is turned OFF.
- Do not drop pieces of wire or other objects on the board when wiring.
- Do not use the board where it will be exposed to the following:
- Ambient temperatures of 0°C to 55°C (32°F to 131°F).
- Ambient humidity of 35 % to 85 % RH.
- Sudden temperature changes that cause condensation.
- Inflammable or corrosive gas.
- Excessive airborne dust or metal particles.
- Benzine, paint thinner, alcohol or other organic solvents or strong alkaline solutions such as ammonia or caustic soda.
- Excessive vibration or shock.
- Influence from power transmission lines, high voltage equipment, power cables, power equipment, radio transmitters, or any other equipment that can generate high switching surges.
- Water in any form including spray or mist.
- Direct sunlight.
- Do not install the board above devices which generate heat such as heaters, transformers or large scale resistors.

• Install as shown below, for heat radiating boards.

• When mounting a wiring duct, maintain a clearance between the board and duct as shown below. (Illustration: FP-M control board)

• Do not install the board as shown below.

• Keep 100 mm (3.937 in.) or more clearance between the FP-M and other equipment in order to avoid heat radiation.

4-3. Wiring

1. Power Supply Wiring

1) Wiring for power supply

- Power is supplied to the control board via the power cable [AWG#28 (UL1007)].
- Power is supplied to the expansion board via the expansion connector. For input/output field devices, power is supplied to the expansion board via the expansion power supply connector.

Notes:

- Twist the brown and red, and yellow and green power cables to stop incoming noise.
- Depending on the expansion boards, cut any excess expansion power supply cable.
- Ground is common with the yellow wire (0 V).

2) Power supply lines

- The power supply lines for the FP-M, I/O devices and motorized devices should be isolated as shown on the right.
- Excessive noise and line voltage fluctuations can result in FP-M misoperation or system shutdown. To prevent accidents caused by noise and line voltage fluctuations, be sure to employ countermeasures (such as use of an insulated DC power supply, isolation of controller and I/O power supply, etc.) when wiring the power supply lines.

Operating voltage range

Item	Operating voltage range		
Controller's power supply	21.6 to 26.4 V DC (all control boards)		
I/O power supply	20.4 to 26.4 V DC (C20T, C20TC, C32T and C32TC)		
	22.8 to 26.4 V DC (C20R and C20RC)		

3) Grounding

- The FP-M has sufficient noise resistance under low noise level conditions. However, ground the FP-M for safety.
- When grounding, an earth-ground resistance of 100Ω or less is recommended to limit the effect of noise due to electromagnetic interference.
- Ground each board by grounding the mounting plate or spacers.
- Do not use a grounding wire with 2 mm² or larger conducts, that is shared with other devices.

4) Momentary power drop

• The FP-M is not influenced by momentary power drops (less than 10 ms).

5) Safety

• In certain applications, malfunction may occur for the following reasons.

An operation time lag when a momentary power drop occurs.

Abnormality in the FP-M, power supply circuit, or other devices.

• In order to prevent malfunction from resulting in system shutdown, the following special attention is required.

Start up sequence:

The FP-M should be operated after all of the outside devices are energized. To keep this sequence, the following measures are recommended.

Set the mode selector from PROG. to RUN after power is supplied to all of the outside devices.

Program the FP-M so that it disregards the inputs and outputs until the outside devices are energized.

Emergency stop circuit:

Add an emergency stop circuit to controlled devices in order to prevent a system shutdown or an irreparable accident when malfunction occurs.

Interlock circuit:

When two motions that are opposed to each other are controlled, add an interlock circuit between the programmable controller's outputs and the control device.

e.g.:

When a motor clockwise/counter-clockwise operation is controlled, provide an interlock circuit that prevents clockwise and counter-clockwise signals from inputting into the motor at the same time.

2. Input and Output Wiring (Control and Expansion Boards)

1) Wiring for I/O power supply (C20R control board and E20R expansion board)

e.g.) C20R wiring diagram

• I/O power supply

Input side:

- Use for driving the internal circuit.
- An input power supply is not required for the E20R expansion board if COM (\pm) is connected to 24 V or 0 V, because it is supplied by the internal circuit. Also, when COM (\pm) and the 24 V terminal are connected, they become a source input. When COM (\pm) terminal and 0 V terminal are connected, they become a sink input. Output side:

- Use for driving output field devices.

• Current capacity range of I/O power supply

 $Ic + Ie \leq 1 A$

- Ic: Current capacity for output of control board
 - Internal drive current 7.5 mA × number of ON points
- Ie: Current capacity for expansion board

Notes:

 I/O current capacity for E20R expansion board:
--

- Ia: Current capacity for input of expansion board
- Internal drive current 5 mA \times number of ON points + current for field devices (e.g., photoelectric sensor)
- Ib: Current capacity for output of expansion board

Internal drive current 7.5 mA \times number of ON points

- Consumption current of the intelligent/link board is as follows:
 - Analog I/O board: Max. 250 mA
 - FP-M transmitter master board: Max. 70 mA
 - FP-M I/O link board: Max. 50 mA

2) Wiring description for I/O power supply (C20R control board and E20R expansion board)

■ Input side

• Supply a 24 V DC external power supply to the input circuit.

• Since the E20R is supplied input power through the internal circuit, the input voltage is not needed.

Note:

• Supply the I/O current within the limitation.

■ Output side

• The load power supply is supplied to each common terminal.

• Load current

Board type	Current capacity (resistive load)
C20R, E20R	2 A 250 V AC/point, 2 A 30 V DC/point, 2 A/common

C20R control board

3) Wiring for I/O power supply (C20T, C32T, M1T-E, M1T-EI, and M1T-EO series)

e.g.) C20T wiring diagram

• I/O power supply

Input side:

- Use for driving the internal circuit.
- An external power supply is not required for the input connector.
- The 24 V DC terminal of the input connector can be used as the power supply for input field devices
- (e.g., photoelectric sensors).
- The 5 V terminal on the input connector can supply 5 to 24 V DC.

Output side:

- Use for driving output field devices.
- When the load current is small (e.g., LED, etc.), drive by using the 24 V DC terminal of the output connector.

Note:

• The 24 V DC terminal or 0 V terminal of the I/O connector are connected internally.

• Current capacity range of I/O power supply

 $Id + Ic + Ie \leq 1 A$

 $Ic \le 0.5 A$

If $\leq 0.5 \text{ A}$

Id: Current capacity for input of control board

Internal drive current 5 mA × number of ON points + current for field devices (e.g., photoelectric sensor)

- Ic: Current capacity for output of control board
 - Internal drive current 3 mA × number of ON points + current for field devices
- Ie: Current capacity for expansion board
- If: Current capacity for output of expansion I/O board

Note:

• Consumption current of the intelligent/link board is as follows:

- Analog I/O board: Max. 250 mA
- FP-M transmitter master board: Max. 70 mA
- FP-M I/O link board: Max. 50 mA

4) Wiring description for I/O power supply (C20T, C32T, M1T-E, M1T-EI, and M1T-EO series)

Input side

- Since C20T is supplied input power through the internal circuit, the input voltage is not needed.
- Do not exceed the I/O current capacity given on the previous page.

Output side

- If the load current is 0.8 A or more, supply external power.
- If the load is 0.8 A or less, such as for LEDs, you can use the built-in DC power supply (24 V).
- Do not exceed the I/O current capacity given on the previous page.

• Load current

Board type	Current capacity	
C20T, C32T, M1T-E, M1T-EO	0.8 A/point, 5 A/common	

Input wiring examples

WIRING THE PHOTOELECTRIC SENSORS

• Due to the differences in photoelectric sensor output schemes, connect as shown below:

■ Wiring a two-wire type sensor

• If the input of the FP-M is not turned OFF because of leakage current from the sensor, the use of a bleeder resistor is recommended, as shown below.

Wiring a LED-equipped reed switch

• When a LED is connected serially to an input contact such as the LED-equipped reed switch, make the voltage applied to the FP-M input circuit greater than 20 V. In particular, take care when connecting a number of switches in serial.

Wiring a LED-equipped limit switch

• If the input of the FP-M is not turned OFF or if the LED of the limit switch is kept ON because of the leakage current, the use of a bleeder resistor is recommended, as shown below.

Connecting an input device with a different voltage (ex.: a 5 V sensor, etc.)

• When connecting a device with a power supply voltage different from the FP-M input voltage, such as a 5 V sensor, connect in common to the built-in DC power output terminal as shown below.

Note:

• Some sensors do not allow for this type of use, therefore check the specifications of the sensor before wiring.

Output wiring examples

• Connect a protective circuit such as the one shown below when switching inductive loads. When switching DC type inductive loads with a relay output type, be sure to connect a diode across the ends of the load.

When using an AC inductive load

When using a DC inductive load

Resistor

Capacitive load

СОМ

When using a capacitive load

Output

0 V or

terminal

FP-M

• Mounting the protective device

In the actual circuit, it is necessary to locate the protective device (diode, resistor, capacitor, varister, etc.) in the immediate vicinity of the load or contact. If located too far away, the effectiveness of the protective device may diminish. As a guide, the distance should be within 50 cm (19.685 in.).

• Type of load and inrush current

The type of load and its inrush current characteristics, together with the switching frequency are important factors which cause contact welding. Particularly for loads with inrush currents, measure the steady state current and inrush current and use a relay or magnet switch which provides an ample margin of safety. The table on the right shows the relationship between typical loads and their inrush currents.

Type of load	Inrush current	
Resistive load	Steady state current	
Solenoid load	10 to 20 times the steady state current	
Motor load	5 to 10 times the steady state current	
Incandescent lamp load	10 to 15 times the steady state current	
Mercury lamp load	Approx. 3 times the steady state current	
Sodium vapor lamp load	1 to 3 times the steady state current	
Capacitive load	20 to 40 times the steady state current	
Transformer load	5 to 15 times the steady state current	

5) Wiring for I/O connectors (MIL connector)

• There are the following 4 methods for wiring to the I/O connectors (MIL connectors) on each board.

■ CT-2 connector terminal

- Select a CT-2 connector terminal and a cable for the CT-2 connector terminal with the correct number of pins for the connector on each board.
- Use a terminal block for M3 size screws for the connector on the CT-2 connector terminal.

Connector example 1: C20T control board

- The I/O connector for the C20T control board has 20 input pins and 16 output pins.
- Use: - CT-2 connector terminals: CT2-20 (for 16 pins and
- 20 pins) - Cable for CT-2 connector terminal: 16 and 20 pins

CT-2 connector terminal (CT2-20)

Connector example 2: C32T control board C32T control board • The I/O connector for the C32T control board has 30 input pins and 34 output pins. Use: 888888 - CT-2 connector terminals: CT2-30 (for 30 pins) and CT2-34 (for 34 pins) nn ° - Cable for CT-2 connector terminal: 30 and 34 pins Cable for CT-2 Cable for CT-2 connector terminal connector terminal (34P to 34P) (30P to 30P) 1 CT-2 connector CT-2 connector terminal terminal (CT2-34) (CT2-30)

Pin layouts of the CT-2 connector terminal

• When connecting the CT-2 connector terminal to each board, the terminal marked "▼" on the I/O connector for each board is connected to the A1 terminal on the CT-2 connector terminal.

Board type	Pin layout of CT-2	connector terminal
C20T, C20TC control board	For output connector (20-pin) 0v 0v Y6 Y4 Y2 Y0 24v 24v NC NC 0v 0v Y7 Y5 Y3 Y1 24v 24v NC NC	For input connector (20-pin) 0v 0v xA x8 x6 x4 x2 x0 5v 24v 0v 0v xB x9 x7 x5 x3 x1 5v 24v
C32T, C32TC control board	For output connector (34-pin)	For input connector (30-pin)
M1T-E expansion I/O board	For output connector (34-pin)	For input connector (40-pin)
M1T-EI expansion input board	For input connector B (20-pin)	For input connector A (40-pin)
M1T-EO expansion output board	For output connector B (34-pin)	For output connector A (34-pin)

Product types

Board type	Number of pins	CT-2 connector terminal	Cable for CT-2 connector terminal
C20T, C20TC	Output: 16	CT2-20	AYT51163 (1 m), AYT51165 (2 m)
control board	Input : 20		AYT51203 (1 m), AYT51205 (2 m)
C32T, C32TC	Output: 34	CT2-34	AYT51343 (1 m), AYT51345 (2 m)
control board	Input : 30	CT2-30	AYT51303 (1 m), AYT51305 (2 m)
M1T-E expansion	Output: 34	CT2-34	AYT51343 (1 m), AYT51345 (2 m)
I/O board	Input : 40	CT2-40	AYT51403 (1 m), AYT51405 (2 m)
M1T-EI expansion	Connector B: 20	CT2-20	AYT51203 (1 m), AYT51205 (2 m)
input board	Connector A: 40	CT2-40	AYT51403 (1 m), AYT51405 (2 m)
M1T-EO expansion	Connector B: 34	CT2-34	AYT51343 (1 m), AYT51345 (2 m)
output board	Connector A: 34		AYT51343 (1 m), AYT51345 (2 m)

■ RT-2 relay terminal

- Number of connectable RT-2 relay terminal output type
- C20T, C20TC, C32T and C32TC control board: 1 terminal
- M1T-E expansion board: 1 terminal
- M1T-EO expansion board: 2 terminals
- Use a terminal block for M3 size screws for the RT-2 relay terminal connector.
- Apply a 24 V DC power supply to the 24 V DC (+) and (-) terminals to drive the relays on the RT-2 relay terminal. Use the same power supply for the board I/O and for the RT-2 relay terminal.
- The terminals on the RT-2 relay terminal and the board I/O allocation are given in the table below:

Terminal No.	I/O allocation
0+	Y0
1+	Y1
2+	Y2
3+	Y3
COM-	Common for Y0 to Y3
4+	Y4
5+	Y5
6+	Y6
7+	Y7
COM-	Common for Y4 to Y7
8+	Y8
9+	Y9
A+	YA
B+	YB
COM-	Common for Y8 to YB
C+	YC
D+	YD
E+	YE
F+	YF
COM-	Common for YC to YF

Product types

Board type	Number of pins	RT-2 relay terminal	Cable for RT-2 relay terminal
C20T, C20TC	Output: 16	• RT2S-OD16-24V	AY15723 (1 m), AY15725 (2 m)
control board		(DIN rail mounting type)	
C32T, C32TC	Output: 34	• RT2S-M-OD16-24V	AY25523 (1 m), AY25525 (2 m)
control board		(Direct mounting type)	
M1T-E expansion	Output: 34		
I/O board			
M1T-EO expansion	Connector B: 34		
output board	Connector A: 34		

Notes:

• The I/O connector for the C20T control board has 8 output pins. Use 8 pins (0+ to 7+ terminals) for the RT-2 relay terminal.

• The PC relay terminal of the 8 output pins (part No. RT1S-OD08-24V-S) can also be used.

Wiring using wire-press socket for loose wires

• The following describes how to assemble the wire-press socket for loose wires.

Procedure

- 1. Insert the removed contact into a pressure welder.
- 2. Firmly insert the covered loose wire to the end and lightly squeeze the welder.

3. Insert the wires with the pressure-connected contacts into the housing. After inserting all the wires, mount the cover and finish the socket.

Note:

• If there is a wiring mistake or the cable is incorrectly pressureconnected, the contact puller pin on the welder can be used to remove the contact.

Applicable cables

Number	Cross section area	External figure	Rated current
AWG #22	0.3 mm ²	1.1 to 1.5 dia.	3 A
AWG #24	0.2 mm ²		

Note:

• AWG #22: 12 wires per 0.18 should be used.

Product types

Board type	Number of pins	Housing	Cover	Contact (5 in line)
C20T, C20TC	Output: 16	AXW1164A	AXW61601A	AXW7221 for AWG #22, 24
control board	Input: 20	AXW1204A	AXW62001A	
C32T, C32TC	Output: 34	AXW1344A	AXW63401A	
control board	Input: 30	AXW1304A	AXW63001A	
M1T-E expansion	Output: 34	AXW1344A	AXW63401A	
I/O board	Input: 40	AXW1404A	AXW64001A	
M1T-EI expansion	Connector B: 20	AXW1204A	AXW62001A	
input board	Connector A: 40	AXW1404A	AXW64001A	
M1T-EO expansion	Connector B: 34	AXW1344A	AXW63401A	
output board	Connector A: 34			

Stapler type pressure welder for loose wires: AXY52000

■ Wiring using flat cable connector

• The following shows the wiring for a flat cable connector.

• Connect "No. 1" on the flat cable to the terminal marked "▼" on the I/O connector for each board.

Applicable flat cable

Number	Pitch	Rated current
AWG #28 stranded wire	1.27 mm	1 A
(7 leads of 0.127 dia.)		

Product types

Board type	Number of pins	Flat cable connector	Connector
C20T, C20TC	Output: 16	APL9531 (1 m), APL9532 (2 m)	AXM116415
control board	Input: 20	APL9541 (1 m), APL9542 (2 m)	AXM120415
C32T, C32TC	Output: 34	AFB8531 (1 m), AFB8532 (2 m)	AXM134415
control board	Input: 30	AFB8521 (1 m), AFB8522 (2 m)	AXM130415
M1T-E expansion	Output: 34	AFB8531 (1 m), AFB8532 (2 m)	AXM134415
I/O board	Input: 40	AFB8541 (1 m), AFB8542 (2 m)	AXM140415
M1T-EI expansion	Connector B: 20	APL9541 (1 m), APL9542 (2 m)	AXM120415
input board	Connector A: 40	AFB8541 (1 m), AFB8542 (2 m)	AXM140415
M1T-EO expansion	Connector B: 34	AFB8531 (1 m), AFB8532 (2 m)	AXM134415
output board	Connector A: 34		

6) Wiring for I/O terminals

• The following shows how to wire the I/O terminals for each board.

Wiring not using solderless terminals

Procedure:

screwdriver.

• Remove 7 mm of the cover from the applicable cable and insert it directly into the I/O terminal. Mount with a

Applicable cables: AWG #26 to #18 (0.128 mm² to 1.81 mm²)

Note:

• The wiring may become disconnected due to vibration, so do not use soldered cables.

Wiring using solderless terminals

Procedure:

1. Remove 7 to 8 mm of the cover from the applicable cable and insert into the solderless terminal.

(unit: mm/in.)

2. Insert the cable with the solderless terminal into the I/O terminal and tighten using a screwdriver. The torque should be less than 0.4 N-m (4 kgf-cm).

Applicable cables: AWG #28 to #16 (0.08 mm² to 2.5 mm²) **Product type**

Solderless terminals (100 pcs): AFC8805

Notes:

When connecting 2 wires to a single terminal, insert as shown in the drawing to the right.
It is possible to remove the I/O terminals from the expansion boards and intelligent boards to wire.

7) Wiring for programming tool port

• For the case type, when connecting the FP programmer cable with the control board through the case, cut the case in 3 places as shown below.

8) Wiring for RS232C port

• Connect an RS232C cable to the RS232C port on the C20RC, C20TC, and C32TC control boards.

3. Wiring Diagram and Pin Layouts

1) Control boards

C20R and C20RC types

Pin layout

• The I/O addresses for the C20R and C20RC control boards are fixed as follows.

Internal circuit and wiring example

C20T and C20TC types ■ Pin layout (transistor output type)

• The I/O addresses for the C20T and C20TC control boards are fixed as follows.

■ Internal circuit and wiring example (NPN open collector output type)

4-3. Wiring

■ Internal circuit and wiring example (PNP open collector output type)

C32T and C32TC types ■ Pin layout (transistor output type)

• The I/O addresses for the C32T and C32TC control boards are fixed as follows.

■ Internal circuit and wiring example (NPN open collector output type)

4-3. Wiring

■ Internal circuit and wiring example (PNP open collector output type)

2) Expansion boards

E20R type

Pin layout

• The I/O addresses for the E20R type expansion board are set by the I/O address setting switch.

Internal circuit and wiring example

M1T-E type ■ Pin layout (transistor output type)

• The I/O addresses for the M1T-E type expansion board are set by the I/O address setting switch.

■ Internal circuit and wiring example (NPN open collector output type)

■ Internal circuit and wiring example (PNP open collector output type)

M1T-EI type ■ Pin layout

• The input addresses for the M1T-EI type expansion board are set by the I/O address setting switches.

Switch position		Input address of input connector			
Block B (SW2)	Block A (SW1)	Input connector B	Input connector A		
ON 00 00 00 00 00 00 00 00 00 00 00 00 00	ON 0FF 1 2 3 4 5	X50 X50 X51 X50 24V 24V 24V 24V 24V 24V			
ON 0FF 1 2 3 4 5	ON 0FF 1 2 3 4 5	24V 24V (5V) (5V) (5V) (5V) (5V) (5V) (5V) (5V) (5V) (5V) (5V) (5V) (5V) (5V) (5V)	24V 24V 24V (5V) (5V) (5V) (5V) (5V) (5V) (5V) (7T) X73 X76 X77 X76 X76 X77 X75 X76 X77 X76 X77 X78 X79 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V 0V		

■ Internal circuit and wiring example

M1T-EO type ■ Pin layout (transistor output type)

• The output addresses for the M1T-EO type expansion board are set by the I/O address setting switches.

Switch position		Output address of output connector				
Block B (SW2)	Block A (SW1)	Output connector B	Output connector A			
ON 0FF 1 2 3 4 5	ON 0FF 1 2 3 4 5	24V 24V 24V 24V 750 751 752 753 754 753 756 753 756 753 756 753 756 753 756 753 757 24V 24V 24V 756 758 756 759 756 756 756 756 756 756 757 74V 0V 0V 0V 0V 0V 0V 0V 0V 24V 24V				
ON 00 00 00 00 00 00 00 00 00 00 00 00 00	ON OFF 1 2 3 4 5	24V 24V 24V 24V 24V 24V 799 794 799 794 799 794 799 794 799 794 794 795 799 794 794 795 799 794 794 795 794 795 794 795 794 795 794 794 795 794 794 79	24V 24V 24V 24V 24V 77 77 775 773 775 777 775 775 775 777 775 777 775 777 778 779 24V 24V 24V 24V 24V 24V 24V 24V 20V 00V 00V 00V 00V 00V 00V 00V 00V 00			

■ Internal circuit and wiring example (NPN open collector output type)

CHAPTER 5

BEFORE PROGRAMMING

5-1.	Operating Principles of the Programmable Controller	74
	1. Basic Configuration	74
	2. Basic Operation	76
5-2.	Before Turning the Power ON	78
	1. Things to Check Before Turning the Power ON	78
	2. Operation Procedure	
5-3.	How to Program the Programmable Controller	80
	1. Making a Ladder Diagram	80
	2. Relays and Timer/Counter Contacts in the FP-M	81
	3. I/O Allocation in the FP-M	83
5-4.	Programming with NPST-GR Software	84
	1. System Configuration	84
	2. Features of NPST-GR Software Ver. 3	85
	3. NPST-GR Configuration	86
	4. NPST-GR Installation and Configuration	89
	5. Exiting NPST-GR	95
	6. Basic Key Operation for Programs	96
	7. Downloading a Program to	
	the Programmable Controller	97
	8. Saving a Program to Disk	98
	9. Printing	99
5-5.	Programming with FP Programmer II	100
	1. System Configuration	100
	2. Downloading a Program to	
	the Programmable Controller	101
5-6.	RAM and ROM Operations	103
	1. RAM and ROM Operations	103
	2. Operation Without Backup Battery Enabled	104
	3. Notes on Operation with Memory (ROM Operation).	105
5-7.	How to Program ROM	106
	1. Memory (ROM) Type	106
	2. Install the Memory (ROM)	107
	3. How to Program ROM	107

5-1. Operating Principles of the **Programmable Controller**

1. Basic Configuration

A programmable controller is composed of four basic sections: (1) CPU, (2) memory, (3) input interface, and ④ output interface. An inside look at these sections will help you understand their functions and operation of the programmable controller.

Programmable Controller

Programming tools

Functions of the four sections

(1) CPU (Central Processing Unit)

Controls the operation of the programmable controller including the I/Os according to the program.

2 Memory

Memory areas where the program and information needed for operation of the programmable controller are stored.

Types of Memory

(2) -a: Memory for operands

The memory area for storing operand data (external input relays, timer/counter set value, and data registers, etc.).

(2) -b: System register

The memory area for storing the system settings of programmable controllers. Information in this area decides the operand characteristics, advanced control function availabilities, and so on. The system registers can be set using an FP Programmer II or personal computer using NPST-GR Software.

(2) -c: Memory for program

The memory area to store the program for execution. Programs are written using an FP Programmer II or personal computer using NPST-GR Software.

③ Input interface

Interface that receives data from the field devices and transfers it to the memory for operands.

(4) Output interface

Interface that outputs data from the memory for operands to the field devices.

2. Basic Operation

The basic operation of the programmable controller is:

- To read data from all the input field devices
- To execute the program according to the logic programmed
- To turn the output field devices ON or OFF

The process of reading inputs, executing the program, and updating the outputs is cyclicly repeated in the same manner.

■ Scan time of the programmable controller

- The process of input update, program execution, and output update is referred to as a **scan** and the process repeated over and over in the same manner is referred to as the **cyclic execution method**.
- In the cyclic execution method, since the process of input update is performed immediately after the output update, the process of input update and output update is sometimes called **I/O update** for the purpose of simplification.
- In addition to program execution and I/O update, the programmable controller also performs a variety of error checking (self-diagnostic function) and also communicates with the programming tools. These operations are referred to, as a whole, as **tool services** and are performed after program execution.
- Since the **scan time** is defined as the time required for one scan, the cyclic operation of a scan (I/O update, program execution, and tool service) can be shown below.

5-2. Before Turning the Power ON

1. Things to Check Before Turning the Power ON

• After wiring, be sure to check these items before turning the power ON.

Check item	Description	Page to see
Board	 Does the board type match the design list ? 	page 42 and 43
	 Are the mounting screws properly tightened ? 	
	 Do the spacer types match the boards ? 	
Power Supply	 Is operating voltage supplied correctly ? 	page 46 and 47
	 Is the wire size correct ? 	
Wiring	 Does the wiring of connector and terminal match ? 	page 48 to 62
	 Is the operating voltage of I/O correct ? 	
	 Are the expansion power supply cables properly 	
	connected ?	
	 Is the wire size correct ? 	
Setting of control board	 Is the mode selector set to the PROG. mode ? 	page 22 to 27, 84,
	• Is the backup battery properly inserted in the holder ?	100 and 125
	 Is the baud rate selector set correctly ? 	
Setting of expansion	 Is the I/O address setting switch on the expansion 	
board	board set correctly ?	
	 Aren't the I/O addresses overlapping ? 	
Memory	 Is the memory (EEPROM or EPROM) properly 	page 106 and 107
(EPROM and EEPROM)	attached ?	
	• Does the memory type match the position of memory	
	selector ?	

2. Operation Procedure

• After installation and wiring, perform a trial operation according to the following procedure.

5-3. How to Program the Programmable Controller

1. Making a Ladder Diagram

Originally, programmable controllers were designed as a replacement for relay-controlled systems. Therefore, programs can be easily created with a relay sequence circuit as shown below.

Relay sequence circuit

Explanation of movement

- 1) When push-button switch A is pressed, the coil of relay R0 is energized and its contacts turn ON.
- 2) Since contact ① of relay R0 supplies power to the coil of relay R0, the coil stays energized even if switch A is turned OFF (self-hold circuit).
- 3) Contact ② of relay R0 supplies power to lamp Y0 and timer T0. The lamp turns ON and the timer starts timing operation.
- 4) After the preset time (e.g., 3 s), timer contact T0 turns ON and motor Y1 starts operation.
- 5) When push-button switch B is pressed, the coil of relay R0 is de-energized and all the power turns OFF.

■ I/O allocation

The input and output addresses of the programmable controller are allocated according to the condition in the sequence diagram.

Item Name of device		I/O assignment
External input	Push-button switch A	X0
External input	Push-button switch B	X1
Extornal output	Lamp	Y0
External output	Motor	Y1
Internal relay	Supplemental relay	R0
Timer	Timer	Т0

• All relays and timers used in the sequence circuit are replaced with internal relays and timers in the programmable controller.

■ Time chart

Ladder diagram on screen

of NPST-GR Software

2. Relays and Timer/Counter Contacts in the FP-M

The FP-M programmable controller contains many relays and timer/counter contacts, as follows.

■ Memory area

Item		Symbol	Numbering	
			2.7 k type	5 k type
Relay	External input relay	X (bit)	208 points (X0 to X12F)	
		WX (word)		ords WX12)
	External output relay	Y (bit)	(Y0 to	ooints Y12F)
				ords WY12)
	Internal relay	R (bit)	1,008 points (R0 to R62F)	
		WR (word)	63 words (WR0 to WR62)	
	Special internal relay	R (bit)	64 points (R9000 to R903F) d) 4 words (WR900 to WR903)	
		WR (word)		
Timer/ Counter contact	Timer contact	T (bit)		ooints o T99)
CONTACT	Counter contact	C (bit)		ooints to C143)

External input relay (X), external output relay (Y), internal relay (R)

The lowest digit for these relay's X, Y, and R numbers is expressed in hexadecimal and the second and higher

is expressed in hexadecimal and the second and higher digits are expressed in decimal to enable both bit and word processing.

Example:

Relay number

X0, X1, X2, X3, X4, X5, X6,	X7, X8, X9, XA, XB, XC, XD, XE, XF
X10,	X1F
X20,	X2F
•	•
•	•
•	•
·	•
	•
•	•
•	•
X90, ·····	X9F
X100,	X10F
X110,	······ X11F
X120,	······ X12F

■ Timer contact (T), counter contact (C)

• The timer contact (T) and counter contact (C) numbers are expressed in decimal.

Timer contact (T)	Counter contact (C)		
Decimal	T	Decimal	c 📑
0, 1, 2	99	100, 101	143

3. I/O Allocation in the FP-M

1) Control boards

• The I/O addresses for the control boards are fixed as follows.

Board type	I/O point	I/O allocation
C20R and C20RC	12 inputs	X0 to XB
	8 outputs	Y0 to Y7
C20T and C20TC	12 inputs	X0 to XB
	8 outputs	Y0 to Y7
C32T and C32TC	16 inputs	X0 to XF
	16 outputs	Y0 to YF

2) Expansion boards

• The I/O addresses for the expansion boards are set by the I/O address setting switches as follows.

	I/O address setting switches and I/O allocation				location
Board type	I/O point	ON 0FF 1 2 3 4 5	ON 0FF 1 2 3 4 5	ON 1 2 3 4 5	ON 0FF 1 2 3 4 5
E20R type	12 inputs	X30 to X3B	X50 to X5B	X70 to X7B	X90 to X9B
Output: 8 Input: 12	8 outputs	Y30 to Y37	Y50 to Y57	Y70 to Y77	Y90 to Y97
M1T-E type I/O address setting switch	24 inputs	X30 to X3F X40 to X47	X50 to X5F X60 to X67	X70 to X7F X80 to X87	X90 to X9F X100 to X107
	16 outputs	Y30 to Y3F	Y50 to Y5F	Y70 to Y7F	Y90 to Y9F
M1T-EI type I/O address setting switches SW2 SW1	Input block A: 24 inputs (using SW1)	X30 to X3F X40 to X47	X50 to X5F X60 to X67	X70 to X7F X80 to X87	X90 to X9F X100 to X107
	Input block B: 12 inputs (using SW2)	X30 to X3B	X50 to X5B	X70 to X7B	X90 to X9B
M1T-EO type I/O address setting switches SW2 SW1	Output block A: 16 outputs (using SW1)	Y30 to Y3F	Y50 to Y5F	Y70 to Y7F	Y90 to Y9F
Output Output block B: 16 block A: 16	Output block B: 16 outputs (using SW2)	Y30 to Y3F	Y50 to Y5F	Y70 to Y7F	Y90 to Y9F

Notes:

- Set the I/O address setting switches collectly.
- Do not overlap the I/O address on dual switches.

5-4. Programming with NPST-GR Software

NPST-GR Software Ver. 3 offers program entry, editing, and monitoring of FP series programmable controllers. With this software, you can concentrate on the control pattern rather than wasting time learning how to enter the program.

1. System Configuration

Connection between a control board and a computer

• An FP-M personal computer cable (for NPST-GR) and a RS232C interface adapter are required to connect a personal computer to the FP-M control board.

■ Setting of FP-M control board

• Set the baud rate selector of the FP-M control board to 19200 or 9600.

Note:

• If the microprocessor of your computer works at 8 MHz or 16 MHz, set the baud rate selector of the FP-M to 9600 bps.

Personal computer setting

• Set your personal computer's RS232C parameter to asynchronous. Refer to the manuals that came with your computer.

2. Features of NPST-GR Software Ver. 3

NPST-GR Software is a programming support tool for the FP-M. The things you can do with the NPST-GR are briefly introduced in the following:

• Programming

NPST-GR provides three programming modes.

- Programming by entering ladder symbols: the program will be displayed in ladder diagrams (Ladder symbol mode)
- Programming by entering Boolean: the program will be displayed in ladder diagrams

(Boolean ladder mode)

- Programming by entering Boolean: the program will be displayed in Boolean

(Boolean non-ladder mode)

You can create a program using any of these methods and you can change the method any time. The display will change automatically according to the method you select. With any method, you can create a program by selecting instructions from the function keys.

NPST-GR Software also provides various features which enable effective programming such as the ability to customize it to make program creation easier.

While creating a program, you can copy, delete, move, and search for a part of the program.

Comment function

You can enter comments for relays and output instructions. These comments show you which device the relay corresponds to, or for what application the relay is used.

Program check

With the program checking function, you can check the created program for grammatical errors.

Monitoring

To support programming capability, NPST-GR Software can monitor the program you created and perform a test run for verifications. You can check the status of relays and registers, and the programmable controller operating status. This makes it easy to perform debugging and field adjustments.

System register setting

You can set the system registers using NPST-GR Software. Using the screen messages makes option selection and value entry much easier.

Documentation

You can print-out all the settings you made, such as program and system register settings.

Data transfer

You can transfer the program created with NPST-GR Software to the programmable controller easily by key operation. You can also transfer the data to ROM.

Data management

You can save the data to a disk, which is useful for back-ups and temporary storage before transferring the data to the programmable controller.

3. NPST-GR Configuration

The NPST-GR Software is configured as follows.

• Programming screen

The screen where a program is created or edited. At the very first moment when, the software is activated, the programming screen is displayed in the ladder symbol mode. Next, the menu window appears over it.

• Menu window

The window to select an option. The various functions of the NPST-GR Software can be selected from this window. Functions selected from the menu window are called menu functions.

When you start the software, the menu screen automatically overlaps the programming screen.

• Function window

When you select a menu function from the menu window, the corresponding window will be displayed.

1) Overview of the programming screen

The programming screen consists of a menu bar, a programming area and function key labels, as shown below. The display varies depending on the programming mode you are in.

The following figure shows the programming screen when you are in the ladder symbol mode.

• Menu bar

The uppermost line on the screen is called the "menu bar".

The menu bar indicates which mode, what function and which programming mode you are currently in.

When you are in the ONLINE mode, it indicates whether you are monitoring the program or not, and which mode the programmable controller is currently in.

When you are in the OFFLINE mode

(1) Indicates which mode you are in: the OFFLINE mode or the ONLINE mode. In the OFFLINE Mode, the software cannot communicate with the programmable controller, and in the ONLINE mode, it can communicate with the programmable controller. Depending on the function you use or how you use the function, you must be in either OFFLINE mode or ONLINE mode. For example, you should be in the OFFLINE mode when you enter comments, and in the ONLINE mode when you monitor the program. When creating a program, if you are in the ONLINE mode, the program will be transferred to the programmable controller simultaneously with entry of the program.

Note:

• When you use NPST-GR in the ONLINE mode, you must connect the computer on which NPST-GR is activated with the programmable controller.

- Indicates what function you are currently using.
 For example, when you are creating a program, "PROGRAMMING" will be displayed.
- ③ Displayed when you are in the ladder symbol mode to indicate whether you are in the SEARCH mode or the ENTRY mode.

④ Indicates which programming style you are currently in.

The software provides three programming styles: Ladder symbol mode, Boolean ladder mode and Boolean nonladder mode.

Ladder symbol mode

The ladder symbol mode allows you to create a program by entering ladder symbols. Ladder symbols are graphic symbols which show logical elements, such as \dashv \vdash . The program will be

displayed as a logic diagram on the screen. This diagram is called a "ladder diagram".

When you are in the ladder symbol mode, you will be in either the SEARCH mode or the ENTRY mode. **Boolean ladder mode**

In the Boolean ladder mode, you can create a program by entering Boolean, but the program will be displayed as a ladder diagram.

Boolean non-ladder mode

The Boolean non-ladder mode allows you to create programs by entering Boolean. The program will be displayed as you entered it, in order of the addresses.

When you are in the ladder symbol mode, "LD SYMBOL" is displayed. In the Boolean ladder mode or Boolean non-ladder mode, "BOOLEAN" is displayed. The difference can be recognized by the display in the programming area. When you are in the ONLINE mode

When you are in ladder symbol mode <default display>

- (1) to (4) are the same as when you are in the OFFLINE mode.
- (5) Indicates whether NPST-GR is monitoring a program or not. While monitoring a program, "MONITOR" will be displayed here. When not monitoring, "WAITING" will be displayed here.
- (6) Indicates the status, such as the current mode, of the programmable controller connected to the computer.

• Programming area

Depending on the programming mode (Ladder symbol mode, Boolean ladder mode, and Boolean non-ladder mode) you select, the display will vary.

• Function key labels

Corresponds to the function keys on the keyboard.

You may also use a function key in combination with **Shift** or **Ctrl**.

• Message display field

Any message from the software, such as error messages, will be displayed on the lower right of the screen.

2) Overview of the menu window

Immediately after starting NPST-GR, the menu window will overlap the programming screen. On the menu bar, you will see "NPST MENU" while the menu window is being displayed.

• NPST menu

In the NPST menu, the submenu names are listed.

From the NPST menu, select a submenu that the menu function you want to use belongs to.

Submenu

In the submenu, the menu functions are listed.

Programmable controller information area

PLC TYPE

Indicates the type of programmable controller currently specified.

PLC TYPE:	FP1	0.9 k
	FP1/FP-M	2.7 k
	FP1/FP-M	5 k
	FP3	10 k
	FP3/FP-C	16 k
	FP5	16 k
	FP10/FP10S	30 k
	FP10	60 k

PLC MODE

Indicates the operation mode of the programmable controller.

When you are in the OFFLINE mode, "OFFLINE" will be displayed here.

In the ONLINE mode, the display will vary according to the setting on the programmable controller.

PROGRAM NAME

The name of program is displayed on the screen. When you create a new program, nothing will be displayed. When you load the program from a disk or the programmable controller, the filename you registered for the program will be displayed.

USE/MAX (STEP)

Indicates the number of steps (program size). The number of steps you have already used for the program during editing or creation, and the maximum of number of steps you can use for the program is indicated.

4. NPST-GR Installation and Configuration

1) Preparing for installation

This section describes how to install the device driver ANSI.SYS. Install the software using the installation program. The installation program is included in the NPST-GR system disk. The installation program cannot start if the device driver ANSI.SYS provided with the MS-DOS system disk has been installed in the disk on which you want to install NPST-GR. If ANSI.SYS has not been installed, install ANSI.SYS first and then install NPST-GR. Procedure

1. If the ANSI.SYS file does not exist on the disk on which you want to install NPST-GR, copy the ANSI.SYS file from the MS-DOS system disk to the hard disk. For example, to copy the ANSI.SYS file to the root directory of the hard disk, insert the MS-DOS system disk into drive A and type the following after the DOS prompt:

COPY A:\ANSI.SYS C: (Enter)

2. If the DEVICE command for ANSI.SYS is not included in the CONFIG.SYS file, modify the CONFIG.SYS file. For example, to add the DEVICE command to the CONFIG.SYS file, type the following at the DOS prompt (C:\):

COPY CONFIG.SYS+CON CONFIG.SYS (Enter) DEVICE=ANSI.SYS(Enter)

Then, press **Ctrl** + **Z** and press **Enter**.

The CONFIG.SYS file will now contain the new line.

Notes:

- After modifying the CONFIG.SYS file, reset the personal computer so that your changes take effect.
- Note that the directory in which the ANSI.SYS exists must match the pathname used for the DEVICE command.

2) NPST-GR installation

This section describes how to install NPST-GR. Make a backup disk of the software and use it for installation.

Procedure

- 1. If the current drive is other than drive A, change to drive A by typing "A:" at the DOS prompt.
- 2. Insert the backup disk of the NPST-GR system disk into drive A.
- 3. Type the following at the DOS prompt (A:) to start the installation program: **INSI** (Enter)

The installation program will start. The following screen will appear.

NPST-GR Instal	lation Program Ver.3.1
	To install the NPST-GR, type INSI and specify the source drive and the target drive. The "source drive" is the drive where you place the NPST-GR System Disk. The "target drive" is the drive on which you want to install the NPST-GR.
	[Format]
	INST [source drive]: [target drive]:
	[Example]
	When the NPST-GR System Disk is now in the drive A and you want to install the NPST-GR on the drive C, type:
	INSI A: C:(Enter)
A:\>	

4. Type the following at the DOS prompt: INSI A: C: (Enter)

This shows that the backup disk of the NPST-GR system disk is in drive A and that you are going to install NPST-GR onto drive C. The following screen will appear.

NPST-GR Installation Program				Ver.3.1
The source drive The target drive	a: C:			
OK?		Y E S	N O	

5. Make sure that the source drive and the target drive are specified correctly. The "**source drive**" shows the drive which the NPST-GR system disk is in. The "**target drive**" shows the drive onto which you want to install NPST-GR.

When the source drive and the target drive are specified correctly, select "**YES**" and press **Enter**. If not, select "**NO**" and press **Enter**. You will return to the previous screen.

When you select "**YES**," the following screen will appear:

NPST-GR Insta	llation Progr	am			Ver.3.1
	The NPST-GR w	vill be installed	l on drive C.		
	OK?		Y E S	N O	
	* Select	YES, and the ir	**************************************	start. *	

6. Check the message. To install, select "YES" and press Enter. The installation will start.
If you do not want to install, select "NO" and press Enter. You will return to the previous screen.

When the installation is complete, "C:\NPST3" will appear.

Note:

•	• When NPST-GR is installed successfully, the following files are stored in the NPST3 directory:				
	NPST.EXE	Contains a program which starts NPST-GR.			
	NPSTE.EXE	Contains the system program for NPST-GR.			
	NPST.HLP	Contains help messages.			
	NPSTP000.CIG	Contains information for printer control.			

3) How to use NPST-GR effectively

The flowchart shown below is an example of how you can use NPST-GR before you run a program in the field. Except for the settings for NPST-GR and programmable controller configuration, you can freely change the order of the flowchart.

4) NPST-GR startup

To start NPST-GR, follow the procedure below. **Procedure**

- 1. If the personal computer is OFF, turn it ON.
 - You will see the DOS prompt C:\.
- 2. Change to the NPST3 directory by typing the following at the DOS prompt:

CD NPST3(Enter)

3. Type the following to start the NPST-GR Software:

$\mathtt{NPST}(\textit{Enter})$

NPST-GR will start.

5) Configuring NPST-GR

■ Selecting [NPST CONFIGURATION] from the menu window

Before you create a program, you must first configure the settings and change the default settings if necessary.

If the programming screen is displayed, press **Esc** to display the "NPST MENU" window.

Procedure

1. Move the cursor to an option on the NPST menu with the **up** and **down arrow** keys. The submenu which belongs to the option you select will be displayed.

[NPST MENU]]
EDIT A PROGRAM COMMENTS	
SEARCH	[NPST CONFIGURATION]
MONITOR RELAYS/REGISTERS CHECK A PROGRAM	1.NPST CONFIGURATION
NPST CONFIGURATION PLC CONFIGURATION PROGRAM MANAGER	
IC CARD PROGRAM MANAGER EXIT NPST-GR	
PLC TYPE [FP1/FP-M 5k] PLC MODE [OFFLINE] PROGRAM NAME []	
USE/MAX (STEP) [0/ 7679]	**= NOT AVAILABLE

2. Press **Enter** or the **Right arrow** key.

The cursor will move to the submenu. The option currently selected with the cursor will blink.

[NPST MENU]]
EDIT A PROGRAM COMMENTS SEARCH	[NPST CONFIGURATION]
MONITOR RELAYS/REGISTERS CHECK A PROGRAM NEST CONFIGURATION	1.NPST CONFIGURATION
PLC CONFIGURATION PRCGRAM MANAGER IC CARD PROGRAM MANAGER EXIT NPST-GR	
PLC TYPE [FP1/FP-M 5k] PLC MODE [OFFLINE] PROGRAM NAME [] USE/MAX (STEP) [0/ 7679]	
USE/MAX (SIEP) [0/ 7879]	**= NOT AVAILABLE

- 3. Press **Enter**.
- 4. Move the cursor to the item you want to select with the **up** and **down arrow** keys. Select an option with the **right** and **left arrow** keys.

[NPST CONFIGURATION]	
SCREEN MODE [MONO / COLOR] PLC TYPE [FP1/FP-M 5k]([ENTER]:OPENS SELECTION WINDOW) WINDOW OF PLC TYPE)	
COM PORT [1 2 3] TRANS RATE(bps) [19200 / 9600 / 4800 / 2400 / 1200 / 600 / 30 DATA LENGTH [8 / 7] bits	0]
LOGGED DRICVE/DIRECTORY DRIVE [ABCDE] DIRECTORY [NOTE DISPLAY [ON / OFF]	1
PROGRAMMING MODE [LADDER B.TADDER / BOOLN]	
NOTE : SPECIFY TRANS RATE TO 9600 or 19200bps TO CONNECT WITH PLC DIRECT	LY

<SCREEN 1> window

SCREEN MODE

You can select the NPST-GR screen mode between color and black/white.

MONO: Displays the screen in black and white.

COLOR: Displays the screen in color.

(Black/Cyan/Red/Magenta/Green/Bright Blue/Yellow or Brown/White)

• PLC TYPE

Before setting the configuration of the programmable controller and creating a program, you must specify the type of programmable controller for which you create a program.

You can select from;

FP1	0.9 k: FP1 C14/C16 series
FP1/FP-M	2.7 k: FP1 C24/C40 series and FP-M (2.7 k) C20R/C20T/C32T
FP1/FP-M	5 k: FP1 C56/C72 series and FP-M (5 k) C20RC/C20TC/C32TC
FP3	10 k: FP3 (10 k)
FP3/FP-C	16 k: FP3 (16 k) and the FP-C (16 k)
FP5	16 k: FP5 (16 k)
FP10/FP10S	30 k: FP10 (30 k) and FP10S (30 k)
FP10	60 k: FP10 (60 k)

COM PORT

Specify the serial port which is connected to the programmable controller.

- 1: Use COM PORT 1
- 2: Use COM PORT 2
- 3: Use COM PORT 3

TRANS RATE (bps)

Specify the transmission rate for communication with the programmable controller or modem. Select between 19200, 9600, 4800, 2400, 1200, 600 or 300.

For communication with the programmable controller, specify either 19200 or 9600.

If the clock frequency is a multiple of five, you must select 19200. If you do not select 19200,

NPST-GR will not communicate with the programmable controller.

DATA LENGTH

Specify the data length for communication with the programmable controller. Select either 8-bit or 7-bit.

• LOGGED DRIVE/DIRECTORY

Specify the logged drive when you manage files.

DRIVE/DIRECTORY

Specify the logged directory when you manage files. Include a \ at the beginning and at the end of the directory, eg., \npst\program\.

If you omit this, the root directory will be specified.

NOTE DISPLAY

Specify whether file notes, which are the notes entered for a file (such as filename and date), are to be displayed when the disk file list is displayed.

ON: Displays the file notes.

OFF: Omits displaying the file notes.

• PROGRAMMING MODE

Select the programming mode for creating or editing a program.

Select from;

LADDER: The ladder symbol mode

B.LADDER: The Boolean ladder mode

BOOLN: The Boolean non-ladder mode

■ Logging or saving the parameters

After you set the parameters in [1.NPST CONFIGURATION], you must log the settings so that NPST-GR will be reconfigured according to the parameters you set. If you go to the programming screen or use other functions without logging the parameters you set, they will be aborted.

If you try to exit [1.NPST CONFIGURATION] without logging the parameters by pressing **Esc**, the confirmation message "EXIT OK ? (Y/N)" will appear on the right bottom of the screen. Type \boxed{N} to return to the previous operation. Type \boxed{Y} if you want to abort the settings you made. The setting will be aborted and you will go to the programming screen. In each parameter window, you will see the SAVE label on the function key labels. If you set parameters on more than one window, you can save the parameters at one time after completing the settings. When you log the settings, you can also save the settings to the disk if necessary.

Procedure

- 1. Press the **F1** key on the screen where one of the windows for setting parameters is displayed. The <SAVE> window will be displayed at the lower left of the screen.
- 2. Select "YES" or "NO" for the message "SAVE DISK ? [YES / N O]" Select "YES" to save the parameters in the disk.
- 3. Type **Y** or **N** for the message "LOG PARAMETERS ? (Y/N)".

Type \mathbf{Y} to execute the operation. After execution, the window will close.

If you selected "YES" for "SAVE DISK ? [YES / N O]", the message, "SAVING TO THE DISK COMPLETED." will be displayed at the bottom of screen when the parameter has been successfully saved to the disk.

To quit the operation, type $[\mathbf{N}]$. The window will close.

5. Exiting NPST-GR

The [1.EXIT NPST-GR] option allows you to exit NPST-GR and to return to the MS-DOS screen.

Procedure

- 1. Select the [EXIT NPST-GR] option from the NPST menu.
- 2. Select the [1.EXIT NPST-GR] option from the [EXIT NPST-GR] menu. The [EXIT NPST-GR] window will open.

[[EXIT	NPST-GR	11
SAVE CON	FIG &	EXIT :	EXIT

- 3. Select "SAVE CONFIG & EXIT" to save the parameters set with the [NPST CONFIGURATION] menu and exit NPST-GR. Select "EXIT" to exit NPST-GR without saving them.
- 4. Press **Enter**. You will exit NPST-GR and the DOS prompt will appear on the screen. When you turn OFF the computer, make sure that the DOS prompt is displayed on the screen.

6. Basic Key Operation for Programs

Input the following program using the ladder symbol mode.

Boolean	Non-	lad	der	Key operation		
Address	Instruction					
0	ST	Х	0	F1 F1 0 Enter		
1	OR	R	0	F2 F3 0 Enter		
2	AN/	Х	1	F3 F8 F1 1 Enter		
3	ОТ	R	0	F4 F3 0 Enter		
4	ST	R	0	F1 F3 0 Enter		
5	ОТ	Y	0	F4 F2 0 Enter		
6	ТМ	Х	0	F5 F1 0 K		
	К		30	F1 3 0 Enter		
9	ST	Т	0	F1 F4 0 Enter		
10	ОТ	Y	1	F4 F2 1 Enter		
11	ED			F10 Ctrl + F3 Enter		

When you first start NPST-GR, you will be in the ladder symbol mode.

The **[1.PROGRAMMING STYLE]** option changes the programming style to the Boolean non-ladder mode. **Procedure**

- 1. Select the [EDIT A PROGRAM] option from the NPST menu.
- 2. Select the [1.PROGRAMMING STYLE] option from the [EDIT A PROGRAM] menu.
- 3. Select "BOOLEAN NONLADDER" from the [PROGRAMMING STYLE] window.
- 4. Press **Enter**.

Program input

Input the program using the function keys. The command language input will be displayed in the input field at the bottom of the screen. It will be interpreted and displayed as an element on the ladder diagram when you press the **Enter** key.

[Input Deletions]

When deleting from the input field......Press **BS**. When deleting from the ladder diagram display area......Move the cursor to the location containing the mistake and

press **Del**.

Refer to the "NPST-GR Software" manual for details.

7. Downloading a Program to the Programmable Controller

The [4.LOAD A PROGRAM TO PLC] option downloads the program and/or the I/O comments which are on the screen of the programmable controller. After you complete the program, you must download the program so that the programmable controller executes it.

Notes:

- The downloaded program will be executed when you set the mode of programmable controller to RUN.
- Before you start operation, make sure that NPST-GR is in the ONLINE mode.

Procedure

- 1. Select the [PROGRAM MANAGER] option from the NPST menu.
- 2. Select the [4.LOAD A PROGRAM TO PLC] option from the [PROGRAM MANAGER] menu. The [LOAD TO PLC] window will appear on the screen.

[TO PLC]	NO.=[0] RT =[1] HOME
LOAD	[PROGRAM I/O CMT PROG & I/O CMT]
VERIFY	[YES NO]

- 3. If you want to change the communicating station, press **Ctrl** + **F7**.
- If the programmable controller is in the RUN mode, change to the PROG. mode.
 When the programmable controller is in the REMOTE mode, you can change it by pressing **Ctrl** + **F6**.
- 5. Specify what you want to load to the programmable controller at "LOAD." Select "PROGRAM" to download only the program. Select "I/O CMT" to download only the I/O comments. Select "PROG & I/O CMT" to download both the program and the I/O comments.
 6. Specify whether or not to you'fy the program.
- 6. Specify whether or not to verify the programs. Select "YES" at "VERIFY" with the arrow keys when you want to verify the transferred program with the one displayed on the screen after downloading. Select "NO" if you do not want to verify the program.
- 7. Press **Enter** to start downloading.

During the download, "LOADING PROGRAM ... " will appear on the screen.

If you select "YES" at "VERIFY," the message "VERIFYING PROGRAM..." will appear.

When completed successfully, "**VERIFY OK**" will appear on the bottom of the screen. The number of steps used for the program will be displayed at the bottom of the screen.

8. Saving a Program to Disk

The [2.SAVE A PROGRAM TO DISK] option saves the program and/or the I/O comments which exist on the screen to the disk of your personal computer.

Procedure

- 1. Select the [PROGRAM MANAGER] option from the NPST menu.
- 2. Select the [2.SAVE A PROGRAM TO DISK] option from the [PROGRAM MANAGER] menu. A window for saving the program and/or I/O comments will open on the screen. You will see "SAVE PROGRAM" on the menu bar.

- 3. If you want to change the drive, press **F6**.
- 4. If you want to change the directory, press **F8**.
- 5. Enter a filename in the "FILE NAME" area.
- 6. If necessary, enter the information for "**FILE NOTE**", "**DESIGNER**" and "**DATE**". These items are optional and can be skipped. Press the **down arrow** key to go to the next item.
- Specify what you want to save to the disk at "SAVE." Select "PROGRAM" to save only the program.
 Select "I/O CMT" to save only the I/O comments.
 Select "PROG & I/O CMT" to save both the program and the I/O comments.
- Determine which version style you want to save in. Select "Ver.3" to save in the version 3 style. Select "Ver.2" to save in the version 2 style.
- 9. When you select "Ver.3", select whether you want to verify the programs. Select "YES" at "VERIFY" with the arrow keys, to verify the saved program with the program on the screen after saving. Select "NO" if you do not want to verify the program.
- 10. Press **Enter**.

When you select "Ver.3," saving will start.

9. Printing

The [A.PRINT OUT] option prints out:

- the program displayed on the screen, as a ladder diagram or in Boolean.
- \blacksquare the list of the relays, registers or control instructions used in the program.
- the parameters set with the [NPST CONFIGURATION] menu
- the parameters set for system registers 0 to 418, the I/O map, and the remote I/O map

When you select the **[A.PRINT OUT]** option, the **[PRINT OUT]** window will open. First, select what you want to print out by selecting the "**STYLE**" option, and start printing by selecting the "**PRINT**" option. With the default settings, only the program will be printed in the ladder diagram style.

Procedure

- 1. Select the [PROGRAM MANAGER] option from the NPST menu.
- 2. Select the [A.PRINT OUT] option from the [PROGRAM MANAGER] menu. The [PRINT OUT] window will open.

3. Select "STYLE" in the [PRINT OUT] window. The [STYLE] window will open.

[STYLE]	
** TITLE	Y / N
** LADDER DIAGRAM	Y / N
** BOOLEAN	Y / N
** RELAY LIST	Y / N
NPST CONFIGURATION	Y / N
SYSTEM REGISTER	Y / N
REMOTE I/O	Y / N
** = [ENTER] TO SET THE	DETAILS

- 4. Specify what you want to print out in the **[STYLE]** window. Select "Y" for the item which you want to print. Select "N" not to print it.
- Press F1 to log the settings in each window and to return to the previous window. You must press F1 on every window on which you made any change. When pressing F1, you will be
- asked "SURE?" Type \mathbf{Y} to log the changes you made. To cancel them, type \mathbf{N} .
- 6. Select "**PRINT**" from the [**PRINT OUT**] window.
- 7. Press **Enter**. The **[PRINT]** windows shown right will open.

[PRINT]						
START PAGE	[1]				
START ADDRESS	[0]				
END ADDRESS	[1	25]				
PAPER SIZE	PORT	/	LAND			
PRINT MODE	SINGL	/	CONTIN			
	HIGH	/	NORMAL			
[ENTER] : EXECUTE.						

- 8. When you want to change the settings in the windows, select the desired options. To select an option, use the **right** or **left arrow** key. To go to the next item, press the **down arrow** key.
- 9. Press **Enter** to start printing.

5-5. Programming with FP Programmer II

The FP Programmer II performs program entry, editing, and monitoring of FP series programmable controllers.

1. System Configuration

Connection between an FP-M control board and an FP Programmer II

• An FP-M peripheral cable (for FP Programmer II) is required to connect an FP-M control board to an FP Programmer II.

■ Setting of FP-M control board

• Set the baud rate selector of the FP-M control board to 19200.

2. Downloading a Program to the Programmable Controller

Boolear	n Non	-lad	der	FP Programmer II key operations
Address	Inst	ruct	ion	
0	ST	Х	0	ST X-WX X-WX 0 WRT
1	OR	R	0	OR R-WR R-WR 0 WRT
2	AN/	Х	1	AN Y-WY NOT DT/Ld ST X-WX 1 WRT
3	ОТ	R	0	OT L-WL R-WR 0 WRT
4	ST	R	0	ST X-WX R-WR 0 WRT
5	ОТ	Y	0	OT L-WL Y-WY 0 WRT
6	ТМ	Х	0	TM T-SV X-WX 0 ENT
		Κ	30	(BIN) K/H 3 0 WRT
9	ST	Т	0	ST X-WX TM T-SV 0 WRT
10	ОТ	Υ	1	OT L-WL Y-WY 1 WRT
11	ED			SHIFT SC 1 0 SHIFT WRT

Procedure

- 1. Connect FP Programmer II and the FP-M control board using the FP-M peripheral cable (for FP Programmer II).
- 2. Set the mode selector of the FP-M control board to PROG.
- 3. Press the keys on the FP Programmer II, as shown on the right, to clear all the data stored in the FP-M control board.

- 4. Enter the address from where you want to enter instructions. Use the alphanumeric keys to enter the address. In the example, instructions are entered from address 0, therefore, press

 Image: The state of the sta
- 5. Download the program (addresses and instructions) to the programmable controller.

Notes:

- An alarm will sound if you try to download a program while in RUN mode or if you press the wrong keys. If an alarm sounds, press the [ACLR] key and redo the download operation from the beginning.
- The first time you input a program, be sure to execute the program clear procedure (step 3 above) before starting input.

■ Key operations for correcting input errors

• Correcting the contents of the program

Procedure example

- 1. Read the contents of address 3.
- 2. Clear the display for address 3.
- 3. Rewrite with the correct instructions.

Procedure example

2. Delete.

• Deleting instructions

1. Read the contents of address 3.

Procedure example

- 1. Read the contents of address 3.
- 2. Insert the new instruction.

0

■ Inputting instructions that are not on the key display

There are two ways to input instructions such as the ED (END) instruction and the DF (Leading edge differential) instruction, which are not on the key display.

• Using the HELP function

Procedure example

- 1. Press the keys shown on the right. $\begin{bmatrix} SHIFT \\ SC \end{bmatrix} \begin{bmatrix} HELP \\ CLR \end{bmatrix}$
- 2. Next, press $\begin{bmatrix} READ \\ \bullet \end{bmatrix}$ to look for the desired instruction.
- 3. Input the number for the instruction.

Example: The **ED** instruction.

\frown	\frown	\frown
1	0	WRT
	\square	\square

• Direct input of the instruction code

Example: The **ED** instruction.

SHIFT SC 1	0	SHIFT SC	WRT
---------------	---	-------------	-----

5-6. RAM and ROM Operations

1. RAM and ROM Operations

- The program may be downloaded and saved to RAM on the FP-M control board or to memory (EPROM) or master memory (EEPROM).
- Use of the RAM and EPROM/EEPROM memory makes it easy to reproduce and transfer programs.

Operations

RAM operation: Operation with installed RAM ROM operation: Operation with memory (EPROM) or master memory (EEPROM)

ltem	RAM operation	ROM operation
Memory	RAM on the control board	Memory (EPROM) or master memory (EEPROM) Install EPROM/EEPROM RAM
Execution of program	The built-in program is executed.	When the mode is changed from PROG. to RUN or the power is turned ON in the RUN mode, the contents of ROM are loaded into the RAM on the FP-M control board and the program is executed. Necessary tools • Memory (EPROM): AFP5202 • Master memory (EEPROM): AFP5207 • Commercially available ROM programmer: We recommend Aval Data Corporation's "PECKER 11"
Backup	The contents of RAM are saved using the backup battery. Note: Replace the backup battery when voltage of the battery is low. (See page 125.) • Battery life (FP-M C20R, C20T, and C32T: Approx. 53,000 hrs. FP-M C20RC, C20TC, and C32TC: Approx. 27,000 hrs.	Since the contents of the program and system registers are written to ROM, backup is not necessary. The hold area contents written to RAM are backed up by the backup battery.

2. Operation Without Backup Battery Enabled

- When the voltage of the backup battery is low or the backup battery is disconnected, system register 4 specifies the operation of FP-M.
- This battery error disregarding function is available for NPST-GR Software Ver. 3 or later.

Procedure

- Using NPST-GR Software Ver. 3.1
 - 1. In the ONLINE mode, press **Esc** to display the [NPST MENU] window.
 - 2. Select the PLC CONFIGURATION option from the NPST menu.
 - 3. Select the 1. SYSTEM REGISTER option from the [PLC CONFIGURATION] menu.
- 4. Press the **F8** key on the [SYSTEM REGISTER] screen.
- The ACT ON ERROR window will open.
- 5. Select system register 4. BATTERY ERROR INDICATION in the ACT ON ERROR window.
- 6. Select "YES" or "NO" for system register 4. BATTERY ERROR INDICATION.
 - YES: The conditions (voltage of backup battery low or backup battery disconnected) are regarded as errors. NO: The conditions (voltage of backup battery low or backup battery disconnected) are not regarded as errors.
- 7. Press **F1** to save the setting contents and press **Esc** to return to the previous window.

- 1. Press the keys shown on the right.
- 2. To read the contents of system register 4,

ACLR	(-) OP	5	0	ENT
4	READ			

- press the keys shown on the right.
- 3. Press the "K, 0" or "K, 1" keys for system register 4 (operation without backup battery).
 - K0: The conditions (voltage of backup battery low or backup battery disconnected) are regarded as errors.
 - K1: The conditions (voltage of backup battery low or backup battery disconnected) are not regarded as errors.
- 4. Press the "ACLR" key to end OP50 operation.
- The FP Programmer II will return to its initial state.

3. Notes on Operation with Memory (ROM Operation)

• When the FP-M is operated with the installed memory (ROM), the mode selector causes the following operational changes to occur.

■ When the power is turned ON in PROG. mode

- In the PROG. mode, even if the memory (ROM) is installed, the programming tools (NPST-GR Software or FP Programmer II) read the contents of the RAM on the FP-M control board.
- Accordingly, to verify the contents of memory (ROM) while in the PROG. mode, you can transmit the contents to RAM using the following procedure.

Procedure

- Using NPST-GR Software Ver. 3.1
- 1. In the ONLINE mode, press **Esc** key to display the [NPST MENU] window.
- 2. Select the **PROGRAM MANAGER** option from the NPST menu.
- 3. Select the 7. COPY PROGRAM BETWEEN ROM & RAM option from the [PROGRAM MANAGER] menu.

4. Press **F1**.

When the **COPY ROM TO RAM** window opens, the contents of ROM will be loaded from ROM to RAM.

[COPY ROM TO RAM] NO.=[0] RT =[1]	HOME
PROGRAM & SYSTEM REGISTER WILL BE TRANSFERRED FROM ROM TO RAM.	
F1 : EXECUTE.	

• Using FP Programmer II

1. Press the keys in the sequence shown on the right.

ACLR	(-) OP	9	0	ENT	WRT
	_	_	_	_	_

2. The contents of memory (ROM) will automatically be loaded into the RAM on the FP-M control board.

When the power is turned ON in RUN mode

• The contents of memory (ROM) are automatically loaded (overwritten) into the RAM on the FP-M control board when the power is turned ON. Note that the previous contents of the RAM will be erased.

5-7. How to Program ROM

1. Memory (ROM) Type

- FP-M program writing and operation can be done using only the internal RAM. However, program writing, operation and saving, etc., are also possible using optional ROM.
- The contents of the program and system registers are written to the memory or master memory. When the ROM is driven [contents of the memory (ROM) are transferred to RAM], the existing contents of memory and system registers will be overwritten.
- The contents of memory for operand, such as internal relays and data registers, are not overwritten.

Memory type

Туре	Part number	Writing method	Description
Memory (EPROM)	AFP5202	Commercially	27C256 or equivalent
2 pieces in a set		available ROM	Suitable for program storage or ROM operation
		programmer	when installed on the FP-M control board.
Master memory	AFP5207	FP-M control board	28C256 or equivalent
(EEPROM)		/A ROM programmer	You can write data without using a ROM
1 piece in a set		\is not required.	programmer. Suitable for copying and
			transmitting the program.

2. Install the Memory (ROM)

- Set the same mode between memory (ROM) type and memory selector.
- Turn OFF the power of the FP-M control board before installing or removing the memory (EPROM) and master memory (EEPROM).
- Put the memory on the user memory socket, align the pins of the memory with the user memory socket holes and insert correctly.
- Attach an opaque sheet onto the window on the memory (EPROM) before use. If the opaque sheet is not attached, light may cause problems.

• When removing the memory (EPROM) and master memory (EEPROM) from the user memory socket, use of an IC EXTRACTOR is recommended. Note that the surface of the FP-M control board might be damaged by using a screwdriver.

3. How to Program ROM

- Using a commercially available ROM programmer, the contents of RAM on the FP-M control board can be written to the memory (ROM).
- The following types of memory (ROM) are available:
- Memory (EPROM): AFP5202 [27C256 type or equivalent] Memory for storing programs. Writing is done with a commercially available ROM programmer.
 Master memory (EEPROM): AFP5207 [28C256 type or equivalent] Memory for copying programs. Writing is done with a master memory attached to the FP-M control board.

1) Writing a program to the memory (EPROM) via master memory (EEPROM) with a commercially available ROM programmer

Necessary tools

- Memory (EPROM): AFP5202 [27C256 type or equivalent]
- Master memory (EEPROM): AFP5207 [28C256 type or equivalent]
- Commercially available ROM programmer: We recommend Aval Data Corporation's PECKER 11
- Programming tools
- FP-M personal computer cable (for NPST-GR): AFC8513 (3 m/9.843 ft.)
- RS232C interface adapter: See page 84.
- Commercial computer: IBM PC-AT or 100 % compatible machine
 - Main memory: 550 KB or more free
 - EMS: 800 KB or more free

Hard disk space: 2 MB or more required

Operating system: MS-DOS Ver. 3.30 or later

Video mode (display mode): VGA

- NPST-GR Software Ver. 3: AFP266538
- FP-M peripheral cable: AFC8521 (1 m/3.281 ft.), AFC8523 (3 m/9,843 ft.)
- FP Programmer II: AFP1114

Procedure

[FP-M RAM \rightarrow master memory (EEPROM) \rightarrow ROM programmer memory \rightarrow memory (EPROM)]

- 1. Turn OFF the power of the FP-M control board.
- 2. Attach the master memory (EEPROM) to the FP-M control board. Set the memory selector to EEPROM mode.
- 3. Set the mode selector of the FP-M control board to PROG. mode and then turn ON the power of the FP-M control board.
- 4. Transfer the contents of RAM to the master memory (EEPROM) using programming tools (NPST-GR Software or FP Programmer II) as shown below.
 - Using NPST-GR Software Ver. 3.1
 - ① In the ONLINE mode, press the **Esc** key to display the [NPST MENU] window.
 - ② Select the **PROGRAM MANAGER** option from the NPST menu.
 - (3) Select the **7. COPY PROGRAM BETWEEN ROM & RAM** option from the [PROGRAM MANAGER] menu.
 - ④ Press F1. When the [COPY RAM TO ROM] window opens, the contents of RAM will be loaded from RAM to ROM.
 - Using FP Programmer II
 - 1) Press the keys in the sequence shown right.
 - (2) The contents of RAM will be loaded into the attached ROM.
- 5. Turn OFF the power of FP-M control board. Detach the programmed master memory (EEPROM) from the FP-M control board.
- 6. Attach the master memory (EEPROM) to the ROM programmer. Transfer the contents of master memory (EEPROM) to ROM programmer memory.
- Replace the master memory (EEPROM) on the ROM programmer with the memory (EPROM). Write the contents of the ROM programmer memory to the memory (EPROM).

Notes:

- If you want to write the contents of RAM on the FP-M control board to a master memory (EEPROM), be sure to set the mode selector to PROG. before turning ON the power.
- When using a commercially available ROM programmer to write to the master memory (EEPROM) or the memory (EPROM), refer to the manual that comes with it for operation procedure and settings.

2) Writing a program to the memory (EPROM) with NPST-GR Software and a commercially available ROM programmer

Necessary tools

- Memory (EPROM): AFP5202 [27C256 type or equivalent]
- Commercially available ROM programmer: We recommend Aval Data Corporation's PECKER 11
- Programming tools
- RS232C cable: Needs to be customized to match the specifications of the commercial ROM programmer.
- Commercial computer: IBM PC-AT or 100 % compatible machine

Main memory: 550 KB or more free EMS: 800 KB or more free Hard disk space: 2 MB or more required Operating system: MS-DOS Ver. 3.30 or later Video mode (display mode): VGA

- NPST-GR Software Ver. 3: AFP266538

Procedure

[Program with NPST-GR Software \rightarrow ROM programmer memory \rightarrow memory (EPROM)]

- 1. Transfer the program from the computer to the ROM programmer memory using NPST-GR Software as shown below.
 - Using NPST-GR Software Ver. 3.1
 - ① In the ONLINE mode, press **Esc** key to display the [NPST MENU] window.
 - ② Select the **NPST CONFIGURATION** option from the NPST menu.
 - ③ Select the **1. NPST CONFIGURATION** option from the **NPST CONFIGURATION** menu.
 - ④ Press **SHIFT** + **F6 (ROM)** keys. The <ROM CONFIG> window will open.
 - (5) Select the parameter for each setting item according to the ROM programmer. Then press the F1 key.
 - <ROM CONFIG> window setting items TRANS RATE (bps): 9600, 4800, 2400, 1200, 600, 300

DATA LENGTH: 8, 7 PARITY CHECK: NO, EV, OD STOP BIT: 1, 2

- (6) Select the 8. LOAD TO/FROM ROM WRITER option from the PROGRAM MANAGER menu.
- ⑦ Select "WRITE" in the window and specify the format according to the ROM programmer.
- (8) Press the **F1 (EXEC)** key to load the program.
- 2. Attach the memory (EPROM) to the ROM programmer.
- 3. Write the contents of the ROM programmer memory to the memory (EPROM).

Note:

• When using a commercially available ROM programmer to write to the master memory (EEPROM) or the memory (EPROM), refer to the manual that comes with it for operation procedure and settings.

TROUBLESHOOTING AND MAINTENANCE

6-1. Self-diagnostic Function	112
1. Operation Monitor LEDs When an Error Occurs	112
2. Operation Status When an Error Occurs	113
6-2. Troubleshooting	114
1. Points to be Checked When an Error Occurs	114
6-3. Error Codes	123
1. Table of Total-check Error Codes	123
2. Table of Self-diagnostic Error Codes	124
6-4. Maintenance	125
1. Replacement of Backup Battery	125
2. Check Items	126

6-1. Self-diagnostic Function

FP-M programmable controllers use the self-diagnostic function when something goes wrong with them. The abnormalities detected by the self-diagnostic function are divided into three categories:

Self-diagnostic error

This type of error is detected when the following occurs:

- Hardware problem in CPU or ROM, and backup battery problem (ROM, system, interrupt, or battery abnormality).
- An instruction is incorrectly executed in RUN mode (operation error).

Total-check error

This type of error is detected by a total-check operation when the following occurs. The total-check operation is performed when the mode selector is changed from PROG. to RUN.

- Program abnormalities such as syntax errors, duplicated use of output, and instruction combination errors. (syntax error, duplicated output error, mismatch error, program area error, operand error)

The total-check operation can also be performed by using the FP Programmer II (OP9 function) or the NPST-GR Software ["1.TOTALLY CHECK A PROGRAM" (menu 1) or "V.TOTALLY CHECK" (menu 2)].

• System watchdog timer error

- This type of error is detected when the following occurs:
- program scan time is extraordinarily long
- hardware abnormality is detected

1. Operation Monitor LEDs When an Error Occurs

• The status of the operation monitor LEDs on the FP-M control board vary, as shown in the table below.

Content	Position of the	LED status			
Contont	mode selector	RUN	PROG.	ERR.	ALARM
Normal operation	RUN	ON	OFF	OFF	OFF
	PROG.	OFF	ON	OFF	OFF
Forced ON/OFF	RUN	Flash	OFF	Varies	OFF
	PROG.	OFF	ON	Varies	OFF
When a self-diagnostic	RUN	Varies	Varies	ON	OFF
error occurred	PROG.	OFF	ON	ON	OFF
When a total-check error	RUN	OFF	ON	ON	OFF
occurred	PROG.	OFF	ON	OFF	OFF
When a system watchdog	RUN	Varies	Varies	Varies	ON
timer error occurred	PROG.	Varies	Varies	Varies	ON

2. Operation Status When an Error Occurs

When an error occurs, the FP-M usually stops operating. However, regarding duplicated output errors, a backup battery abnormality, and operation errors, you can continue operation by changing the system register settings.

1) Duplicated output error (total-check error)

• If the duplicated use of output is detected, the FP-M stops operating and the ERR. LED turns ON. When you change system register 20 settings using the FP Programmer II or NPST-GR Software, duplicated output is not regarded as an error and the FP-M continues to operate. In this case, the ERR. LED does not turn ON. **Duplicated output error:** system register 20 (K1 or ENAB)

> [FP Programmer II: K0 (stops operation), K1 (continues operation)] [NPST-GR Ver. 3.1: DISA (stops operation), ENAB (continues operation)]

2) Battery error (self-diagnostic error)

• If the voltage of the backup battery lowers or if the backup battery disconnects, the ERR. LED turns ON. **Battery error:** system register 4 (K1 or NO)

[FP Programmer II: K0 (stops operation), K1 (continues operation)] [NPST-GR Ver. 3.1: YES (stops operation), NO (continues operation)]

3) Operation error (self-diagnostic error)

- An operation error is one of the errors in the programmable controllers. These errors occur when an instruction [one of high-level/some basic (e.g., **ST** =) instructions] is executed abnormally.
- When an operation error occurs, operation of the programmable controller stops. At the same time, operation error flags R9007 and R9008 turn ON, the error address is stored in DT9017 and DT9018, the error code [K45 (H2D)] is set at DT9000, and the ERR. LED lights.

However, when you change system register 26 settings using the FP Programmer II or NPST-GR Software (Ver. 3.1 or later), the FP-M continues to operate. In this case, even if the FP-M continues to operate, this is regarded as an error and the ERR. LED stays ON.

Operation error: system register 26

[FP Programmer II: K0 (stops operation), K1 (continues operation)] [NPST-GR Ver. 3.1:STOP (stops operation), STRT (continues operation)]

6-2. Troubleshooting

1. Points to be Checked When an Error Occurs

When an abnormality is detected, check the following points.

- If the ERR. LED is ON, refer to page 115, When an ERR. LED is ON.
- If the ALARM LED is ON, refer to page 117, When an ALARM LED is ON.
- If the all LEDs are OFF, refer to page 117, When all LEDs are OFF.
- If the output does not work, refer to page 118, Diagnosing output malfunction.
- If the communication error is detected by the NPST-GR Software, refer to page 121, When "PLC = COMM. ERR" is displayed on the NPST-GR screen.
- If the PROTECT ERROR is detected by the programming tool, refer to page 122, When "PROTECT ERROR" is displayed.

Note:

- Check the entire system including peripheral devices, referring the followings:
- Observe what is happening.
- Check for error repetition.
- Check the status of indicators.
- Check that power is properly supplied to the programmable controller.
- Check whether the trouble detected is in the programmable controller or in other devices.
- Check whether the trouble detected is in the I/O section or other parts.
- Check whether there is problem with the program or not.

■ When an ERR. LED is ON

<Condition: an error is detected by the self-diagnostic function>

DISPLAY] of NPST-GR Software Ver. 3.1. (This function is not available with a conventional FP Programmer or with NPST-GR Software Ver. 3.0 or earlier.)

- Cancel the error status using the F148 (ERR) instruction.

■ When an ALARM LED is ON

<Condition: a system watchdog timer error occurs>

Set the mode selector of the FP-M control board from RUN to PROG. and turn the power OFF and then ON.

• If the ALARM LED is turned ON again, there is probably an abnormality in the FP-M control board. Please contact your dealer.

• If the ERR. LED is turned ON, go to page 115, **When an ERR. LED is ON.**

Set the mode selector of the FP-M control board from PROG. to RUN.

- If the ALARM LED is ON, the program execution time is too long. Check the program, referring the following:
 - Check if instructions such as **JP** or **LOOP** are programmed in such a way that a scan can never finish.
 - Check that interrupt instructions are executed in succession.

■ When all LEDs are OFF

- If the LEDs on the FP-M control board turn ON at this moment, the capacity of the power supply is not enough to control other devices as well.
- Prepare another power supply for other devices or increase the capacity of the power supply.

■ Diagnosing output malfunction

<First check the output condition and then the input condition>

① Output condition: the output indicators are ON

Check if the power is properly supplied to the output devices.

- If the power is properly supplied to the load, there is probably an abnormality in the load. Check the load again.
- If the power is not supplied to the load, there is probably an abnormality in the FP-M's output.
 - Please contact your dealer.

(2) Output condition: the output indicators are OFF

Monitor the output condition using a programming tool.

-		
	How to monitor the outputs: • Using the NPST-GR Software Ver. 3	.1
	<if 1="" are="" menu="" screen="" type="" using="" you=""> Open [NPST MENU] by pressing Esc, then select "MONITOR" to skip to the [MONITOR] subwindow. In the [MONITOR] subwindow, select "3. MONITOR LISTED RELAYS".</if>	<if 2="" are="" menu="" screen="" type="" using="" you=""> Open [ONLINE MONITOR FUNCTION MENU] by pressing Ctrl and F10 together, then select "I. LISTED RELAYS".</if>
•	• Using the FP Programmer II	
	Press the keys on the FP Programmer II as shown on the right.	ACLR (-) 7 ENT AN 0 ENT READ
	If the output monitored is turned ON, there is probably a duplicated output error or I/O allocation error. Check the program and the I/O allocation.	
(Next page)		

(4) Input condition: the input indicators are OFF

- If the power is properly supplied to the input terminal, there is probably an abnormality in the FP-M's internal circuit.
- Please contact your dealer.
- If the power is not properly supplied to the input terminal, there is probably an abnormality in the input device or input power supply.
- Check the wiring again.

■ When "PLC = COMM. ERR" is displayed on the NPST-GR screen

your computer.

■ When "PROTECT ERROR" is displayed

(1) When memory (EPROM) or master memory (EEPROM) is installed in the FP-M control board

If memory (EPROM) or master memory (EEPROM) is installed on the FP-M control board, the program cannot be modified.

Proceed with program modification as follows:

(2) When a password is set for the programmable controller

Change the setting of the password using a programming tool.

• Using NPST-GR Software Ver. 3.1

<If you are using MENU 1 screen type> Open [NPST MENU] by pressing the Esc key, and then select "PLC CONFIGURATION" to skip to the [PLC CONFIGURATION] subwindow. In the [PLC CONFIGURATION] subwindow, select "5. SET PLC PASSWORD". <If you are using MENU 2 screen type> Open [NPST FUNCTION MENU] by pressing the **Esc** key in the ONLINE mode, and then select "SET PLC PASSWORD".

In the [SET PLC PASSWORD] window, select ENAB and press the **Enter** key to set the mode of the password setting to enable saving and loading of the program.

• Using FP Programmer II

Press the keys on the FP Programmer II as shown on the right.

ACLR (-) OP	7	2	ENT	1
1 2	3	4	WRT	(HELP) CLR

Password (e.g., "1234")

6-3. Error Codes

- When the ERR. LED turns ON, a total-check error or self-diagnostic error has occurred. The causes of the error can be known by checking the error code in "1. Table of Total-check Error Codes" or "2. Table of Self-diagnostic Error Codes" in this section.
- For details about the error checking procedure, refer to page 115, "
 When an ERR. LED in ON".

1. Table of Total-check Error Codes

Error code	Name of error	Description	Step to take
E1	Syntax error (SYNTAX)	Instruction is incorrectly programmed.	Set the mode of FP-M to PROG. and input the instruction correctly, referring to the description for the instruction.
E2	Duplicated output error (DUP USE)	Two or more OT and KP instructions are programmed using same relay.	Set the mode of FP-M to PROG. and correct the program so that one relay is not used for two or more OT and KP instructions. This error can be disregarded by changing the system register 20 setting to K1 (ENAB).
E3	Not paired error (PAIR)	One of the instructions, which must be paired, is missing (e.g., JP and LBL). The paired instruction sets may have been programmed in the incorrect order (e.g., MC and MCE).	Set the mode of FP-M to PROG. and program the missing instruction. Program the instruction sets in the proper order, referring to the description of the instruction.
E4	System register parameter error (MISMATCH)	The operand for the instruction is out of the range set in the system register.	Set the mode of FP-M to PROG. and check the system register parameter using a FP Programmer II (OP50) or NPST-GR Software (1. SYSTEM REGISTER in the PLC CONFIGURATION).
E5	Program area error (PRG AREA)	The instruction has been programmed in the incorrect position (e.g., INT and IRET instructions are programmed at the address before the ED instruction).	Set the mode of FP-M to PROG. and program the instruction in the proper position, referring to the description of the instruction.
E8	Operand error (OPR COMBI)	Incorrect operand has been entered for the instruction.	Set the mode of FP-M to PROG. and program the instruction using the correct operand, referring to the description of the instruction.

2. Table of Self-diagnostic Error Codes

Error code	Name of error	Program execution when an error occurs	Description	Step to take	
E26	ROM error	Stops	Probably an abnormality in the memory (EPROM) or master memory (EEPROM).	Program the memory (EPROM) or master memory (EPROM) again and try to operate. If the same error is detected, try to operate with another memory (EPROM) or master memory (EEPROM).	
E28	System register error	Stops	Probably an abnormality in the system register.	Set the mode of FP-M to PROG., initialize the system register and set it again.	
E31	Interrupt error	Stops	Probably a hardware abnormality or an abnormality caused by noise.	Turn OFF the power of the FP-M and check the surrounding noise level.	
E32	Interrupt error	Stops	Probably a hardware abnormality or an abnormality caused by noise.	Turn OFF the power of the FP-M and check the surrounding noise level.	
			Probably an interrupt program corresponding to the trigger is missing.	Set the mode of FP-M to PROG. and create a program which corresponds to the interruption.	
E45	Operation error	Selectable (by system register 26) (See note 1.)	Probably an abnormality was detected when a high-level or basic instruction was executed.	Check the program, referring to the error address which is stored in special data registers DT9018 and DT9017.	
E50	Battery error	Continues	The voltage of the backup battery lowers or the connector of the backup battery is disconnected.	Replace the backup battery. The operation without backup battery can be specified by system register 4. (See note 2.)	
E100 to E199	Self-diagnostic error warning by F148 (ERR)	Stops	 The self-diagnostic error code specified by the F148 (ERR instruction is transferred to DT9000. The contents of the self-diagnostic error code can be 		
E200 to E299	instruction	Continues	confirmed using the programming tools. - NPST-GR Software: "7. STATUS DISPLAY" in ONLINE mode - FP Programmer II: "OP-110"		

Notes:

1. System register 26 specifies the program execution state when an operation error occurs. Settings:

K0: FP-M stops operation if an operation error occurs.

- K1: FP-M continues operation even if an operation error occurs.
- 2. System register 4 specifies the operation of the FP-M when the voltage of the backup battery lowers or when the backup battery disconnects.

Settings:

K0: The conditions above are regarded as errors.

K1: The conditions above are not regarded as errors.

6-4. Maintenance

Although programmable controllers have been designed in such a way to minimize maintenance and offer troublefree operation, several maintenance aspects should be taken into consideration. If preventive maintenance is performed periodically, you will minimize the possibility of system malfunctions.

1. Replacement of Backup Battery

1) Battery life

Control board	Battery life (at 25 °C/77 °F ambient temperature)
C20R, C20T, and C32T types	Approx. 53,000 hours (approx. 6 years)
C20RC, C20TC, and C32TC types	Approx. 27,000 hours (approx. 3 years)

• When the voltage of the backup battery lowers, special internal relays R9005 and R9006 turn ON and the ERR. LED turns ON. Replace the backup battery within a month after this battery error is detected.

2) Using backup battery type

Item	Part number	Description
Backup battery	AFB8801 Lithium battery, BR2032/CR2032 type or equivalent	
		For all FP-M control boards

Caution:

• Never throw batteries into a fire. Do not dispose of them in trash that will be incinerated.

3) How to replace backup battery

• Replace the battery within 3 minutes, after applying the power to the FP-M control board more than 1 minute.

Procedure

- (1) Turn OFF the power of FP-M control board.
- ② Lift the backup battery on the FP-M control board using insulated slotted screwdriver as shown on the right.
- ③ Remove the backup battery from the backup battery holder as shown on the right.
- (4) With the + side facing up, insert the new backup battery into the backup battery holder by sliding it in sideways as shown on the right.
- (5) Turn ON the power of the FP-M control board.

Note:

• Before inserting the new battery, check that nothing is attached to the + and - surfaces.

2. Check Items

Item	Check point	Criteria for judgement
Power supply voltage	Check the power supply condition by	21.6 to 26.4 V DC
	measuring it at power supply	
	terminals of the FP-M.	
I/O power supply	Check the I/O power supply condition	20.4 to 26.4 V DC: C20T and C32T types
voltage	by measuring it at I/O power supply	22.8 to 26.4 V DC: C20R type
	terminals of the FP-M.	
Environment	Ambient temperature	0 °C to 55 °C/32 °F to 131 °F
	(e.g., temperature in the control box)	
	Ambient humidity	30 to 85 % RH
	(e.g., humidity in the control box)	(non-condensing)
	Is dirt and dust present?	Free from corrosive gases and excessive
		dust
LEDs on control	RUN LED	Turns ON when program is executed.
boards	ERR. LED	Turns ON when a self-diagnostic error
		occurs.
	ALARM LED	Turns ON when an abnormality is detected
		or watchdog timer error occurs.
Indicators (LED) on	Input indicators (LED)	Turns ON when input devices are ON.
control and expansion		Turns OFF when input devices are OFF.
boards	Output indicators (LED)	Turns ON when output devices are ON.
		Turns OFF when output devices are OFF.
Mounting and	 Are all of the boards firmly fixed on 	
connecting condition	a panel?	
	 Are all the terminal screws securely 	
	tightened?	
	 Is the wiring being properly kept? 	
Backup battery	Is the backup battery being	Refer to the preceding page.
	periodically replaced?	

INTELLIGENT AND LINK BOARDS

7-1.	Analog I/O Board	128
	1. Specifications	
	2. Dimensions	
	3. Parts Terminology	130
	4. Wiring	
7-2.		
	1. Specifications	133
	2. Dimensions	
	3. Parts Terminology	135
	4. Wiring	
7-3.	D/A Converter Board	138
	1. Specifications	
	2. Dimensions	
	3. Parts Terminology	140
	4. Wiring	
7-4.	Programming for Analog I/O, A/D Converter, and D/A	
	Converter Boards	143
	1. Digital Values of Analog Input	143
	2. Digital Values of Analog Output	
	3. Specification of Analog I/O Data	
	4. Applications	
7-5.	High-speed Counter Board	
	1. Specifications	
	2. Dimensions	150
	3. Parts Terminology	151
	4. I/O Allocation	
	5. Wiring	156
	6. Programming for High-speed Counter Board	157
7-6.		
	1. Specifications	162
	2. Dimensions	
	3. Parts Terminology	163
7-7.	FP-M I/O Link Board (MEWNET-F)	
	1. Specifications	
	2. Dimensions	
	3. Parts Terminology	167

7-1. Analog I/O Board

Input and output of analog data (voltage and current) is possible by expanding the FP-M control board with an analog I/O board.

1. Specifications

1) General

Item	Description
Ambient temperature	0 °C to +50 °C (32 °F to +122 °F) (See note.)
Ambient humidity	30 % to 80 % RH (non-condensing)
Storage temperature	-20 °C to +70 °C (- 4 °F to +158 °F)
Vibration resistance	10 Hz to 55 Hz, 1 cycle/min: double amplitude of 0.75 mm (0.030 in.), 10 min on 3 axes
Shock resistance	Shock of 98 m/s ² or more, 4 times on 3 axes
Noise immunity	800 Vp-p (based on in-house measurements)

Note:

• When using in ambient temperature of 45 °C to 50 °C, be sure to make the number of ON points on the upper expansion board 50 % or less.

2) Performance

	Item	Description		
Analog	Number of input channels	4 channels		
input	Input range	0 to 5 V, 0 to 10 V, and 0 to 20 mA		
specifications	Resolution	1/256		
	Overall accuracy	±3LSB (at 25 °C/77 °F),		
		±5LSB (at 0 °C to 50 °C/32 °F to 122 °F)		
	Response time	2.5 ms/channel		
	Input impedance	1 M Ω or more (for 0 to 5 V and 0 to 10 V range)		
		250 Ω (for 0 to 20 mA range)		
	Absolute input range	+15 V (at 0 to 5 V and 0 to 10 V range)		
		+30 mA (at 0 to 20 mA range)		
	Digital converted data	K0 to K255		
Analog	Number of output channels	1 channel		
output	Output range	0 to 5 V, 0 to 10 V, and 0 to 20 mA		
specifications Resolution		1/256		
	Overall accuracy	±1.0 % of full scale (at 25 °C/77 °F),		
		±2.0 % of full scale (at 0 °C to 50 °C /32 °F to 122 °F)		
	Response time	2.5 ms/channel		
	Output impedance	$0.5~\Omega$ or less (for 0 to 5 V and 0 to 10 V output range)		
	Max. output current	20 mA (for 0 to 5 V and 0 to 10 V output range)		
	Allowable load resistance	0 to 500 Ω (for 0 to 20 mA range)		
	Digital data	K0 to K255		
Insulation me	thod	Optical coupler (not insulated between channels)		

Analog data conversion characteristics

3) Restriction of expansion

- A total of four analog I/O boards can be attached to the control board.
- When expanding analog I/O boards, install them beneath the expansion I/O board as shown below.

2. Dimensions

(unit: mm/in.)

3. Parts Terminology

■ Analog range setting

Jumper pin	Pin position	Selectable range		
JP1	A	Analog input	Channel 0	Voltage input: 0 to 5 V
				(Current input: 0 to 20 mA)
	В			Voltage input: 0 to 10 V
JP2	A	Analog input	Channel 1	Voltage input: 0 to 5 V
				(Current input: 0 to 20 mA)
	В			Voltage input: 0 to 10 V
JP3	A	Analog input	Channel 2	Voltage input: 0 to 5 V
				(Current input: 0 to 20 mA)
	В			Voltage input: 0 to 10 V
JP4	A	Analog input	Channel 3	Voltage input: 0 to 5 V
				(Current input: 0 to 20 mA)
	В			Voltage input: 0 to 10 V
JP5	A	Analog output	Channel 0	Voltage output: 0 to 5 V
				(Current output: 0 to 20 mA)
	В			Voltage output: 0 to 10 V

Note:

• The jumper pins (JP1 to JP5) are set to position "A" when shipped.

Board number setting

• Analog input and output data for analog I/O boards are stored in special data registers (DT9080 to DT9102) using the board number selector as follows.

Board number	Selector position	Input/output	Channel number	Special data register
No. 0		Converted digital value of analog	0	DT9080
	OFF OFF OFF OFF	input from analog I/O board No. 0	1	DT9081
			2	DT9082
	▼□ □ □ □ ON 1 2 3 4		3	DT9083
		Digital value for specifying analog	0	DT9096
		output from analog I/O board No. 0		DT9097
No. 1		Converted digital value of analog	0	DT9084
	ON OFF OFF OFF	input from analog I/O board No. 1	1	DT9085
			2	DT9086
	▼■ □ □ □ ON 1 2 3 4		3	DT9087
		Digital value for specifying analog	0	DT9098
		output from analog I/O board No. 1		DT9099
No. 2		Converted digital value of analog	0	DT9088
	OFF ON OFF OFF	input from analog I/O board No. 2	1	DT9089
			2	DT9090
	ON 1 2 3 4		3	DT9091
		Digital value for specifying analog	0	DT9100
		output from analog I/O board No. 2		DT9101
No. 3	<u></u>	Converted digital value of analog	0	DT9092
	ON ON OFF OFF	input from analog I/O board No. 3	1	DT9093
			2	DT9094
	ON 1 2 3 4		3	DT9095
		Digital value for specifying analog	0	DT9102
		output from analog I/O board No. 3		DT9103

Notes:

- Refer to page 201, "8-7. Special Data Registers", for details about special data registers.
- When two or more analog I/O boards are installed, be sure to configure the board number selector in order to prevent special data register overlap. The board number selectors are set to board number 0 (all "OFF" position) when shipped.
- Board number selector upper state is "OFF (\square)" and the lower state is "ON (\square)".

4. Wiring

Pin layout

Notes:

- When using current input, connect between current input terminal (e.g., I0, I1, I2, I3) and voltage input terminal (e.g., V0, V1, V2, V3).
- The voltage and current range cannot be used on the same channel at one time. The terminals of the unused range should be left open.
- Use the 24 V terminal of the input terminal or the expansion power supply connector for the analog I/O board power supply.
- Refer to page 61, "6) Wiring for I/O terminals", for the wiring.
- To prevent electric and magnetic interference, use shielded twisted-cable (two-core type) for I/O signals.
- Keep the main circuit wiring away from high voltage lines. Do not bundle signal cables and high voltage lines together.
- The shielded cable should be grounded at: Output signal: Output field device side Input signal: FG (frame ground) terminal of analog I/O board

7-2. A/D Converter Board

Input of analog data (voltage and current) is possible by expanding the FP-M control board with an intelligent board for analog data input.

1. Specifications

1) General

ltem	Description
Ambient temperature	0 °C to +50 °C (32 °F to +122 °F) (See note.)
Ambient humidity	30 % to 80 % RH (non-condensing)
Storage temperature	-20 °C to +70 °C (- 4 °F to +158 °F)
Vibration resistance	10 Hz to 55 Hz, 1 cycle/min: double amplitude of 0.75 mm (0.030 in.), 10 min on 3 axes
Shock resistance	Shock of 98 m/s ² or more, 4 times on 3 axes
Noise immunity	800 Vp-p (based on in-house measurements)

Note:

• When using in ambient temperature of 45 °C to 50 °C, be sure to make the number of ON points on the upper expansion board 50 % or less.

2) Performance

Item	Description		
Number of input channels	4 channels		
Input range	0 to 5 V, 0 to 10 V, and 0 to 20 mA		
Resolution	1/1000		
Overall accuracy	±1.0 % of full scale (at 25 °C/77 °F),		
	±2.0 % of full scale (at 0 °C to 50 °C/32 °F to 122 °F)		
Response time	2.5 ms/channel		
Input impedance	1 M Ω or more (for 0 to 5 V and 0 to 10 V range)		
	250 Ω (for 0 to 20 mA range)		
Absolute input range	+15 V (at 0 to 5 V and 0 to 10 V range)		
	+30 mA (at 0 to 20 mA range)		
Digital converted data	K0 to K1000		
Insulation method	Optical coupler (not insulated between channels)		

■ Analog data conversion characteristics

3) Restriction of expansion

- A total of four A/D converter boards can be attached to the control board.
- When expanding A/D converter boards, install them beneath the expansion I/O boards as shown below.

2. Dimensions

3. Parts Terminology

■ Analog range setting

Jumper pin	Pin position	Selectable range			
JP1	A	Analog input	Channel 3	Voltage input: 0 to 5 V	
				(Current input: 0 to 20 mA)	
	В			Voltage input: 0 to 10 V	
JP2	A	Analog input	Channel 2	Voltage input: 0 to 5 V	
				(Current input: 0 to 20 mA)	
	В			Voltage input: 0 to 10 V	
JP3	A	Analog input	Channel 1	Voltage input: 0 to 5 V	
				(Current input: 0 to 20 mA)	
	В			Voltage input: 0 to 10 V	
JP4	A	Analog input	Channel 0	Voltage input: 0 to 5 V	
				(Current input: 0 to 20 mA)	
	В			Voltage input: 0 to 10 V	

Note:

• The jumper pins (JP1 to JP4) are set to position "A" when shipped.

Board number setting

• Analog input data for A/D converter boards are stored in special data registers (DT9080 to DT9095) using the board number selector as follows.

Board number	Selector position	Input/output	Channel number	Special data register
No. 0	OFF OFF OFF OFF	Converted digital value of analog	0	DT9080
		input from A/D converter board	1	DT9081
		No. 0	2	DT9082
	UN 1 2 3 4		3	DT9083
No. 1	ON OFF OFF OFF	Converted digital value of analog	0	DT9084
		input from A/D converter board	1	DT9085
	▼ ■ □ □ □ □ ON 1 2 3 4	No. 1	2	DT9086
	<u>UN 1 2 3 4</u>		3	DT9087
No. 2	OFF ON OFF OFF	Converted digital value of analog	0	DT9088
		input from A/D converter board	1	DT9089
	▼	No. 2	2	DT9090
	UN 1 2 3 4		3	DT9091
No. 3	ON ON OFF OFF	Converted digital value of analog	0	DT9092
		input from A/D converter board	1	DT9093
		No. 3	2	DT9094
			3	DT9095

Notes:

- Refer to page 201, "8-7. Special Data Registers", for details about special data registers.
- When two or more A/D converter boards are installed, be sure to configure the board number selector in order to prevent special data register overlap. The board number selectors are set to board number 0 (all "OFF" position) when shipped.
- Board number selector upper state is "OFF (])" and the lower state is "ON (])".

4. Wiring

Pin layout

Notes:

- When using current input, connect between current input terminal (e.g., I0, I1, I2, I3) and voltage input terminal (e.g., V0, V1, V2, V3).
- The voltage and current range cannot be used on the same channel at one time.
- The terminals of the unused range should be left open.
- Use the 24 V terminal of the input terminal or the expansion power supply connector for the A/D converter board power supply.
- Refer to page 61, "6) Wiring for I/O terminals", for the wiring.
- To prevent electric and magnetic interference, use shielded twisted-cable (two-core type) for input terminals.
- Keep the main circuit wiring away from high voltage lines. Do not bundle signal cables and high voltage lines together.
- The shielded cable should be grounded to the FG (frame ground) terminal of A/D converter board. Depending on the noise conditions, if might be better to ground the cable at the input field device side.

7-3. D/A Converter Board

Output of analog data (voltage and current) is possible by expanding the FP-M control board with an intelligent board for analog data output.

1. Specifications

1) General

Item	Description
Ambient temperature	0 °C to +50 °C (32 °F to +122 °F) (See note.)
Ambient humidity	30 % to 80 % RH (non-condensing)
Storage temperature	-20 °C to +70 °C (- 4 °F to +158 °F)
Vibration resistance	10 Hz to 55 Hz, 1 cycle/min: double amplitude of 0.75 mm (0.030 in.), 10 min on 3 axes
Shock resistance	Shock of 98 m/s ² or more, 4 times on 3 axes
Noise immunity	800 Vp-p (based on in-house measurements)

Note:

• When using in ambient temperature of 45 °C to 50 °C, be sure to make the number of ON points on the upper expansion board 50 % or less.

2) Performance

Item	Description
Number of output channels	2 channels
Output range	0 to 5 V, 0 to 10 V, and 0 to 20 mA
Resolution	1/1000
Overall accuracy	±1.0 % of full scale (at 25 °C/77 °F),
	±2.0 % of full scale (at 0 °C to 50 °C/32 °F to 122 °F)
Response time	2.5 ms/channel
Output impedance	0.5Ω or less (for 0 to 5 V and 0 to 10 V range)
Max. output current	20 mA (for 0 to 5 V and 0 to 10 V range)
Allowable load resistance	0 to 500 Ω (for 0 to 20 mA range)
Digital data	K0 to K1000
Insulation method	Optical coupler (not insulated between channels)

■ Analog data conversion characteristics

3) Restriction of expansion

- A total of four D/A converter boards can be attached to the control board.
- When expanding D/A converter boards, install them beneath the expansion I/O boards as shown below.

2. Dimensions

3. Parts Terminology

- (1) Expansion power supply connector: Sup
- ② Output terminal (12-pin):
- **③ Expansion connector:**
- (4) **Board number selector:** (See following page.)
- (5) Analog range selectors: (See following page.)

Supplies power (24 V DC) to the D/A converter board using the expansion power supply cable.

Connect the external output devices (e.g., solenoid) for channels 0 and 1.

Connects the control board with the internal circuit.

Sets the special data register for storing analog output data by selecting the board number.

The analog output ranges are selectable with jumper pins on the board.

■ Analog range setting

Jumper pin	Pin position	Selectable range									
JP1	A	Analog output	Channel 0	Voltage output: 0 to 5 V							
				(Current output: 0 to 20 mA)							
	В			Voltage output: 0 to 10 V							
JP2	A	Analog output	Channel 1	Voltage output: 0 to 5 V							
				(Current output: 0 to 20 mA)							
	В			Voltage output: 0 to 10 V							

Note:

• The jumper pins (JP1 and JP2) are set to position "A" when shipped.

Board number setting

• Analog output data for D/A converter boards are stored in special data registers (DT9096 to DT9103) using the board number selector as follows.

Board number	Selector position	Input/output	Channel number	Special data register
No. 0	OFF OFF OFF OFF	Digital value for specifying analog output from D/A converter board	0	DT9096
	ON 1 2 3 4	No. 0	1	DT9097
No. 1	ON OFF OFF OFF	Digital value for specifying analog output from D/A converter board	0	DT9098
	↓ ↓ ↓ ↓ ON 1 2 3 4	No. 1	1	DT9099
No. 2	OFF ON OFF OFF	Digital value for specifying analog output from D/A converter board	0	DT9100
	▼ ■ ON 1 2 3 4	No. 2	1	DT9101
No. 3		Digital value for specifying analog output from D/A converter board	0	DT9102
	▼ ■ ■ □ □ ON 1 2 3 4	No. 3	1	DT9103

Notes:

- Refer to page 201, "8-7. Special Data Registers", for details about special data registers.
- When two or more D/A converter boards are installed, be sure to configure the board number selector in order to prevent special data register overlap. The board number selectors of the D/A converter board are set to board number 0 (all "OFF" position) when shipped.
- Board number selector upper state is "OFF (\square)" and the lower state is "ON (\square)".

4. Wiring

Pin layout

Notes:

- The voltage and current range cannot be used on the same channel at one time. The terminals of the unused range should be left open.
- Use the 24 V terminal of the output terminal or the expansion power supply connector for the D/A converter board power supply.
- Refer to page 61, "6) Wiring for I/O terminals", for the wiring.
- To prevent electric and magnetic interference, use shielded twisted-cable (two-core type) for output terminal.
- Keep the main circuit wiring away from high voltage lines. Do not bundle signal cables and high voltage lines together.
- The shielded cable should be grounded to the output field device. Depending on the noise conditions, if might be better not to ground the cable or to connect the cable to the output signal common side.

7-4. Programming for Analog I/O, A/D Converter, and D/A Converter Boards

1. Digital Values of Analog Input

- The converted digital values are stored in the special data registers (DT9080 to DT9095) by the board number selector of each board.
- Be sure to use the **F0** (**MV**) instruction to transfer the converted digital value in the special data registers (DT9080 to DT9095) into other data registers.
- **Example:** Transfer the converted digital value of DT9080 to the data register DT0 when X1 turns ON.

• The contents of special data registers DT9080 to DT9095 can be monitored using NPST-GR Software or FP Programmer II.

Note:

 The converted digital values of analog input are transmitted to special data registers DT9080 to DT9095 at the time of programmable controller I/O updating during each scan. Transmission will not occur if the mode selector of the FP-M control board is set to PROG.

Analog input data conversion characteristics

- The ranges of the converted digital values of analog input are shown below:
- When analog I/O board is installed
 - K0 to K255 (0 to 5 V, 0 to 10 V and 0 to 20 mA) $\,$
 - The range of converted digital values
 - (8 bits resolution of special data registers DT9080 to DT9095)

<Analog I/O Board>

 When the A/D converter board is installed K0 to K999 (0 to 5 V, 0 to 10 V and 0 to 20 mA) The range of converted digital values (10 bits resolution of special data registers DT9080 to DT9095)

<A/D Converter Board>

2. Digital Values of Analog Output

- The digital values are stored in the special data registers (DT9096 to DT9103) by the board number selector of each board.
- Be sure to use the F0 (MV) instruction to transfer the digital values into special data registers DT9096 to DT9103.
- The data is transferred from the special data registers at the time of I/O update in each scan.

• The digital data can be transferred into special data registers DT9096 to DT9103 using NPST-GR Software or FP Programmer II.

Note:

• When the FP-M control board mode selector is set to the PROG. mode or an error occurs, the analog output data becomes 0.

Analog output data conversion characteristics

- The ranges of digital values to specify analog output are shown below:
- When analog I/O board is installed
 - K0 to K255 (0 to 5 V, 0 to 10 V, and 0 to 20 mA)
 - The range of digital values for specifying analog output
 - (8 bits resolution of special data registers DT9096 to DT9103)

<Analog I/O Board>

When D/A converter board is installed K0 to K999 (0 to 5 V, 0 to 10 V, and 0 to 20 mA) The range of digital values for specifying analog output (10 bits resolution of special data registers DT9096 to DT9103)

<D/A Converter Board>

3. Specification of Analog I/O Data

• When the analog I/O board is installed, be sure to specify the data within the range of K0 to K255 (using 8 bits) as follows:

Data in the special	Bit position	15	•	•	12	11	•	•	8	7	•	•	4	3	•	•	0
data register	Binary data																
		J							_`			K0	to	K2	55		

The analog input data (A/D) in bit positions 8 to 15 becomes 0. The analog output data (D/A) in bit positions 8 to 15 is ignored.

Example:

If K-1 is set to special data register DT9096, analog data, being regarded as K255, is output.

Data in bit positions 8 to 15 is ignored.

Note:

• If data outside K0 to K255 is specified, the analog value is output ignoring data in bit positions 8 to 15.

• When the A/D converter board or D/A converter board is installed, be sure to specify the data within the range of K0 to K999 (using 10 bits) as follows:

Data in the special	Bit position	15	٠	•	12	11	٠	•	8	7	•	•	4	3	•	•	0]
data register	Binary data																	
			-	_	Î			_			K0	to	K	999)			
		Th	e a	ana	alo	g in	pu	t d	ata	a (A	٧D) i	n b	it p	os	itic	ns	10 to 15 becom

The analog output data (D/A) in bit positions 10 to 15 is ignored.

Example:

If K1,024 is set to special data register DT9096, analog data, being regarded as 0, is output.

Data configuration when K1,024 is set:							
DTOOOE	Bit position	15 • • 12	11 • • 8	7 • • 4	3 • • 0		
DT9096	Binary data	0 0 0 0	0 1 0 0	0 0 0 0	0 0 0 0		
ко Ко							
Data in bit positions 10 to 15 is ignored.							

Notes:

- If data outside K0 to K1,023 is specified, the data is handled ignoring data in bit positions 10 to 15.
- If data K1,000 to K1,023 is specified, analog data that is slightly more than the maximum rated value
- (5 V, 10 V, and 20 mA) is output.

4. Applications

Example 1: A/D program example of simple temperature control

- Compares the analog data from channel 0 of analog control board No. 0 (DT9080) with preset values (K100 and K110). The compared result is stored in special internal relays R900A and R900C.
- When the contents of DT9080 < K100, external output relay Y0 (heater) goes ON.
- When the contents of DT9080 > K110, external output relay Y0 (heater) goes OFF.

Program

Special internal relays

- R9010: Always ON relay
- F62 (WIN): 16-bit data band compare
- DT9080: Channel 0 of converted digital value from analog control board No. 0

Example 2: D/A program example of variable speed control

• Transfer the value of potentiometer V0 on the FP-M control board to channel 0 of analog control board No. 0 (DT9096).

Program

Special internal relay - R9010: Always ON relay High-level instruction - F0 (MV): 16-bit data, move Special data registers - DT9040: Manual dial-set register for potentiometer V0 on FP-M control board - DT9096: Channel 0 of digital value for specifying analog data output from analog control

board No. 0

7-5. High-speed Counter Board

This is a 2 channel high-speed counter board. One high-speed counter board can be used to expand the FP-M control board.

1. Specifications

1) General

Item	Description
Ambient temperature	0 °C to +50°C (32 °F to 122 °F)
Ambient humidity	30 % to 80 % RH (non-condensing)
Storage temperature	- 20 °C to +70 °C (- 4 °F to +158 °F)
Storage humidity	30 % to 80 % RH (non-condensing)
Vibration resistance	10 Hz to 55 Hz, 1 cycle/min: double amplitude of 0.75 mm (0.030 in.),
	10 min on 3 axes
Shock resistance	98 m/s ² (10 G) or more, 4 times on 3 axes
Noise immunity	800 V or more (based on in-house measurements)

2) Performance

	Item	Description
Counter	Counter channels	2 channels (CH 0, CH 1)
Specifications	Max. counting speed	1-phase mode: 20 kHz
		2-phase/4-time multiplication mode: 5 kHz
	Counting range	-8,388,608 to +8,388,607
	Number of target value settings	2 points/channel
Input	Input mode	3 modes (2-phase/4-time multiplication mode, individual input
Specifications		mode, directional input mode)
		* The mode is set using the input mode selector.
	Number of input points	3 points (INA, INB, RESET) \times 2 channels
		2 points (RST.E, O.INH) \times 2 channels
	Rated input voltage	24 V DC
	Input voltage range	21.6 to 26.4 V DC
	Insulation method	Optical coupler
	ON voltage	19.2 V DC or less
	OFF voltage	4.8 V DC or more
	Min. input pulse width	50 μ s at INA and INB inputs
		2.5 ms at RESET input
	Input delay time	1 ms or less at RST.E and O.INH inputs
	Input current	Approx. 7.5 mA at INA, INB, and RESET inputs
		Approx. 5 mA at RST.E and O.INH inputs
	Input type	Source

	Item	Description
Output	Number of output points	2 points (OUT 0 and OUT 1) /channel
Specifications	Rated load voltage	24 V DC
	Load voltage range	21.6 to 26.4 V DC
	Insulation method	Optical coupler
	Output type	Transistor NPN open collector
	Max. load current	200 mA
	Residual voltage	1.5 V or less
	Leakage current	100 µA or more
	Response time $ON \rightarrow OFF$	1 ms or less
	$OFF \to ON$	1 ms or less

3) Differences in specifications between high-speed counter function with FP-M control board and high-speed counter board

	Descr	iption						
ltem	High-speed counter function of FP-M control board	High-speed counter board						
Counter channels	1 channel	2 channels (CH 0, CH 1)						
Max. counting speed	1-phase mode: 10 kHz 2-phase mode: 10 kHz	1-phase mode: 20 kHz 2-phase/4-time multiplication mode: 5 kHz						
Number of target value settings	Optionally set	2 points/channel						
Input mode	4 modes (up, down, up/down, and 2-phase mode)	3 modes (2-phase/4-time multiplication, individual input, and directional input mode)						
Number of input points	 3 points Count pulse inputs (X0 and X1) External reset input (X2) × 1 channel 	6 points [Count A/B phase pulse inputs (INA and INB), External reset input (RST)] × 2 channels 4 points [Input to enable external reset (RST.E), Input to inhibit accord output (O.INH)] × 2 channels						
Min. input pulse width	1-phase: 50 μs 2-phase: 50 μs	INA and INB inputs: 50 μs RESET input: 2.5 ms						
Number of output points	Optionally set	2 points (OUT0 and OUT1)/channel						
Functions	 Output set operation (output goes ON) using F162 (HCOS) instruction Output reset operation (output goes OFF) using F163 (HCOR) instruction Reading and changing elapsed value using F1 (DMV) instruction Interrupt function using the elapsed value of F162 (HCOS), F163 (HCOR), F164 (SPD0), and F165 (CAM0) instruction Pulse output control or pattern output control using F164 (SPD0) instruction Cam output control using F165 (CAM0) instruction 	 Output condition control (output goes OFF → ON or ON → OFF) when the target value agrees with the elapsed value Reading and changing elapsed value Reading capture value 						

	Descr	iption
ltem	High-speed counter function of FP-M control board	High-speed counter board
Special data registers related to high-speed counter	 DT9044 and DT9045: Elapsed value area DT9046 and DT9047: Target value area DT9052: Control area 	 High-speed counter board channel 0 area: DT9104 and DT9105: Target value area 0 DT9106 and DT9107: Target value area 1 DT9108 and DT9109: Elapsed value area DT9110 and DT9111: Capture value area High-speed counter board channel 1 area: DT9112 and DT9113: Target value area 0 DT9114 and DT9115: Target value area 1 DT9116 and DT9117: Elapsed value area DT9118 and DT9119: Capture value area DT9120: Control area DT9121: Status monitor area

Note:

• Refer to FP-M/FP1 Programming Manual "4-4. How to Use the High-speed Counter", for details about instructions F1 (DMV), F162 (HCOS), F163 (HCOR), F164 (SPD0), and F165 (CAM0) that are related to the high-speed counter function.

4) Restriction of expansion

• One high-speed counter board can be attached to the control board.

2. Dimensions

(unit: mm/in.)

3. Parts Terminology

■ Input mode setting

• 2-phase/4-time multiplication mode

Switch position

↓ OFF					
	1	2	3	4	

Operation conditions

INA	INB	Counting mode
ON	ON	Down
	OFF	Up
ON	ON	Up
OFF	OFF	Down
INB	INA	Counting mode
INB	INA ON	Counting mode
ON T	ON	Up

• Individual input mode

Switch position

↓ OFF				
OFF	1	2	3	4

Operation conditions

INA	INB	Counting mode
ON	_	Up
INB	INA	Counting mode
ON	INA	Counting mode Down

• Directional input mode

Switch position

OFF	1	2	3	4

Operation conditions

INA	INB	Counting mode
ON	ON	Up
OFF	OFF	Down

Note:

• INA: A-phase pulse input, INB: B-phase pulse input

4. I/O Allocation

Channel number	Data type	Special data register	Description
Channel 0	Target value 0	DT9104, DT9105	These registers are for storing data of the high-speed
	Target value 1	DT9106, DT9107	counter board.
	Elapsed value	DT9108, DT9109	• The target value areas, elapsed value, and capture
	Capture value	DT9110, DT9111	value are processed in binary in the range of
			K-8,388,608 to K8,388,607. If the data outside the
			range is input, the data is handled while disregarding
			bit positions 24 to 31 in each register (bit positions 8
			to 15 in higher 16-bit area of 32-bit data).
Channel 1	Target value 0	DT9112, DT9113	Note:
	Target value 1	DT9114, DT9115	• Be sure to use the F1 (DMV) instruction to transfer
	Elapsed value	DT9116, DT9117	data in these special data registers to other registers,
	Capture value	DT9118, DT9119	or data in other registers to these special data registers.
Channels 0 and 1	Control area	DT9120	 The control modes for the high-speed counter board are specified by DT9120. The control modes, output mode, internal and external reset enable/disable, "target = elapsed" output control, and target setting can be set. For details about construction of DT9120, refer to the following page.
	Status monitor register area	DT9121	 The status of the high-speed counter board can be monitored by DT9121. The status of reset enable input, output disable input, flag condition when target value = elapsed value, and error code can be monitored. For details about construction of DT9121, refer to the following page.

• The data of the high-speed counter board are stored in the special data registers.

■ Construction of DT9120

This area specifies the control modes for the high-speed counter board.

*1. Output mode:

The output goes ON or OFF when the elapsed value becomes equal to the target. These bits specify the mode for output transition when the elapsed value becomes equal to the target value. If the output mode is changed, set the target value again.

Bit position	Channel	Corresponding target value	Corresponding output
0	0	Target 0	OUT00
1	0	Target 1	OUT01
8	4	Target 0	OUT10
9	1	Target 1	OUT11

Bit data 0: OFF \rightarrow ON 1: ON \rightarrow OFF

*2. External reset control bit:

These bits (bit positions 3 and 11) are in the ON state, the external reset inputs (RST.0/RST.1) are ignored as:

By turning ON the external reset enable inputs (RST.E0/RST.E1), you can enable the external reset inputs (RST.0/RST.1). The external reset inputs (RST.0/RST.1) effective are:

- external reset inputs while the external reset enable input is in the ON states.
- the first external reset inputs after the
- external reset enable input turns OFF.

*3. Target setting:

To preset the target values for the high-speed counter board, first, transfer the set values to the special data registers for the target values. Then, turn the target setting bit from 0 to 1. A set value is revised at the moment the leading edge of this bit is detected. Therefore, if the bit is already set to 1, change the bit from 1 to 0 and then change it back to 1.

*4. Number system selection:

This bit is prepared to select the number system used for the high-speed counter board. If you set this bit to 0, the data counts the number in the BCD code. However, the FP-M usually handles numbers in binary, so use of the binary number system is recommended.

Construction of DT9121

The status of the high-speed counter board can be monitored in this area.

*1. Output disable input:

This input disables external output even if the high-speed counter is set to the output enable mode by DT9120. While this input is turned ON, the output of the high-speed counter board is not changed even if the elapsed value becomes equal to the target.

*2. Error codes

A BCD error is detected only when data for the high-speed counter board is set to BCD operation using **F0** (**MV**) and bit position 7 of DT9120.

Bi	Bit position		on	Description
11	10	9	8	
0	0	0	1	BCD error
0	0	1	0	CH0 overflow/underflow
0	1	0	0	CH1 overflow/underflow
1	0	0	0	Watchdog timer error

5. Wiring

Internal circuit of high-speed counter board

6. Programming for High-speed Counter Board

1) High-speed counter board related instructions F0 (MV), F1 (DMV)

- Be sure to use only the **F1 (DMV)** instruction when changing the target value and reading and changing the elapsed value of the high-speed counter board stored in special data registers DT9104 through DT9119.
- Be sure to use the F0 (MV) instruction, when changing the setting and reading the status of the high-speed counter board.

■ Changing the target value

• Only the **F1** (**DMV**) instruction changes the target value of the high-speed counter board stored in special data registers DT9104 through DT9107 and DT9112 through DT9115.

Program example:

• Changing the target value of the high-speed counter board

- When trigger X3 turns ON:
- Transfer the target value 0 "K1000" of board channel 0 to special data registers DT9104 and DT9105.
- Transfer the target value 1 "K2000" of board channel
- 0 to special data registers DT9106 and DT9107.

Note:

• The target value is processed when 1 is set to bit position 5 (target setting bit for channel 0) of DT9120.

■ Changing and reading the elapsed value

• Only the **F1** (**DMV**) instruction changes and reads the elapsed value of the high-speed counter board stored in the special data registers DT9108, DT9109, DT9116, and DT9117.

Program example:

- Reading the elapsed value of the high-speed counter board The elapsed value of board channel 0 stored in DT9108 is copied to data register DT0.
- Changing the elapsed value of the high-speed counter board The elapsed value of board channel 0 is changed to K123,456 when trigger X2 turns ON.

R9010: Always ON relay

DT9108: Elapsed value area of high-speed counter board channel 0

DT9108: Elapsed value area of high-speed counter board channel 0

■ Reading the capture value

• Only the **F1** (**DMV**) instruction reads the capture value of the high-speed counter board stored in special data registers DT9110, DT9111, DT9118, and DT9119.

Program example:

• Reading the capture value of the high-speed counter board The capture value of board channel 0 stored in DT9110 is copied to data register DT0 when trigger X5 turns ON.

DT9110: Capture value area of the highspeed counter board channel 0

Monitoring the status of the high-speed counter board

• The F0 (MV) instruction reads the control status of the high-speed counter board stored in special data register DT9121.

Program example:

• Monitoring the status of the high-speed counter board The control status of the high-speed counter board stored in DT9121 is copied to word internal relay WR10.

DT9121: High-speed counter board status monitor area

2) Notes on programming the high-speed counter

- Operation errors will occur in the following circumstances:
- The high-speed counter board is disconnected from the FP-M control board when instructions F0 (MV) and F1 (DMV) are executed.
- The setting of the input mode selector on the high-speed counter board is incorrect when instructions F0 (MV) and F1 (DMV) are executed.
- When the target value is consecutively set to the same channel and executed.
- When the changing/reading of the elapsed and capture value are executed consecutively. If executing consecutively, execute leaving one or more scan times open.
- When changing/reading the contents of special data registers DT9104 through DT9119, be sure to use the **F1 (DMV)** instruction.
- Once the operation mode is specified, the high-speed counter operates in the mode until a new setting is made.
- An error will occur if an elapsed value is read simultaneously in a normal program and interrupt program.

3) Applications

Example 1: Position control

Program example

*1 …… The mode for the output transition is specified as $ON \rightarrow OFF$.

Example 2: Elapsed value comparison control

High-speed counter board setting conditions: Individual input mode (A phase: 1,000 pulse, B phase: 1,000 pulse)

Program example

Time chart:

Individual	A phase		
input mode	B phase	ON OFF 1,000 pulses	
		1000 – 1,000 pulses – –	
		500	
Elapsed	value	0	
		-500	
	l	-1000	
Output mode	X0 and X1	ON OFF	
Software reset	X2	ON OFF	
Target setting	X5	OR OFF	
Counter output	t OUT 00	OR OFF	
"Target 0 = ela value" output	R4	ON OFF	
Counter output	t OUT 01	OFF	
"Target 1 = ela value" output	R5 R5	ON OFF	

7-6. FP-M Transmitter Master Board (MEWNET-TR)

Refer to "FP-M/FP1 MEWNET-TR (Remote I/O) system Technical Manual" for details about the FP-M transmitter master board.

I/O information can be exchanged between the master and several slave stations at a remote site. A maximum of 32 inputs and 32 outputs can be controlled per master board. This system supports a total transmission distance of 700 m per port using a twisted pair cable.

■ MEWNET-TR (distributed I/O) system

MEWNET-TR System Specifications

Item	Description
Communication method	Two-lines, half-duplex
Syncronization method	Asyncronous system
Communication path	2-conductor cable or twisted pair cable
Transmission distance	Max. 400 m (1,312.34 ft.) with 2-conductor cable
	Max. 700 m (2,296.59 ft.) with twisted pair cable
Communication speed	500 kbps
Controllable I/O points	Max. 48 inputs and 32 outputs/FP-M transmitter master board (MEWNET-TR)
(See note.)	Max. 128 inputs and 96 outputs/control board
Controllable slave stations	Combination of FP I/O transmitter units (16, 8, 4 point input and
(See note.)	output types)
Interface	RS485

Notes:

• The controllable I/O points are set by the operation mode selector.

• Controllable slave stations are determined by the number of unit I/O points used by system.

1. Specifications

1) General

ltem	Description
Ambient temperature	0 °C to +50 °C (32 °F to 122 °F)
Ambient humidity	30 % to 80 % RH (non-condensing)
Storage temperature	-20 °C to +70 °C (- 4 °F to +158 °F)
Storage humidity	30 % to 80 % RH (non-condensing)
Vibration resistance	10 Hz to 55 Hz, 1 cycle/min: double amplitude of 0.75 mm (0.030 in.),
	10 min on 3 axes
Shock resistance	98 m/s ² (10 G) or more, 4 times on 3 axes
Operating environment	Must be free from corrosive gases and excessive dust.

2) Performance

Item	Description
Rated operating voltage	24 V DC
Operating voltage range	20.4 to 26.4 V DC
Current consumption	70 mA or less (at 24 V DC)

Recommended cable

Conductor:

Size: Min. 1.25 mm² (AWG16 or larger) Resistance: Max. 16.8 Ω/km (at 20 °C/68 °F) Cable: Insulation material: Polyethylene Insulation thickness: Max. 0.5 mm/0.020 in. Jacket diameter: Approx. 8.5 mm/0.335 in.

3) Restriction of expansion

• A total of three FP-M transmitter master boards (MEWNET-TR) can be attached to the control board.

2. Dimensions

3. Parts Terminology

Operation monitor LEDs

LED		Description		
POWER	R ON: Power is supplied.			
	OFF:	Power is not supplied.		
COM.	Flashing:	Normal communication status (Flashes in approx. 0.2 s intervals)		
	ON:	Not communicating		
	Flashing	A communication error occurred at the slave station. The normal slave station		
	slowly:	continues I/O control operation. (Flashes in approx. 1 s intervals)		
	OFF:	Abnormal condition		
ALARM	Flashing:	Station number setting error		
	ON:	FP-M transmitter master board (MEWNET-TR) error		
	OFF:	Normal		

■ Operation mode selector setting

Selector	Function	Description		Sele	ector	pos	ition		
number			1 2	3	4	5	6	7	8
1	System configuration	I/O link system:	ON						
	selection	(FP-M – FP-M)							
		(FP-M – FP3/FP10S)							
		I/O link system:	OFF						
		[FP-M (master) – FP I/O							
		transmitter unit (slave)]							
2	Output operation	Stop	ON						
	condition during a	Start (continues I/O control	OFF						
	communication error	operation)							
3	Terminal station setting	Not a terminal station		ON					
		Terminal station		OFF					
4	Error flag (R9036)	ON when an I/O link error			ON				
	setting	occurs							
		Not setting			OFF				
5	Not used								
6, 7,	I/O allocation setting	32 inputs: X110 to X12F					OFF	—	—
and 8	(use I/O address for	32 outputs: Y110 to Y12F							
	expansion board)	48 inputs: X70 to X87,					ON	ON	ON
		X90 to X107							
		32 outputs: Y70 to Y7F,							
		Y90 to Y9F							
		24 inputs: X70 to X87					ON	ON	OFF
		16 outputs: Y70 to Y7F							
		48 inputs: X30 to X47,					ON	OFF	ON
		X50 to X67							
		32 outputs: Y30 to Y3F,							
		Y50 to Y5F							
		24 inputs: X30 to X47					ON	OFF	OFF
		16 outputs: Y30 to Y3F							

7-7. FP-M I/O Link Board (MEWNET-F)

Refer to "REMOTE I/O SYSTEM Technical Manual" for details about MEWNET-F (Remote I/O) system.

Using a FP-M I/O link board, this function allows the exchange of I/O information with the master unit of the FP series programmable controller through a 2-conductor cable.

■ MEWNET-F (distributed I/O) system

MEWNET-F (Remote I/O) System Specifications

Item	Description
Communication method	Two-lines, half-duplex
Syncronization method	Asyncronous system
Communication path	2-conductor cable or twisted pair cable
Transmission distance	Max. 400 m (1,312.34 ft.) with 2-conductor cable
	Max. 700 m (2,296.59 ft.) with twisted pair cable
Communication speed	500 kbps
Controllable I/O points	Max. 1,024 points per master unit
Controllable slave stations	Max. 32 stations per master unit
Interface	RS485

1. Specifications

1) General

Item	Description
Ambient temperature	0 °C to +50 °C (32 °F to 122 °F)
Ambient humidity	30 % to 85 % RH (non-condensing)
Storage temperature	-20 °C to +70 °C (- 4 °F to +158 °F)
Storage humidity	30 % to 85 % RH (non-condensing)
Breakdown voltage	Across external terminal and frame ground terminal: 500 V AC, 1 min
Insulation resistance	100 M Ω or more, between external terminal and frame ground terminal
	(measured with a 500 V DC megger)
Vibration resistance	10 Hz to 55 Hz, 1 cycle/min: double amplitude of 0.75 mm (0.030 in.),
	10 min on 3 axes
Shock resistance	98 m/s ² (10 G) or more, 4 times on 3 axes
Noise immunity	1,000 Vp-p with pulse width, 50 ns or 1 μ s
	(based on in-house measurements)
Operating environment	Must be free from corrosive gases and excessive dust.

2) Performance

Item	Description
Rated operating voltage	24 V DC
Operating voltage range	21.6 to 26.4 V DC
Current consumption	50 mA or less (at 24 V DC)

Recommended cable

Conductor:

Size: Min. 1.25 mm² (AWG16 or larger) Resistance: Max. 16.8 Ω /km (at 20 °C/68 °F) Cable:

Insulation material: Polyethylene Insulation thickness: Max. 0.5 mm/0.020 in. Jacket diameter: Approx. 8.5 mm/0.335 in.

3) Restriction of expansion

• One FP-M I/O link board (MEWNET-F) can be attached to the control board.

2. Dimensions

3. Parts Terminology

(6) **Operation monitor LEDs:** (See following page.)

Indicates the operation and communication status of the MEWNET-F system.

Operation monitor LEDs

LED		Description
POWER	ON:	Power is supplied.
	OFF:	Power is not supplied.
COM.	Flashing:	Normal communication status (Flashes in approx. 0.2 s intervals)
	ON:	Not communicating
	Flashing	A communication error occurred at the slave station. The normal slave station
	slowly:	continues I/O control operation. (Flashes in approx. 1 s intervals)
	OFF:	Abnormal condition
ALARM	Flashing:	Station number setting error
	ON:	FP-M I/O link board (MEWNET-F) error
	OFF:	Normal

Operation mode selector setting

Selector	Function	Function Description		Selector position			
number			1	2	3	4	
1 and 2	Terminal station setting	Not terminal station	OFF	OFF			
		Terminal station	ON	ON			
3	Output operation condition	Stop			OFF		
	during a communication error	ON state (maintain its output condition)			ON		
4	I/O points setting	64 points				OFF	
		32 input points: X110 to X12F					
		32 output points: Y110 to Y12F					
		32 points				ON	
		16 input points: X110 to X11F					
		16 output points: Y110 to Y11F					

CHAPTER 8

APPENDIX

Performance Specifications	170
1. Control and Expansion Board Specifications	170
2. Intelligent Boards Specifications	173
I/O Allocation Table	
1. I/O Allocation of Control Boards	181
2. I/O Allocation of Expansion Boards	181
Converter Boards	182
4. Allocation of High-speed Counter Board	183
5. I/O Allocation of FP-M Transmitter Master Board	
6. I/O Allocation of FP-M I/O Link Board	184
Table of Memory Areas	185
System Registers	187
• •	
• •	
- ·	
Table of the Error Codes	
1. Table of Total-check Error Codes	210
2. Table of Self-diagnostic Error Codes	211
Table of Instructions	
1. Basic Instructions	212
2. High-level Instructions	215
•	
1. Differences Between NPST-GR Ver. 2.4 and 3.1	
2. Differences Between the FP Programmer and FP	
	222
	 Control and Expansion Board Specifications. Intelligent Boards Specifications. Dimensions

8-1. Performance Specifications

1. Control and Expansion Board Specifications

	ltem	Description		
Programm	ing method	Relay symbol		
Control me	thod	Cyclic operation		
Program m	nemory	Built-in RAM (lithium battery backup)		
		EEPROM (master memory)/EPROM (memory) [optional items]		
Program c	apacity	2.7 k type: 2,720 steps		
		5 k type: 5,000 steps		
Operation	speed	1.6 µs/step: basic instruction		
Kinds of	Basic	81		
instruction	High-level	111		
External in	put (X)	208 points (See note.)		
External or	utput (Y)	208 points (See note.)		
Internal rel	ay (R)	1,008 points		
Special int	ernal relay (R)	64 points		
Timer/cour	nter (T/C)	144 points		
Auxiliary ti	mer	Unlimited number of points (0.01 s to 327.67 s)		
Data regist	ter (DT)	2.7 k type: 1,660 words		
		5 k type: 6,144 words		
Special da	ta register (DT)	112 words (For control board: 70 words, for intelligent boards: 42 words)		
Index regis	ster (IX, IY)	2 words		
MCR point	s	32 points		
Number of	labels (JMP,LOOP)	64 points		
Differential	points (DF or DFI)	Unlimited number of points		
Number of	step ladders	128 stages		
Number of	subroutines	16 subroutines		
Number of	interrupt programs	9 programs		
Advanced	High-speed counter	Input: Count input (X0, X1)/reset input (X2)		
control	(1 channel)	Counting input mode: up mode, down mode, up/down mode, 2-phase mode		
functions		Counting range: -8,388,608 to 8,388,607		
		Max. counting speed: up/down mode 10 k Hz, 2-phase mode 10 k Hz		
		Min. input pulse width: 1-phase 50 μ s • 2-phase 50 μ s		
	Manual dial-set	2 potentiometers		
	register			
	Pulse catch input	Total 8 points (X0 to X7)		
	Interrupt input			
	Periodical interrupt	10 ms to 30 s (10 ms interval)		

Note:

• The actual number of points that can be used is the total number of I/O points of the control board and the expansion board.

ltem		Description
Advanced	RS232C port	Communication speed: 300/600/1,200/2,400/4,800/9,600/19,200 bps
control	(See note.)	Communication distance per port: 15 m/49.213 ft.
functions		Connector: D-SUB 9 pin connector
	Clock/calendar	Clock/calendar function available
	(See note.)	
	I/O link	64 I/O points (32 inputs and 32 outputs) or 32 I/O points (16 inputs and 16 outputs)
	Pulse output	2 points (Y6 and Y7)
	(See note.)	Pulse output frequency range:
		360 to 5,000 Hz/180 to 5,000 Hz/90 to 5,000 Hz/45 to 5,000 Hz
	Constant scan	2.5 ms × set value (160 ms or less)
Adjustable	input time filtering	1 to 128 ms
Self-diagnosis function		Watchdog timer, battery detection, program check, etc.
Memory ba	ackup (at 25°C)	Approx. 27,000 h (C types: C20RC, C20TC and C32TC)
		Approx. 53,000 h (except C types: C20R, C20T and C32T)

Notes:

• The RS232C port and clock/calendar functions are available for the C types (C20RC, C20TC and C32TC).

- The pulse output function is available for the transistor output type.
- The two pulse outputs, Y6 and Y7 cannot be used at the same time.

Input specifications

Item	Description
Rated input voltage	24 V DC
Operating voltage range	20.4 V to 26.4 V DC
ON voltage/current	19.2 V or less/3 mA or less (19.2 V or less/3.6 mA: C32T series only)
OFF voltage/current	2.4 V or more/1 mA or more
Input impedance	Control board: Approx. 4.8 kΩ
	Expansion board: Approx. 4.4 k Ω
Response time ON ↔ OFF	2 ms or less (at normal input) (See note.)
	50 μ s or less (in setting high-speed counter)
	200 μ s or less (in setting interrupt input)
	500 μ s or less (in setting pulse catch)
Operating mode indicator	LED
Insulation method	Optical coupler

Notes:

Output specifications

Relay output type

Item	Description
Rated operating voltage	24 V DC
Operating voltage range	22.8 V to 26.4 V DC
Output type	Normally open (1 Form A), 2 points/common
Rated control capacity	2 A 250 V AC, 2 A 30 V DC (resistive load)(See note 1.)
Response time $OFF \rightarrow ON$	8 ms or less
$ON \rightarrow OFF$	10 ms or less
Mechanical life time	2×10^7 operations or more
Electrical life time	10 ⁵ operations or more
Operating mode indicator	LED

Transistor output type (PNP or NPN open collector)

Item	Description
Insulation method	Optical coupler
Rated load voltage	24 V DC
Operating load voltage range	20.4 V to 26.4 V DC
Max. load current	0.8 A/point (at 24 V DC) (See note 2.)
OFF state leakage current	100 μA or less
ON state voltage drop	1.5 V or less
Response time $OFF \rightarrow ON$	1 ms or less
$ON \rightarrow OFF$	1 ms or less (100 μ s or less: Y6 and Y7)
Surge absorber	Zener diode
Operating mode indicator	LED

Notes:

2. The maximum load current is kept within the following ranges when the ambient temperature is high.

2. Intelligent Boards Specifications

1) Analog I/O board specifications

Item		Description	
Analog	Number of input channels	4 channels	
input	Input range	0 to 5 V, 0 to 10 V, and 0 to 20 mA	
specifications	Resolution	1/256	
	Overall accuracy	±3LSB (at 25 °C/77 °F),	
		±5LSB (at 0 °C to 50 °C/32 °F to 122 °F)	
	Response time	2.5 ms/channel	
	Input impedance	1 M Ω or more (for 0 to 5 V and 0 to 10 V range)	
		250 Ω (for 0 to 20 mA range)	
	Absolute input range	+15 V (at 0 to 5 V and 0 to 10 V range)	
		+30 mA (at 0 to 20 mA range)	
	Digital converted data	K0 to K255	
Analog	Number of output channels	1 channel	
output	Output range	0 to 5 V, 0 to 10 V, and 0 to 20 mA	
specifications	Resolution	1/256	
	Overall accuracy	±1.0 % of full scale (at 25 °C/77 °F),	
		± 2.0 % of full scale (at 0 °C to 50 °C/32 °F to 122 °F)	
	Response time	2.5 ms/channel	
	Output impedance	$0.5~\Omega$ or less (for 0 to 5 V and 0 to 10 V output range)	
	Max. output current	20 mA (for 0 to 5 V and 0 to 10 V output range)	
	Allowable load resistance	0 to 500 Ω (for 0 to 20 mA range)	
	Digital data	K0 to K255	
Insulation method		Optical coupler (not insulated between channels)	

Analog data conversion characteristics

• 0 to 5 V range

• 0 to 10 V range

2) A/D converter and D/A converter board specifications

■ A/D converter board specifications

Item	Description
Number of input channels	4 channels
Input range	0 to 5 V, 0 to 10 V, and 0 to 20 mA
Resolution	1/1000
Overall accuracy	±1.0 % of full scale (at 25°C/77 °F),
	±2.0 % of full scale (at 0 °C to 50 °C/32 °F to 122 °F)
Response time	2.5 ms/channel
Input impedance	1 M Ω or more (for 0 to 5 V and 0 to 10 V range)
	250 Ω (for 0 to 20 mA range)
Absolute input range	+15 V (at 0 to 5 V and 0 to 10 V range)
	+30 mA (at 0 to 20 mA range)
Digital converted data	K0 to K1000
Insulation method	Optical coupler (not insulated between channels)

■ D/A converter board specifications

Item	Description
Number of output channels	2 channels
Output range	0 to 5 V, 0 to 10 V, and 0 to 20 mA
Resolution	1/1000
Overall accuracy	±1.0 % of full scale (at 25 °C/77 °F),
	±2.0 % of full scale (at 0 °C to 50 °C/32 °F to 122 °F)
Response time	2.5 ms/channel
Output impedance	0.5Ω or less (for 0 to 5 V and 0 to 10 V range)
Max. output current	20 mA (for 0 to 5 V and 0 to 10 V range)
Allowable load resistance	0 to 500 Ω (for 0 to 20 mA range)
Digital data	K0 to K1000
Insulation method	Optical coupler (not insulated between channels)

Analog data conversion characteristics

Item		Description	
Counter	Counter channels	2 channels (CH 0, CH 1)	
specifications	Max. counting speed	1-phase mode: 20 kHz	
		2-phase mode: 5 kHz	
	Counting range	-8,388,608 to +8,388,607	
	Number of target value settings	2 points/channel	
Input	Input mode	3 modes (2-phase/4-time multiplication mode, individual input	
specifications		mode, directional input mode)	
		* The mode is set using the input mode selector.	
	Number of input points	3 points (INA, INB, RESET) × 2 channels	
		2 points (RST.E, O.INH) \times 2 channels	
	Rated input voltage	24 V DC	
	Input voltage range	21.6 to 26.4 V DC	
	Insulation method	Optical coupler	
	ON voltage	19.2 V DC or less	
	OFF voltage	4.8 V DC or more	
	Min. input pulse width	50 μ s at INA and INB inputs	
		2.5 ms at RESET input	
	Input delay time	1 ms or less at RST.E and O.INH inputs	
	Input current	Approx. 7.5 mA at INA, INB, and RESET inputs	
		Approx. 5 mA at RST.E and O.INH inputs	
	Input type	Source	
Output	Number of output points	2 points (OUT 0 and OUT 1)	
specifications	Rated load voltage	24 V DC	
	Load voltage range	21.6 to 26.4 V DC	
	Insulation method	Optical coupler	
	Output type	Transistor PNP or NPN open collector	
	Max. load current	200 mA	
	Residual voltage	1.5 V or less	
	Leakage current	100 µA or more	
	Response time $ON \rightarrow OFF$	1 ms or less	
	$OFF \to ON$	1 ms or less	

3) High-speed counter board specifications

4) FP-M transmitter master board (MEWNET-TR) specifications

■ Performance specifications

Item	Description
Rated operating voltage	24 V DC
Operating voltage range	20.4 to 26.4 V DC
Current consumption	70 mA or less (at 24 V DC)

■ MEWNET-TR system specifications

Item	Description
Communication method	Two-lines, half-duplex
Syncronization method	Asyncronous system
Communication path	2-conductor cable (VCTF: 0.75 mm × 2 conductors)
Transmission distance	Max. 400 m (1,312.34 ft.) with 2-conductor cable
	Max. 700 m (2,296.59 ft.) with twisted pair cable
Communication speed	500 kbps
Controllable I/O points	Max. 48 inputs and 32 outputs/FP-M transmitter master board (MEWNET-TR)
(See note.)	Max. 128 inputs and 96 outputs/control board
Controllable slave stations	Combination of FP I/O transmitter units
(See note.)	(16, 8, 4 point input and output types)
Interface	RS485

5) FP-M I/O link board (MEWNET-F) specifications

Performance specifications

Item	Description
Rated operating voltage	24 V DC
Operating voltage range	21.6 to 26.4 V DC
Current consumption	50 mA or less (at 24 V DC)

MEWNET-F system specifications

Item	Description
Communication method	Two-lines, half-duplex
Syncronization method	Asyncronous system
Communication path	2-conductor cable (VCTF: 0.75 mm × 2 conductors)
Transmission distance	Max. 400 m (1,312.34 ft.) with 2-conductor cable
	Max. 700 m (2,296.59 ft.) with twisted-pair cable
Communication speed	500 kbps
Controllable I/O points	Max. 1,024 points per master unit
(See note.)	
Controllable slave stations	Max. 32 stations per master unit
(See note.)	
Interface	RS485

Notes:

• The controllable I/O points are set by the operation mode selector.

• Controllable slave stations are determined by the number of unit I/O points used by system.

8-2. Dimensions

1. Board Type

1) Control boards

■ C20R and C20RC types

e.g.) C20R type

■ C32T and C32TC types

e.g.) C32T type

2) Expansion boards ■ M1T-E20R type

■ C20T and C20TC types

e.g.) C20TC type

■ M1T-E, M1T-EI, and M1T-EO types e.g.) M1T-EI type

Tolerance ±1.0/±0.39 (unit: mm/in.)

3) Intelligent and link boards

■ Analog I/O board

■ D/A converter board

■ FP-M transmitter master board

■ A/D converter board

■ High-speed counter board

■ FP-M I/O link board

Tolerance ±1.0/±0.39 (unit: mm/in.)

4) Building dimensions

Control board C20R, C20T, C20TC, and C32T types

Board	H (mm/in.)
1 control board	43.6/1.717
1 control board and	65.2/2.567
1 expansion board	
1 control board and	86.8/3.417
2 expansion boards	
1 control board and	108.4/4.268
3 expansion boards	
1 control board and	130.0/5.118
4 expansion boards	

Control board C20RC and C32TC types

5) Mounting hole dimensions

Board	H (mm/in.)
1 control board	45.5/1.791
1 control board and	67.1/2.642
1 expansion board	
1 control board and	88.7/3.492
2 expansion boards	
1 control board and	110.3/4.343
3 expansion boards	
1 control board and	131.9/5.193
4 expansion boards	

Tolerance ±1.0/±0.39 (unit: mm/in.)

2. Case Type

1) Case dimensions for control, expansion, intelligent and link boards

2) Building dimensions Control board C20R, C20T, and C32T types

Board	H (mm/in.)
1 control board	44.2/1.740
1 control board and	63.8/2.512
1 expansion board	
1 control board and	85.4/3.362
2 expansion boards	
1 control board and	107.0/4.213
3 expansion boards	
1 control board and	128.6/5.063
4 expansion boards	

Control board C20RC, C20TC, and C32TC types

3) Mounting hole dimensions

Board	H (mm/in.)
1 control board	44.2/1.740
1 control board and	63.8/2.512
1 expansion board	
1 control board and	85.4/3.362
2 expansion boards	
1 control board and	107.0/4.213
3 expansion boards	
1 control board and	128.6/5.063
4 expansion boards	

Tolerance ±1.0/±0.39 (unit: mm/in.)

8-3. I/O Allocation Table

1. I/O Allocation of Control Boards

Board type	I/O point	I/O allocation
C20R and C20RC	12 inputs	X0 to XB
	8 outputs	Y0 to Y7
C20T and C20TC	12 inputs	X0 to XB
	8 outputs	Y0 to Y7
C32T and C32TC	16 inputs	X0 to XF
	16 outputs	Y0 to YF

 \bullet The I/O addresses for the control boards are fixed as follows.

2. I/O Allocation of Expansion Boards

• The I/O addresses for the expansion boards are set by the I/O address setting switches as follows.

		I/O address setting switches and I/O allocation				
Board type	I/O point	ON 0FF 1 2 3 4 5	ON 0FF 1 2 3 4 5	ON 1 2 3 4 5	ON 000000000000000000000000000000000000	
E20R type	12 inputs	X30 to X3B	X50 to X5B	X70 to X7B	X90 to X9B	
Output: 8 Input: 12	8 outputs	Y30 to Y37	Y50 to Y57	Y70 to Y77	Y90 to Y97	
M1T-E type	24 inputs	X30 to X3F X40 to X47	X50 to X5F X60 to X67	X70 to X7F X80 to X87	X90 to X9F X100 to X107	
Output: 16 Input: 24	16 outputs	Y30 to Y3F	Y50 to Y5F	Y70 to Y7F	Y90 to Y9F	
M1T-EI type I/O address setting switches SW2 SW1 Input Input block B: 12 block A: 24	Input block A: 24 inputs (using SW1)	X30 to X3F X40 to X47	X50 to X5F X60 to X67	X70 to X7F X80 to X87	X90 to X9F X100 to X107	
	Input block B: 12 inputs (using SW2)	X30 to X3B	X50 to X5B	X70 to X7B	X90 to X9B	
M1T-EO type I/O address setting switches SW2 SW1	Output block A: 16 outputs (using SW1)	Y30 to Y3F	Y50 to Y5F	Y70 to Y7F	Y90 to Y9F	
Output Output block B: 16 block A: 16	Output block B: 16 outputs (using SW2)	Y30 to Y3F	Y50 to Y5F	Y70 to Y7F	Y90 to Y9F	

Notes:

• When connecting the expansion boards to the control board, be sure not to overlap I/O addresses.

 When connecting the M1T-EI and M1T-EO type expansion boards, I/O address settings for block A and B should be performed separately using the I/O address setting switches SW1 and SW2. Be sure to configure SW1 and SW2 with different settings in order to prevent I/O address overlap.

3. Allocation of Analog I/O, A/D Converter, and D/A Converter Boards

- The data for the analog I/O, A/D converter, and D/A converter boards are stored in specially selected data registers (DT9080 to DT9103) using the board number selector.
- The data for these boards are stored in special data registers as follows.

Board type	Board number	Board number selector position	Input/output	Channel number	Special data register
Analog I/O board	No. 0	OFF OFF OFF OFF	Analog input	0	DT9080
				1	DT9081
				2	DT9082
				3	DT9083
			Analog output	0	DT9096 and DT9097
	No. 1	ON OFF OFF OFF	Analog input	0	DT9084
				1	DT9085
		✓ ■ ■ ■ ■ ■ ON 1 2 3 4		2	DT9086
		ON 1 2 3 4		3	DT9087
			Analog output	0	DT9098 and DT9099
	No. 2	OFF ON OFF OFF	Analog input	0	DT9088
				1	DT9089
		▼		2	DT9090
		ON 1 2 3 4		3	DT9091
			Analog output	0	DT9100 and DT9101
	No. 3	ON ON OFF OFF	Analog input	0	DT9092
				1	DT9093
				2	DT9094
		ON 1 2 3 4		3	DT9095
			Analog output	0	DT9102 and DT9103
A/D converter board	No. 0	ON 1 2 3 4	Analog input	0	DT9080
				1	DT9081
				2	DT9082
				3	DT9083
	No. 1	ON OFF OFF OFF	Analog input	0	DT9084
				1	DT9085
		V ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■		2	DT9086
				3	DT9087
	No. 2	OFF ON OFF OFF	Analog input	0	DT9088
				1	DT9089
		▼		2	DT9090
				3	DT9091
	No. 3	ON ON OFF OFF	Analog input	0	DT9092
				1	DT9093
		▼ ■ L L ON 1 2 3 4		2	DT9094
				3	DT9095

Note:

• Board number selector upper state is "OFF (☐)" and the lower state is "ON (☐)".

Board type	Board number	Board number selector position	Input/output	Channel number	Special data register
D/A converter board	D/A converter board No. 0 OFF O		Analog output	0	DT9096
		♥ ↓ ON 1 2 3 4		1	DT9097
	No. 1 ON OFF OF		Analog output	0	DT9098
		♥ ■ □ □ □ ON 1 2 3 4		1	DT9099
No. 3		Analog output	0	DT9100	
		♥ ON 1 2 3 4		1	DT9101
			Analog output	0	DT9102
		ON 1 2 3 4		1	DT9103

Notes:

- Refer to page 201, "8-7. Special Data Registers", for details about special data registers.
- When two or more of these boards are installed, be sure to configure the board number selector in order to prevent special data register overlap. The board number selectors are set to board number 0 (all "OFF" position) when shipped.
- Board number selector upper state is "OFF (☐)" and the lower state is "ON (☐)".

4. Allocation of High-speed Counter Board

• The data for the high-speed counter board are stored in specially selected data registers (DT9104 to DT9121).

• The data for these boards are stored in special data registers as follows.

Board type	Channel number	Data type	Special data register
High-speed counter	Channel 0	Target value 0	DT9104 and DT9105
board		Target value 1	DT9106 and DT9107
		Elapsed value	DT9108 and DT9109
		Capture value	DT9110 and DT9111
	Channel 1	Target value 0	DT9112 and DT9113
		Target value 1	DT9114 and DT9115
		Elapsed value	DT9116 and DT9117
		Capture value	DT9118 and DT9119
	Channels 0 and 1	Control area	DT9120
		Status monitor register area	DT9121

5. I/O Allocation of FP-M Transmitter Master Board

• The I/O addresses for the transmitter master board are set according to the operation mode selector as follows.

Board type	Operation mode selector position		I/O point	I/O allocation
	6 7	8		
FP-M	OFF —	· _	32 inputs	X110 to X12F
transmitter			32 outputs	Y110 to Y12F
master board	ON ON	ON	48 inputs	X70 to X87, X90 to X107
			32 outputs	Y70 to Y7F, Y90 to Y9F
	ON ON	OFF	24 inputs	X70 to X87
			16 outputs	Y70 to Y7F
	ON OF	F ON	48 inputs	X30 to X47, X50 to X67
			32 outputs	Y30 to Y3F, Y50 to Y5F
	ON OF	F OFF	24 inputs	X30 to X47
			16 outputs	Y30 to Y3F

Notes:

• When connecting the FP-M transmitter master board, be sure not to overlap I/O addresses.

• Switch positions 1 to 5 of the operation mode selector are not ignored.

6. I/O Allocation of FP-M I/O Link Board

• The I/O addresses for the FP-M I/O link board are set according to the operation mode selector as follows.

Board type	Operation mode selector position 4	I/O point	I/O allocation
FP-M I/O	OFF	64 points	
link board		32 inputs	X110 to X12F
		32 outputs	Y110 to Y12F
	ON	32 points	
		16 inputs	X110 to X11F
		16 outputs	Y110 to Y11F

Notes:

• When connecting the FP-M I/O link board, be sure not to overlap I/O addresses.

• Switch positions 1 to 3 of the operation mode selector are not ignored.

8-4. Table of Memory Areas

lte m			Numbering
Item	Name and function	Symbol	2.7 k type 5 k type
External I/O relays	/s This relay feeds signals to the programmable controllers		208 points (X0 to X12F)
	from an external device such as a limit switch or photoelectric sensor.	WX (word)	13 words (WX0 to WX12)
	External output relay This relay outputs the program execution result of the	Y (bit)	208 points (Y0 to Y12F)
	programmable controllers and activates an external device such as a solenoid or motor.	WY (word)	13 words (WY0 to WY12)
Internal relays	Internal relay This relay does not provide an external output and can	R (bit)	1,008 points (R0 to R62F)
	be used only within the programmable controllers.	WR (word)	63 words (WR0 to WR62)
	Special internal relay This relay is a special internal relay which has specific applications. This relay cannot be used for output. Use it	R (bit)	64 points (R9000 to R903F)
	only as a contact. Refer to page 198, "8-6. Special Internal Relays".	WR (word)	4 words (WR900 to WR903)
Timer/ counter	Timer contact This contact is the output of a TM (timer) instruction. If a TM instruction has timed out, the contact with the same number turns ON.	T (bit)	100 points (T0 to T99)
	Counter contact This contact is the output of a CT (counter) instruction. If a CT instruction has counted up, the contact with the same number turns ON.	C (bit)	44 points (C100 to C143)
	Timer/counter set value The timer/counter set value area is a memory area where the set value of the TM/CT (timer/counter) instructions is stored. Each timer/counter set value area consists of 1 word (1 word = 16 bits). The address of this memory area corresponds to the TM/CT instruction number.	SV (word)	144 words (SV0 to SV143)
	Timer/counter elapsed value The timer/counter elapsed value area is a memory area where the elapsed value of the TM/CT (timer/counter) instruction is stored. Each timer/counter elapsed value area consists of 1 word (1 word = 16 bits). The address of this memory area corresponds to the TM/CT instruction number.	EV (word)	144 words (EV0 to EV143)

Notes:

- Timer/counter contacts are represented in decimal.
- Word addresses are represented in decimal.
- The addresses for relay bits (X, Y, and R) are represented by a combination of word addresses (decimal) and hexadecimals. The least significant digit is hexadecimal and the rest of the digits are decimal.

ltem	Name and function		Num	Numbering		
nem	Name and function	Symbol	2.7 k type	5 k type		
Data area	Data register The data register is a memory area for data processed within the programmable controllers and each data register consists of 1 word (1 word = 16 bits).	DT (word)	1,660 words (DT0 (to (DT1659)	6,144 words (DT0 to DT6143)		
	Special data register The special data register is a memory area that has special applications. Refer to page 201, "8-7. Special Data Registers" for details about the special data register.	DT (word)	(DT9000 t ai	vords o DT9069 nd o DT9121		
Index modifier	Index register The index register can be used as an address and constants modifier.	IX (word) IY (word)	One wo (No number			
Constant	Decimal constants	К	16-bit constan K-32,768	nt (word): to K32,767		
			K-2,147,4	t (double word): 83,648 to 483,647		
	Hexadecimal constants	Н	16-bit constant (word): H0 to HFFFF			
			32-bit constant H0 to HF	(double word): FFFFFF		

8-5. System Registers

1. What Are System Registers

- The FP series programmable controller is configured by setting certain parameters. The parameters, which configure the system and special functions, are called system registers.
- Like other registers in the FP series programmable controller, each system register consists of 16 bits. System register addresses are also assigned to each of the system registers.

■ Summarizing the functions of system registers

By function, system registers of the FP series programmable controller are classified into 8 types, as follows:

(1) System register 0:	Size prepared for program capacity (fixed). The value in this system register cannot be changed when you use an FP-M. You can use it only for monitoring the program capacity of the FP-M.
(2) System registers 5, 6, 7, 8, and 14:	Characteristics settings of the area for timer/counter instructions and operands. Performs assignments for numbers of timers/counters and the hold/non-hold area.
③ System registers 4, 20, and 26:	Operation settings when abnormality is detected. Sets whether the duplicated use of output and a low battery are to be regarded as errors, or whether the programmable controller should execute a program when an operation error occurs.
(4) System registers 31 and 34:	Processing time settings. Sets the scan time of the programmable controller and the waiting time of computer link communication.
(5) System registers 400, 402, and 403:	Input mode settings. Performs settings of the inputs, such as high-speed counter input, pulse catch inputs, and interrupt inputs.
(6) System registers 404 through 407:	Input time filtering settings. Sets the input time constants in 8-input units.
⑦ System registers 410 and 411:	Communication settings of port for programming tools (RS422). Sets the station number, the character length, and the modem compatibility for the programming port.
(8) System registers 412 through 418:	Communication settings of RS232C serial port. Sets the communication specifications of the RS232C serial port, such as communication mode, data format, and modem compatibility.

■ How to set the system registers

The system registers can be set by a programming tool.

• Using NPST-GR Software Ver. 3.1

- (1) Set the mode of the programmable controller to PROG.
- 2 Open the [SYSTEM REGISTER] window using the following procedure:

• The revised settings of the system register become effective soon after the revision. However, in case of changing the modem compatibility, the revised setting become effective after the power is turned from OFF to ON.

2. Table of the System Registers

Address	Name of system register	Default value	Description
0	Program capacity	K3 or K5	The program capacity is automatically specified according to the type of the programmable controllers. FP-M 2.7 k type (2,720 steps): K3 FP-M 5 k type (5,000 steps): K5 The value in this system register is fixed.
4	Operation without backup battery	KO	This register specifies the operation of the FP-M when the voltage of the backup battery lowers or when the backup battery disconnects. K0: the conditions above are regarded as errors K1: the conditions above are not regarded as errors
5	Counter instruction starting address	K100	 Starting number for counter instructions is specified. Setting range K0 to K144 Setting the same value as system register 6 is recommended. If the maximum value of the setting range is input, all of the areas are used as timers. EXAMPLE: If system register 5 is set to K120: Timers: T0 to T119 (120 timers) Counters: C120 to C143 (24 counters)
6	Hold area starting address settings for timer/counter area	K100	 Hold area starting address for timer/counter is specified. Setting range K0 to K144 Setting the same value as system register 5 is recommended. If the maximum value of the setting range is input, all of the areas are used as non-hold areas. EXAMPLE: If system register 6 is set to K120: Non-hold area: 0 to 119 Hold area: 120 to 143

Address	Name of system register	Default value	Description
7	Hold area starting address settings for internal relays	K10	 Hold area starting address for internal relays is specified in word-units. Setting range K0 to K63 If the maximum value of the setting range is input, all of the areas are used as non-hold areas. EXAMPLE: If system register 7 is set to K30: Non-hold area: R0 to R29F Hold area: R300 to R63F
8	Hold area starting address settings for data registers	КО	 Hold area starting address for data registers is specified. Setting range FP-M 2.7 k type: K0 to K1660 FP-M 5 k type: K0 to K6144 If the maximum value of the setting range is input, all of the areas are used as non-hold areas. EXAMPLE: If system register 8 of FP-M 2.7 k type is set to K10: Non-hold area: DT0 to DT9 Hold area: DT10 to DT165
14	Hold/non-hold settings for step ladder	K1	Hold/non-hold settings for step ladder operation are specified. K0: Hold K1: Non-hold
20	Operation settings for duplicated use of output	K0	This register specifies the operation of the FP-M when a duplicated use of output is programmed. K0: a duplicated use of output is regarded as a total-check error. K1: a duplicated use of output is not regarded as an error.
26	Operation settings when an operation error occurs	K0	This register specifies the operation of the FP-M when an operation error is detected. K0: FP-M stops operation if an operation error occurs. K1: FP-M continues operation even if an operation error occurs.
31	Waiting time settings for multi-frame communication	K2600 (6500 ms)	 This register specifies the maximum waiting time between delimiters when multi-frame communication is performed with the computer link. Setting range (set value: K4 to K32760) × 2.5 ms [10 ms to 81900 ms] Note: When you set this register using NPST-GR Software, set a time that can be divided by 2.5.

Address	Name of system register	Default value			Des	cription		
34	Constant value settings for scan time	КО	Settin K0:1 K1 tr (set Note: When	g range the cons o K64: value: K	tant scan funct 1 to K64) × 2.	nstant scan tin ion is not used 5 ms [2.5 ms t using NPST-G by 2.5.	(normal) o 160 ms]	set
400*	High-speed counter mode settings	ter H0 H0 □ 0 □ Setting			Inpu	t contact of FP	9-Ms	
				Set value	X0	X1	X2	
				HO		unter function n		
				H1	2-phas	1		
				H2	2-phas		Reset input	
				H3	Up input			
				H4	Up input		Reset input	
				H5		Down input		
				H6 H7		Down input	Reset input	
					Up/Down input (X0: Up input, λ			
				H8	Up/Down input		Reset input	_
					• •	(1: Down input)		
				-Settina		out connection		
				-	ernally not con			
				H1: Inte	ernally connec	ted		
				•	internal conne	•		
						ut type FP-Ms	(C20T, C20T	Ċ,
				, and C3				
					•	r output type FF out to X0 and X ⁺		
						are used as ir		
						sed as other inp		5 nom
				Set value	-	ration mode		
				H107		\rightarrow Up input X0		
						\rightarrow Down input		
						or high-speed c		
						\rightarrow Up input X0 \rightarrow Down input		
					X2 is used as re			

Note:

• * When system registers 400, 402, 403, 404, and 405 are set at the same time, their priorities are:

- -1st 400 (high-speed counter mode settings)
- -2nd 402 (pulse catch input function settings)
- -3rd 403 (interrupt trigger settings)
- -4th 404 (input time filtering settings)
- -last 405 (input time filtering settings)

Address	Name of system register	Default value	Description
402	Pulse catch input function settings (pulse of 500 µs or more duration)	HO	This register specifies the pulse catch inputting function availabilities for X0 to X7. • Settings 0: standard input mode 1: pulse catch input mode Input the specific value in an order so that the bit corresponding to each input becomes "1" when you use the pulse catch function. System register 402 Bit position 15 • 12 11 • • 8 7 • • 4 3 • • 0 Corresponding X7 X6 X5 X4 X3 X2 X1 X0 • Setting range All FP-Ms (8 inputs X0 to X7): H0 to HFF EXAMPLE: If the pulse catch function is used for inputs X3, X4, and X5, input H38 as follows:
			System register 402 Bit position 15 • • 12 11 • • 8 7 • • 4 3 • • 0 Corresponding
403	Interrupt trigger settings	HO	This register specifies inputs of the FP-M as interrupt triggers. • Settings 0: standard input mode 1: interrupt input mode Input the specific value in an order so that the bit corresponding to each input becomes "1" when you use interrupt programs. System register 403 Bit position 15 • 12 11 • • 8 7 • • 4 3 • • 0 Corresponding
			• Setting range All FP-Ms (8 inputs X0 to X7): H0 to HFF EXAMPLE: If the interrupt input function is used for inputs X1 and X2, input H6 as follows: System register 403 $\underbrace{\text{Bit position } 15 \cdot 12 11 \cdot 8 7 \cdot 4 3 \cdot 0}_{\text{Corresponding }$

Address	Name of system register	Default value	Description
404	Input time filtering setting (X0 to X1F)	H1111 (all 2 ms)	Sets the input time filtering in 8-input units. Settings
			Set value Input time filtering
			H0 1 ms
			H1 2 ms
			H2 4 ms
			H3 8 ms
			H4 16 ms
			H5 32 ms
			H6 64 ms
			H7 128 ms
405	Input time filtering setting (X20 to X27)	H1111 (all 2 ms)	• Set system registers 404 and 405, referring to the following: No. 404 = H \square \square \square X0 to X7 X8 to XF X10 to X17 X18 to X1F No. 405 = H 1 1 1 \square Y18 to X1F No. 405 = H 1 1 1 \square Y18 to X1F No. 405 = H 1 1 1 \square Y18 to X1F Fixed Fixed Fixed Fixed EXAMPLE: If you specify the input time filtering for X0 to X7 as 4 ms, for X8 to XF as 1 ms, for X10 to X17 as 1 ms, and for X18 to X1F as 1 ms, input H1112 to system register 404. System register 404 Bit position 15 • 12 11 • 8 7 • 4 3 • 0 Data input 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 H 1 1 1 2 X18 to X1F X10 to X17 X8 to XF X0 to X7 (2 ms) (2 ms) (2 ms) (4 ms)

Address	Name of system register	Default value	Description
410	Station number (UNIT NO.) setting for programming tool port	K1	 This register specifies the station number (UNIT NO.) when the computer link communication is performed through the programming tool port. Setting ranges K1 to K32 (UNIT NO. 1 to 32)
411	Communication format and modem settings for programming tool port	HO	Communication format settings and the settings for modem communication compatibility are performed when the programming tool port is used. • Setting MSB LSB Bit position 15 • 12 11 • 8 7 • 4 3 • 0 Modem communication Modem communication H0: Disabled H8: Enabled Communication format (character bits) H0: 8 bits H1: 7 bits H1: 7 bits
			Set Settings
			valueModemCharacter bitsH0Disabled8 bitsH17 bits
			H8000Enabled8 bitsH80017 bits
412	Communication mode settings for RS232C serial port	KO	 Selects the functions for the RS232C serial port. Settings K0: when the RS232C serial port is not used. K1: when the RS232C serial port is used for computer link communication. K2: when the RS232C serial port is used for general purpose communication.

Address	Name of system register	Default value	Description
413	Communication format setting for RS232C serial port	H3	This register specifies the communication settings for the RS232C serial port. • Settings
			Bit position 15 • • 12 11 • • 8 7 • • 4 3 • • 0
			* Header (Bit position 6) 0: without STX code 1: with STX code
			* Terminator (Bit positions 5 & 4) —
			00: CR 01: CR + LF
			10: CR
			11: ETX
			Stop bit (Bit position 3)
			0: 1 bit 1: 2 bits
			Parity check (Bit positions 2 & 1) 00: none
			01: odd
			10: none 11: even
			Character bits (Bit position 0) ———————————————————————————————————
			1: 8 bits
			EXAMPLE: If you want to set the RS232C serial port as follows,
			input H2 to system register 413.
			- Header: without STX code - Terminator: CR
			- Stop bit: 1 bit
			- Parity: odd - Character bits: 7 bits
			System register 413
			Bit position $15 \cdot 12$ $11 \cdot 8$ $7 \cdot 4$ $3 \cdot 0$ $2 \cdot 2 \cdot 2$
			Data input 0 0 0 0 0 0 0 0 0 0 1 0
			H 0 2

Note:

• * The settings for the header and the terminator in system register 413 become effective when system register 412 is set to K2 (GENERAL). If you select K1 (COMPTR LNK) or K0 (UNUSED), the settings for the header and the terminator are discarded.

Address	Name of system register	Default value	Description
414	Baud rate settings for RS232C serial port	K1	This register specifies the baud rate of the RS232C serial port.SettingsSet valueBaud rateK019,200 bpsK19,600 bpsK24,800 bpsK32,400 bpsK41,200 bpsK5600 bpsK6300 bps
415	Station number (UNIT NO.) settings for RS232C serial port	K1	 This register specifies the station number (UNIT NO.) when the RS232C serial port is used for computer link communication. (Refer to system registers 412 and 413, for details about the computer link communication settings.) Setting range K1 to K32 (UNIT NO. 1 to 32)
416	Modem communication settings for RS232C serial port*	HO	 The setting for modem communication compatibility is performed when the RS232C serial port is used. Settings M0: modem communication disabled H8000: modem communication enabled When modem communication is enabled, set system registers 412, 413, 415. Refer to page 224, "8-12. Modem Communication".
417	Starting address setting for data received from RS232C serial port	KO	This register specifies the starting address of data registers used as the buffer for data received from the RS232C serial port when general-purpose communication is performed. (Refer to system registers 412 and 413, for details about general-purpose communication settings.) • Setting range FP-M 2.7 k type: K0 to K1660 FP-M 5 k type: K0 to K6144 EXAMPLE: If K0 is input to system register 417, the number of bytes received from the RS232C serial port is stored in DT0 and the data received are stored starting from DT1.

Note:

* The system register 416 setting is available only for:
 - FP-M C types (C20RC/C20TC/C32TC).
 - NPST-GR Software version 3.1 or later.

Address	Name of system register	Default value	Description
418	Buffer capacity setting for data received from RS232C serial port	K1660	 This register specifies the number of words to be used as a buffer. (Refer to system register 417 for details about the starting address settings.) Setting range FP-M 2.7 k type: K0 to K1660 FP-M 5 k type: K0 to K6144 EXAMPLE: If K0 is input to system register 417 and K100 to system register 418, the number of data received is stored to DT0 and the data received are stored starting from DT1 to DT99.

8-6. Special Internal Relays

The special internal relays are used for special purposes in the FP-M programmable controller. These special internal relays cannot output. Use special internal relays only as contacts.

Address	Name	Description
R9000	Self-diagnostic	Turns ON when a self-diagnostic error occurs.
	error flag	The self-diagnostic error code is stored in DT9000.
R9005	Battery error flag	Turns ON for an instant when a battery error occurs.
	(Non-hold)	
R9006	Battery error flag	Turns ON and keeps the ON state when a battery error occurs.
	(Hold)	
R9007	Operation error flag	Turns ON and keeps the ON state when an operation error occurs.
	(Hold)	The error address is set in DT9017.
R9008	Operation error flag	Turns ON for an instant when an operation error occurs.
	(Non-hold)	The error address is set in DT9018.
R9009	Carry flag	Turns ON for an instant,
		- when an overflow or an underflow occurs.
		- when "1" is set by one of the shift instructions.
		This is also used as flag for the F60 (CMP) instruction.
R900A	> flag	Turns ON for an instant when the compared results are larger.
R900B	= flag	Turns ON for an instant,
		- when the calculated results become 0 in the high-level instructions.
		- when the compared results are equal in the high-level instructions.
R900C	< flag	Turns ON for an instant when the compared results are smaller.
R900D	Auxiliary timer	Turns ON when the set value is decreased and reaches 0.
	instruction (F137)	
R900E	Programming tool	Turns ON when a programming tool port error occurs.
	port error flag	
R900F	Constant scan	Turns ON when a constant scan error occurs.
	error flag	
R9010	Always ON relay	Always ON.
R9011	Always OFF relay	Always OFF.

Address	Name	Description
R9012	Scan pulse relay	Turns ON and OFF alternately at each scan.
R9013	Initial ON relay	Turns ON only at the first scan in the operation.
		Turns OFF from the second scan and maintains the OFF state.
R9014	Initial OFF relay	Turns OFF only at the first scan in the operation.
		Turns ON from the second scan and maintains the ON state.
R9015	Step ladder initial	Turns ON only in the first scan of the process the moment step ladder
	ON relay	process is started.
R9018	0.01 s clock pulse	Repeats ON/OFF operations in 0.01 s cycles.
	relay	(ON : OFF = 0.005 s : 0.005 s)
R9019	0.02 s clock pulse	Repeats ON/OFF operations in 0.02 s cycles.
	relay	(ON : OFF = 0.01 s : 0.01 s)
R901A	0.1 s clock pulse	Repeats ON/OFF operations in 0.1 s cycles.
	relay	(ON : OFF = 0.05 s : 0.05 s)
R901B	0.2 s clock pulse	Repeats ON/OFF operations in 0.2 s cycles.
	relay	(ON : OFF = 0.1 s : 0.1 s)
R901C	1 s clock pulse	Repeats ON/OFF operations in 1 s cycles.
	relay	(ON : OFF = 0.5 s : 0.5 s)
R901D	2 s clock pulse	Repeats ON/OFF operations in 2 s cycles.
	relay	(ON : OFF = 1 s : 1 s)
R901E	1 min clock pulse	Repeats ON/OFF operations in 1 min cycles.
	relay	(ON : OFF = 30 s : 30 s)
R9020	RUN mode flag	ON while mode of the programmable controller is set to RUN.
		OFF while mode of the programmable controller is set to PROG.
R9026	Message flag	ON while the F149 (MSG) instruction is executed.
R9027	Remote mode flag	ON while mode selector of the FP-M control board is set to REMOTE.
R9029	Forced flag	ON during the forced ON/OFF operation.
R902A	Interrupt flag	ON while external interrupts are enabled.
		Refer to the ICTL instruction in the FP-M/FP1 Programming Manual.
R902B	Interrupt error flag	Turns ON when an interrupt error occurs.
R9032	RS232C port	ON while the RS232C port is set to GENERAL (K2) in the system register 412.
	selection flag	C types (C20RC/C20TC/C32TC) only.

Address	Name	Description
R9033	Print-out flag	ON while a F147 (PR) instruction is executed.
		Refer to the F147 (PR) instruction in the FP-M/FP1 Programming Manual.
R9036	I/O link error flag	Turns ON when an I/O link error occurs.
R9037	RS232C error flag	Turns ON when an RS232C error occurs.
		C types (C20RC/C20TC/C32TC) only
R9038	RS232C receive	Turns ON when a terminator is received by the programmable controller
	flag (F144)	using the F144 (TRNS) instruction.
		Refer to the F144 (TRNS) instruction in the FP-M/FP1 Programming Manual.
		C types (C20RC/C20TC/C32TC) only
R9039	RS232C send flag	OFF while data is not been sent by the F144 (TRNS) instruction.
	(F144)	ON after the data is sent by the F144 (TRNS) instruction.
		Refer to the F144 (TRNS) instruction in the FP-M/FP1 Programming Manual.
		C types (C20RC/C20TC/C32TC) only
R903A	High-speed counter	ON while a high-speed counter is controlled using the F162 (HC0S), F163
	control flag	(HC0R), F164(SPD0), and F165 (CAM0) instructions.
		Refer to the F162 (HC0S), F163 (HC0R), F164(SPD0), and F165
		(CAM0) instructions in the FP-M/FP1 Programming Manual.
R903B	Cam control flag	ON while a F165 (CAM0) instruction is executed.
		Refer to the F165 (CAM0) instruction in the FP-M/FP1 Programming
		Manual.

8-7. Special Data Registers

Address	Name	Description
DT9000	Self-diagnostic	• The self-diagnostic error code is stored in DT9000 when a self-diagnostic
	error code register	error occurs.
DT9014	Auxiliary register	One shift-out hexadecimal digit is stored in hexadecimal digit position 0 (bit
	for F105 and F106	positions 0 to 3) when an F105 (BSR) or F106 (BSL) instruction is executed.
	instructions	 Refer to the F105 (BSR) and F106 (BSL) instructions in the FP-M/FP1
		Programming Manual.
DT9015	Auxiliary register	• Divided remainder is stored in DT9015 when an F32 (%) or F52 (B%)
	for F32, F33, F52,	instruction is executed.
	and F53 instruc-	Lower 16-bit of divided remainder are stored in DT9015 when an F33
	tions	(D%) or F53 (DB%) instruction is executed.
		• Refer to the F32 (%), F52 (B%), F33 (D%), and F53 (DB%)
		instructions in the FP-M/FP1 Programming Manual.
DT9016	Auxiliary register	• Higher 16-bit of divided remainder is stored in DT9016 when an F33 (D%)
	for F33 and F53	or F53 (DB%) instruction is executed.
	instructions	 Refer to the F33 (D%) and F53 (DB%) instructions in the FP-M/FP1
		Programming Manual.
DT9017	Operation error ad-	 An operation error address is stored in DT9017 and held when an
	dress register (hold)	operation error is detected.
DT9018	Operation error	 The address of the latest operation error is stored in DT9018 when an
	address register	operation error is detected.
	(non-hold)	
DT9019	2.5 ms ring counter	 The stored data in DT9019 is increased by one every 2.5 ms.
	register	This can be used to determine the elapsed time of some procedures by
		calculating the time differences.
DT9022	Scan time register	 Current scan time is stored in DT9022.
	(current value)	Scan time is calculated using the formula:
		Scan time (ms) = data \times 0.1 (ms)
DT9023	Scan time register	 Minimum scan time is stored in DT9023.
	(minimum value)	Scan time is calculated using the formula:
		Scan time (ms) = data × 0.1 (ms)
DT9024	Scan time register	 Maximum scan time is stored in DT9024.
	(maximum value)	Scan time is calculated using the formula:
		Scan time (ms) = data \times 0.1 (ms)

• Special data registers are used as a memory area and each data is composed of 16 bits.

Address	Name	Description
DT9025	Mask condition	• The mask conditions of input-initiated interrupts can be monitored.
	monitoring register	Bit position $15 \cdot \cdot 12 \ 11 \cdot \cdot 8 \ 7 \cdot \cdot 4 \ 3 \cdot \cdot 0$
	for input -initiated	INT program 7 • • 4 3 • • 0
	interrupts (Interrupt	DT9025
	program: INT0 to	
	INT7)	 The mask conditions are judged by the status of each bit:
		Interrupt disabled (masked): 0 Interrupt enabled (unmasked): 1
		• Each bit position of DT9025 (bit positions 0 to 7) falls on an interrupt
		instruction number.
		Refer to the ICTL instruction in the FP-M/FP1 Programming Manual.
DT9027	Time-initiated	• This register is available for monitoring the time-initiated interrupt interval.
	interrupt interval	The interval is calculated using the formula:
	monitoring register	- K1 to K3000: interval (ms) = data \times 10 (ms)
		- K0: time-initiated interrupt is not used.
DTAAAA		• Refer to the ICTL instruction in the FP-M/FP1 Programming Manual.
	Message 0 register	• The contents of the specified message are stored in DT9030, DT9031,
	Message 1 register	DT9032, DT9033, DT9034, and DT9035 when an F149 (MSG) instruction
	Message 2 register	is executed.
	Message 3 register	• Refer to the F149 (MSG) instruction in the FP-M/FP1 Programming
	Message 4 register	Manual.
	Message 5 register	The number of found data is stored in DT0007 when an FOC (CDC)
DT9037	Work register 1 for F96 instruction	 The number of found data is stored in DT9037 when an F96 (SRC) instruction is executed.
	IOF F90 Instruction	Refer to the F96 (SRC) instruction in the FP-M/FP1 Programming
		Manual.
DT9038	Work register 2	 The data position found in the first place counting from the first 16-bit area
D19030	for F96 instruction	is stored in DT9038 when an F96 (SRC) instruction is executed.
		• The address stored is counted from the starting address of the register
		specified by starting 16-bit area.
		• Refer to the F96 (SRC) instruction in the FP-M/FP1 Programming
		Manual.
DT9040	Manual dial-set	Values of the potentiometers (V0 and V1) are stored as:
	register (V0)	$V0 \rightarrow DT9040$
DT9041	Manual dial-set	V1 → DT9041
	register (V1)	

Address	Name	Description
DT9044	High-speed counter	• Lower 16-bit of high-speed counter elapsed value is stored in DT9044.
	elapsed value area	
	(lower 16-bit)	
DT9045	High-speed counter	Higher 16-bit of high-speed counter elapsed value is stored in DT9045.
	elapsed value area	
DT0040	(higher 16-bit)	- Lower 40 bit of high an and counter to produce is stored in DT0040
DT9046	High-speed counter target value area	 Lower 16-bit of high-speed counter target value is stored in DT9046.
	(lower 16-bit)	
DT9047	High-speed counter	 Higher 16-bit of high-speed counter target value is stored in DT9047.
	target value area (higher 16-bit)	
DT9052	High-speed counter	• A register dedicated to control high-speed counter operation.
	control register	• Refer to the F0 (MV) (high-speed counter control) instruction in the
		FP-M/FP1 Programming Manual.
DT9053	Clock/calendar	 Hour and minute data of the clock/calendar are stored in DT9053.
	monitor register	This register is available only for monitoring the data.
		 The hour and minute data is stored in BCD as:
		Higher 8 bits Lower 8 bits
		Hour data Minute data
		H00 to H23 (BCD) H00 to H59 (BCD)
		C types (C20RC/C20TC/C32TC) only
DT9054	Clock/calendar	Data of the clock/calendar are stored in DT9054, DT9055, DT9056, and
	monitor and setting	DT9057. These registers are available both for settings and for monitoring
	register	the clock/calendar.
	(minute/second)	• When setting the clock/calendar by using the F0 (MV) instruction, the
DT9055	Clock/calendar	revised setting becomes effective from the time when the most significant
	monitor and setting	bit of DT9058 becomes "1".
	register (day/hour)	The data is stored in BCD as: Higher 8 bits Lower 8 bits
DT9056	Clock/calendar	
DISCOU	monitor and setting	
	register	DT9054 Minute Second H00 to H59 (BCD) H00 to H59 (BCD)
	(year/month)	DT9055 Day Hour Hour (DOD)
DT9057	Clock/calendar	H01 to H31 (BCD) H00 to H23 (BCD)
	monitor and setting	DT9056 Year Month H00 to H99 (BCD) H01 to H12 (BCD)
	register	DT0057 Day of week
	(day of week)	H00 to H06 (BCD)
		C types (C20RC/C20TC/C32TC) only

Address	Name		Description
DT9058	Clock/calendar adjustment register		 The clock/calendar is adjusted as follows when the least significant bit of DT9058 is set to "1". When second data is H00 to H29 (BCD), the second data is cut off to H00 (BCD). When second data is H30 to H59 (BCD), the second data is cut off to H00 (BCD) and one is added to the minute data. The revised clock/calendar settings, which are performed using the F0 (MV) instructions, become effective when the most significant bit of DT9058 is set to "1". C types (C20RC/C20TC/C32TC) only
DT9059	Communication error code register		 A RS232C port communication error code is stored in the higher 8-bit area of DT9059. A programming tools port communication error code is stored in the lower 8-bit area of DT9059. C types (C20RC/C20TC/C32TC) only
DT9060		Process numbers: 0 to 15	 These registers monitor the condition of step ladder programs. Execution of the step ladder program is monitored by the bit data as follows:
DT9061	Step ladder process monitor registers	Process numbers: 16 to 31	 Executing: 1 Not executing: 0 Each bit in the registers corresponds to a step ladder process as shown in
DT9062		Process numbers: 32 to 47	the following example: <example> Since bit position 0 of DT9061 is "1", step ladder process 16 is executing.</example>
DT9063		Process numbers: 48 to 63	Bit position 15 • • 12 11 • • 8 7 • • 4 3 • • 0 Process number 31 • • 28 27 • • 24 23 • • 20 19 • • 16 DT9061 0 0 0 0 0 0 0 0 1
		Process numbers: 64 to 79	
DT9065		Process numbers: 80 to 95	
DT9066		Process numbers: 96 to 111	
DT9067		Process numbers: 112 to 127	

Address	Name		Description
DT9080	Digital	Channel 0	 These registers are used to store the digital converted value of analog
DT9081	converted value from	Channel 1	inputs from analog control boards of the A/D converter board or analog I/O board.
DT9082	analog control	Channel 2	 The range of digital converted value depends on the type of analog control boards as follows:
DT9083	board No. 0	Channel 3	<when a="" board="" converter="" d="" installed="" is=""></when>
DT9084		Channel	K0 to K999 (0 to 20 mA/0 to 5 V/0 to 10 V)
D19004	Digital	0	Range of digital converted value (10 bits resolution)
DT9085	converted	Channel 1	Note:
DT9086	value from analog control	Channel	 If analog data over the maximum analog value (20 mA/5 V/10 V) is input, digital data up to K1,023 is available.
DT9087	board No. 1	Channel 3	However, be sure to input analog voltage or analog current within the rated range in order to prevent system damages.
DT9088	Digital	Channel 0	
DT9089	converted	Channel	<when analog="" board="" i="" installed="" is="" o=""> K0 to K255 (0 to 20 mA/0 to 5 V/0 to 10 V)</when>
DT9090	value from analog control	Channel 2	Range of digital converted value (8 bits resolution)
DT9091	board No. 2	Channel 3	Note: • Even if analog data outside the specified range is input, digital
DT9092	converted value from	Channel	converted value outside K0 to K255 is not available.
DT9093		0 Channel 1	Be sure to input analog voltage or analog current within the rated range in order to prevent system damages.
DT9094		Channel	• Be sure to use the F0 (MV) instruction to transfer data in these special
DT9095	board No. 3	No. 3 Channel 3	data registers into other data registers.

Address	Name	Description
DT9096	Digital value for	 These registers are used to specify data for analog output from the
	specifying analog	analog control boards of the D/A converter boards or analog I/O boards.
	data output from	 The range of digital value to specify analog output depends on the type
	analog control	of analog control boards as follows:
	board No. 0	<when a="" boards="" converter="" d="" installed="" is=""></when>
DT9097		Range of digital data for specifying analog output (10 bits): K0 to K999 (0 to 20 mA/0 to 5 V/0 to 10 V)
		Note:
		• Be sure to specify data within the range of K0 to K999.
		- If data K1000 to K1023 is specified, analog data a little bit more than
DTOOOO		the maximum rated value (20 mA/5 V/10 V) is output.
DT9098	Digital value for	- If data outside K0 to K1023 is specified, data is handled
	specifying analog	disregarding data in bit positions 10 to 15.
	data output from	
	analog control	<example></example>
	board No. 1	If K-24 is input, analog data is output regarding it as K999.
DT9099		Data configuration when K-24 is input:
		Bit position 15 • • 12 11 • • 8 7 • • 4 3 • • 0
		Binary data 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		↑ K999
DT9100	Digital value for	Data in bit positions 10 to 15 is ignored.
	specifying analog	<when analog="" board="" i="" installed="" is="" o=""></when>
	data output from	Range of digital data for specifying analog output (8 bits): K0 to K255
	analog control	(0 to 20 mA/0 to 5 V/0 to 10 V)
	board No. 2	Note:
DT9101		• Be sure to specifying data within the range of K0 to K255. If data
		outside K0 to K255 is specified, data is handled disregarding data in bit
		positions 8 to 15.
		<example></example>
DT9102	Digital value for	If K-1 is input, analog data is output regarding it as K255.
510102	specifying analog	Data configuration when K-1 is input:
	data output from	Bit position 15 • • 12 11 • • 8 7 • • 4 3 • • 0
	analog control	Binary data 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	board No. 3	K255
DTOLOG		Data in bit positions 8 to 15 is ignored.
DT9103		
		 Be sure to use the F0 (MV) instruction to transfer data into these
		special data registers.

Address	Name		Description
DT9104 DT9105	High-speed counter board channel 0	Target value area 0	 These registers are performed for storing data of the high-speed counter board. The target values 0 and 1, elapsed value, and capture value are
DT9106 DT9107		Target value area 1	 processed in binary in the range of K-8,388,608 to 8,388,607. Notes: • Be sure to use the F1 (DMV) instruction to transfer data in these
DT9108 DT9109		Elapsed value area	 special data registers to other registers or data in other registers to these special data registers. When changing data in these special data registers, be sure to specify
DT9110 DT9111		Capture value area	data in the range of K-8,388,608 to K8,388,607. If data outside the range is input, data is handled disregarding bit positions 24 to 31 (bit positions 8 to 15 in the higher 16-bit area of 32-bit
DT9112 DT9113		Target value area 0	data). <example> If K2,147,483,647 is specified, high-speed counter acts regarding it as</example>
DT9114 DT9115	board channel 1 area area Captur value	value	K-8,388,608. Data configuration when K2,147,483,647 is input: Higher 16-bit area Lower 16-bit area
DT9116 DT9117			Bit position $31 \cdot 28$ $27 \cdot 24$ $23 \cdot 20$ $19 \cdot 16$ $15 \cdot 12$ $11 \cdot 8$ $7 \cdot 4$ $3 \cdot 0$ Binary data 0 1
DT9118 DT9119			K-8,388,608 Data in bit positions 24 to 31 is ignored.

8-8. Table of the Error Codes

• For details about the error checking procedure, refer to page 115, "■ When an ERR. LED is ON".

1. Table of Total-check Error Codes

Error code	Name of error	Program execution when an error occurs	Description	Steps to take
E1	Syntax error (SYNTAX)	Stops	Instruction is incorrectly programmed.	Set the mode of FP-M to PROG. and input the instruction correctly, referring to the description for the instruction.
E2	Duplicated output error (DUP USE)	Stops	Two or more OT and KP instructions are programmed using same relay.	Set the mode of FP-M to PROG. and correct the program so that one relay is not used for two or more OT and KP instructions. This error can be disregarded by changing the system register 20 setting to K1 (ENAB).
E3	Not paired error (PAIR)	Stops	One of the instructions, which must be paired, is missing (e.g., JP and LBL). The paired instruction sets may have been programmed in the incorrect order (e.g., MC and MCE).	Set the mode of FP-M to PROG. and program the missing instruction sets in the proper order, referring to the description of the instruction.
E4	System register parameter error (MISMATCH)	Stops	The operand for the instruction is out of the range set in the system register.	Set the mode of FP-M to PROG. and check the system register parameter using a FP Program- mer II (OP50) or NPST-GR Soft- ware (1. SYSTEM REGISTER in the PLC CONFIGURATION).
E5	Program area error (PRG AREA)	Stops	The instruction has been programmed in the incorrect position (e.g., INT and IRET instructions are programmed at the address before the ED instruction).	Set the mode of FP-M to PROG. and program the instruction in the proper position, referring to the description of the instruction.
E8	Operand error (OPR COMBI)	Stops	Incorrect operand has been entered for the instruction.	Set the mode of FP-M to PROG. and program the instruction with the proper operand, referring to the description of the instruction.

2. Table of Self-diagnostic Error Codes

Error code	Name of error	Program execution when an error occurs	Description	Steps to take			
E26	ROM error	Stops	Probably an abnormality in the memory (EPROM) or master memory (EEPROM).	Program the memory (EPROM) or master memory (EEPROM) again and try to operate. If the same error is detected, try to operate with another memory (EPROM) or master memory (EEPROM).			
E28	System register error	Stops	Probably an abnormality in the system register.	Set the mode of FP-M to PROG. and initialize the system register.			
E31	Interrupt error	Stops	Probably a hardware abnormality or an abnormality caused by noise.	Turn OFF the power of the FP- M and check the surrounding noise level.			
E32	Interrupt error	Stops	Stops Probably a hardware Turn abnormality or an abnormality M ar caused by noise. nois				
			Probably an INT (interrupt) program corresponding to the trigger is missing.	Set the mode of FP-M to PROG. and make an INT program which corresponds to the interruption.			
E45	Operation error	Selectable by system register 26 (default: stops)	Probably an abnormality was detected when a high-level or basic instruction was executed.	Check the contents of special data registers (DT9017 and DT9018) to find the program address where the operation error occurred. Then correct the program referring to the description of the instruction.			
		K0: FP-M stops	s operation if an operation error nues operation even if an opera				
E50	Battery error	Continues	The voltage of the backup battery dropped or the backup battery has been pulled out from the holder.	Replace the backup battery. The operation without backup battery can be specified by system register 4. System register 4 settings K0: The conditions are regarded as errors. K1: The conditions are not regarded as errors.			
E100 to E199	error set by F148 (ERR)	Stops	 The self-diagnostic error code instruction is transferred to DT The contents of the self-diag 	9000. nostic error code can be			
E200 to	instruction	Continues	confirmed using the following programming tools. - NPST-GR Software: "7. STATUS DISPLAY" in ONLINE mode				
E299			- FP Programmer II: "OP-1				

8-9. Table of Instructions

1. Basic Instructions

Name Boolean		Description					
Start	ST	Begins a logic operation with a Form A (normally open) contact.	1				
Start Not	ST/	Begins a logic operation with a Form B (normally closed) contact.	1				
Out	OT	Outputs the operated result to the specified output.	1				
Not	1	Inverts the operated result up to this instruction.	1				
AND	AN	Connects a Form A (normally open) contact serially.	1				
AND Not	AN/	Connects a Form B (normally closed) contact serially.	1				
OR	OR	Connects a Form A (normally open) contact in parallel.	1				
OR Not	OR/	Connects a Form B (normally closed) contact in parallel.	1				
AND stack	ANS	Performs an AND operation on multiple instruction blocks.	1				
OR stack	ORS	Performs an OR operation on multiple instruction blocks.	1				
Push stack	PSHS	Stores the operated result up to this instruction.	1				
Read stack	RDS	Reads the operated result stored by the PSHS instruction.	1				
Pop stack	POPS	Reads and clears the operated result stored by the PSHS instruction.	1				
Leading edge	DF	Turns ON the contact for only one scan when the leading edge of the	1				
differential		trigger is detected.					
Trailing edge	DF/	Turns ON the contact for only one scan when the trailing edge of the	1				
differential	-	trigger is detected.					
Set	SET	Holds the contact (in bit) ON.	3				
Reset	RST	Holds the contact (in bit) OFF.	3				
Keep	KP	Turns ON the output and maintains its condition.	1				
No operation	NOP	No operation.	1				
0.01 s units timer	TMR	Sets the ON-delay timer for 0.01 s units (0 to 327.67 s).	3				
0.1 s units timer	ТМХ	Sets the ON-delay timer for 0.1 s units (0 to 3276.7 s).	3				
1 s units timer	TMY	Sets the ON-delay timer for 1 s units (0 to 32767 s).	4				
Auxiliary timer	F137	Sets the ON-delay timer for 0.01 s units (0.01 to 327.67 s).	5				
	(STMR)						
Counter	СТ	Subtracts the preset counter.	3				
UP/DOWN counter	F118	Sets the UP/DOWN counter.	5				
	(UDC)						
Shift register	SR	Shifts one bit of 16-bit [word internal relay (WR)] data to the left.	1				
Left/right shift	F119	Shifts one bit of the 16-bit data range to the left or to the right.	5				
register	(LRSR)						
Master control relay	МС	Executes the instructions from MC to MCE when the predetermined	2				
		trigger (I/O) turns ON.	2				
end							
Jump	JP	Skips to the LBL instruction that has the same number as the JP	2				
		instruction when the predetermined trigger turns ON.					
Label	LBL	Label used for execution of JP and LOOP instructions.					
		Skips to the LBL instruction that has the same number as the	4				
		LOOP instruction and executes what follows it repeatedly until the					

Name	Boolean	Description	Step		
End	ED	Indicates the end of a main program.	1		
Conditional end	CNDE	Ends one scan when the predetermined trigger turns ON.			
Start step	SSTP	Indicates the start of the step ladder process.	3		
Next step (pulse	NSTP	Opens the process of the step ladder and resets the process	3		
execution type)		including the instruction itself. NSTP is executed when the leading			
		edge of its trigger is detected.			
Next step (scan	NSTL	Opens the process of the step ladder and resets the process	3		
execution type)		including the instruction itself. NSTL is executed every scan if its			
		trigger is ON.			
Clear step	CSTP	Resets the specified process.	3		
Step end	STPE	Closes the step ladder operations and returns to normal ladder	1		
		operation.			
Subroutine call	CALL	Executes the specified subroutine.	2		
Subroutine entry	SUB	Indicates the start of the subroutine program.	1		
Subroutine return	RET	Ends the subroutine program and returns to the main program.	1		
Interrupt control	ICTL	Specifies the condition of the interrupt.	5		
Interrupt	INT	Starts an interrupt program.	1		
Interrupt return	IRET	Ends the interrupt program and returns instruction control to the main	1		
		program.			

Name	Boolean	Operand	Description	Step
Word compare: Start equal	ST =	S1, S2	Performs Start, AND or OR operation by comparing two word data in the following conditions.	5
Word compare: AND equal	AN =	S1, S2	ON: when S1 = S2 OFF: when S1 \neq S2	5
Word compare: OR equal	OR =	S1, S2		5
Word compare: Start equal not	ST <>	S1, S2	Performs Start, AND or OR operation by comparing two word data in the following conditions.	5
Word compare: AND equal not	AN <>	S1, S2	ON: when S1 \neq S2 OFF: when S1 = S2	5
Word compare: OR equal not	OR <>	S1, S2		5
Word compare: Start larger	ST >	S1, S2	Performs Start, AND or OR operation by comparing two word data in the following conditions.	5
Word compare: AND larger	AN >	S1, S2	ON: when S1 > S2 OFF: when S1 \leq S2	5
Word compare: OR larger	OR >	S1, S2		5
Word compare: Start equal or larger	ST >=	S1, S2	Performs Start, AND or OR operation by comparing two word data in the following conditions.	5
Word compare: AND equal or larger	AN >=	S1, S2	ON: when S1 \ge S2 OFF: when S1 < S2	5
Word compare: OR equal or larger	OR >=	S1, S2		5

Name	Boolean	Operand	Description	Step
Word compare: Start smaller	ST <	S1, S2	Performs Start, AND or OR operation by comparing two word data in the following conditions.	5
Word compare: AND smaller	AN <	S1, S2	ON: when S1 < S2 OFF: when S1 \ge S2	5
Word compare: OR smaller	OR <	S1, S2		5
Word compare: Start equal or smaller	ST <=	S1, S2	Performs Start, AND or OR operation by comparing two word data in the following conditions.	5
Word compare: AND equal or smaller	AN <=	S1, S2	ON: when S1 \leq S2 OFF: when S1 > S2	5
Word compare: OR equal or smaller	OR <=	S1, S2		5
Double word compare: Start equal	STD =	S1, S2	Performs Start, AND or OR operation by comparing two double word data in the following conditions.	9
Double word compare: AND equal	AND =	S1, S2	ON: when (S1+1, S1) = (S2+1, S2) OFF: when (S1+1, S1) ≠ (S2+1, S2)	9
Double word compare: OR equal	ORD =	S1, S2		9
Double word compare: Start equal not	STD <>	S1, S2	Performs Start, AND or OR operation by comparing two double word data in the following conditions.	9
Double word compare: AND equal not	AND <>	S1, S2	ON: when (S1+1, S1) ≠ (S2+1, S2) OFF: when (S1+1, S1) = (S2+1, S2)	9
Double word compare: OR equal not	ORD <>	S1, S2		9
Double word compare: Start larger	STD >	S1, S2	Performs Start, AND or OR operation by comparing two double word data in the following conditions.	9
Double word compare: AND larger	AND >	S1, S2	ON: when $(S1+1, S1) > (S2+1, S2)$ OFF: when $(S1+1, S1) \leq (S2+1, S2)$	9
Double word compare: OR larger	ORD >	S1, S2		9
Double word compare: Start equal or larger	STD >=	S1, S2	Performs Start, AND or OR operation by comparing two double word data in the following conditions.	9
Double word compare: AND equal or larger	AND >=	S1, S2	ON: when (S1+1, S1) ≧ (S2+1, S2) OFF: when (S1+1, S1) < (S2+1, S2)	9
Double word compare: OR equal or larger	ORD >=	S1, S2		9
Double word compare: Start smaller	STD <	S1, S2	Performs Start, AND or OR operation by comparing two double word data in the following conditions.	9
Double word compare: AND smaller	AND <	S1, S2	ON: when (S1+1, S1) < (S2+1, S2) OFF: when (S1+1, S1) ≧ (S2+1, S2)	9
Double word compare: OR smaller	ORD <	S1, S2		9
Double word compare: Start equal or smaller	STD <=	S1, S2	Performs Start, AND or OR operation by comparing two double word data in the following conditions.	9
Double word compare: AND equal or smaller	AND <=	S1, S2	2 ON: when $(S1+1, S1) \leq (S2+1, S2)$ OFF: when $(S1+1, S1) > (S2+1, S2)$	
Double word compare: OR equal or smaller	ORD <=	S1, S2		9

2. High-level Instructions

Number	Boolean	olean Operand	Description	Flag operation						
				> R900A	= R900B	< R900C	CY R9009	ER R9007 R9008		
F0	ΜV	S, D	16-bit data move					\$	5	
F1	DMV	S, D	32-bit data move					\$	7	
F2	MV/	S, D	16-bit data invert and move					\$	5	
F3	DMV/	S, D	32-bit data invert and move					\$	7	
F5	втм	S, n, D	Bit data move					\$	7	
F6	DGT	S, n, D	Hexadecimal digit move					\$	7	
F10	BKMV	S1, S2, D	Block move					\$	7	
F11	COPY	S, D1, D2	Block copy					\$	7	
F15	ХСН	D1, D2	16-bit data exchange					\$	5	
F16	DXCH	D1, D2	32-bit data exchange					\$	5	
F17	SWAP	D	Higher/lower byte in 16-bit data exchange					\$	3	
F20	+	S, D	16-bit data $[D + S \rightarrow D]$		\$		\$	\$	5	
F21	D+	S, D	32-bit data [(D + 1, D) + (S + 1, S) → (D + 1, D)]		\$		\$	\$	7	
F22	+	S1, S2, D	16-bit data [S1 + S2 → D]		\$		\$	\$	7	
F23	D+	S1, S2, D	32-bit data		\$		\$	\$	11	
			$[(S1 + 1, S1) + (S2 + 1, S2) \rightarrow (D + 1, D)]$							
F25	_	S, D	16-bit data $[D - S \rightarrow D]$		\$		\$	\$	5	
F26	D–	S, D	32-bit data [(D + 1, D) – (S + 1, S) → (D + 1, D)]		\$		\$	\$	7	
F27	-	S1, S2, D	16-bit data [S1 – S2 → D]		\$		\$	\$	7	
F28	D–	S1, S2, D	32-bit data		\$		\$	\$	11	
			[(S1 + 1, S1) - (S2 + 1, S2) → (D + 1, D)]							
F30	*	S1, S2, D	16-bit data [S1 × S2 → (D + 1, D)]		\$			\$	7	
F31	D*	S1, S2, D	32-bit data [(S1 + 1, S1) × (S2 + 1, S2) →		\$			\$	11	
			(D + 3, D + 2, D + 1, D)]							
F32	%	S1, S2, D	16-bit data [S1/S2 → D(DT9015)]		\$		\$	\$	7	
F33	D%	S1, S2, D	32-bit data [(S1 + 1, S1)/(S2 + 1, S2) →		\$		\$	\$	11	
			(D + 1, D)(DT9016, DT9015)]							
F35	+1	D	16-bit data increment $[D + 1 \rightarrow D]$		\$		\$	\$	3	
F36	D+1	D	32-bit data increment $[(D + 1, D) + 1 \rightarrow (D + 1, D)]$		\$		\$	\$	3	
F37	-1	D	16-bit data decrement $[D - 1 \rightarrow D]$		\$		\$	\$	3	
F38	D–1	D	32-bit data decrement [(D + 1, D) $-1 \rightarrow$ (D + 1, D)]		\$		\$	\$	3	
F40	B+	S, D	4-digit BCD data $[D + S \rightarrow D]$		\$		\$	\$	5	
F41	DB+	S, D	8-digit BCD data	\$		\$	\$	7		
			$[(D + 1, D) + (S + 1, S) \rightarrow (D + 1, D)]$							
F42	B+	S1, S2, D	4-digit BCD data [S1 + S2 \rightarrow D]		\$		\$	\$	7	
F43	DB+	S1, S2, D	8-digit BCD data				\$	\$	11	
			$[(S1 + 1, S1) + (S2 + 1, S2) \rightarrow (D + 1, D)]$							
F45	В-	S, D	4-digit BCD data $[D - S \rightarrow D]$		\$		\$	\$	5	

• Specification of flag operation in the above table: [\$]: The flag (special relay) available for the

The flag (special relay) available for the instruction (turns ON/OFF according to the condition).

[](blank): The flag (special relay) not available for the instruction (keeps the state regardless of the instruction).

Number	Boolean	an Operand	Description			Step			
				> R900A	= R900B	< R900C	CY R9009	ER R9007 R9008	
F46	DB–	S, D	8-digit BCD data		\$		¢	¢	7
			$[(D + 1, D) - (S + 1, S) \rightarrow (D + 1, D)]$						
F47	В-	S1, S2, D	4-digit BCD data $[S1 - S2 \rightarrow D]$		\$		\$	\$	7
F48	DB–	S1, S2, D	8-digit BCD data		\$		\$	\$	11
			$[(S1 + 1, S1) - (S2 + 1, S2) \rightarrow (D + 1, D)]$						
F50	B*	S1, S2, D	4-digit BCD data [S1 × S2 \rightarrow (D + 1, D)]		\$			\$	7
F51	DB*	S1, S2, D	8-digit BCD data [(S1 + 1, S1) × (S2 + 1, S2) →		\$			\$	11
			(D + 3, D + 2, D + 1, D)]						
F52	B%	S1, S2, D	4-digit BCD data [S1/S2 → D(DT9015)]		\$			\$	7
F53	DB%	S1, S2, D	8-digit BCD data [(S1 + 1, S1)/(S2 + 1, S2) →		\$			\$	11
			(D + 1, D)(DT9016, DT9015)]						
F55	B+1	D	4-digit BCD data increment $[D + 1 \rightarrow D]$		\$		\$	\$	3
F56	DB+1	D	8-digit BCD data increment		\$		\$	\$	3
			$[(D + 1, D) + 1 \rightarrow (D + 1, D)]$						
F57	B–1	D	4-digit BCD data decrement $[D - 1 \rightarrow D]$		\$		\$	\$	3
F58	DB-1	D	8-digit BCD data decrement		\$		\$	\$	3
			$[(D + 1, D) - 1 \rightarrow (D + 1, D)]$						
F60	CMP	S1, S2	16-bit data compare	\$	\$	\$	\$	\$	5
F61	DCMP	S1, S2	32-bit data compare	\$	\$	\$	\$	\$	9
F62	WIN	S1, S2, S3	16-bit data band compare	\$	\$	\$		\$	7
F63	DWIN	S1, S2, S3	32-bit data band compare	\$	\$	\$		\$	13
F64	BCMP	S1, S2, S3	Block data compare		\$			\$	7
F65	WAN	S1, S2, D	16-bit data AND		\$			\$	7
F66	WOR	S1, S2, D	16-bit data OR		\$			\$	7
F67	XOR	S1, S2, D	16-bit data exclusive OR		\$			\$	7
F68	XNR	S1, S2, D	16-bit data exclusive NOR		\$			\$	7
F70	BCC	S1, S2,	Block check code calculation					\$	9
		S3, D							
F71	HEXA	S1, S2, D	Hexadecimal data \rightarrow ASCII code					\$	7
F72	AHEX		ASCII code → Hexadecimal data					\$	7
F73	BCDA	S1, S2, D	BCD data \rightarrow ASCII code					\$	7
F74	ABCD	S1, S2, D	ASCII code → BCD data					\$	9
F75	BINA	S1, S2, D	16-bit data \rightarrow ASCII code					\$	7
F76	ABIN	S1, S2, D	ASCII code → 16-bit data					\$	7
F77	DBIA	S1, S2, D	32-bit data \rightarrow ASCII code					\$	11
F78	DABI	S1, S2, D	ASCII code → 32-bit data					\$	11
F80	BCD	S, D	16-bit data \rightarrow 4-digit BCD data					\$	5
F81	BIN	S, D	4-digit BCD data → 16-bit data					\$	5
F82	DBCD	S, D	32-bit data → 8-digit BCD data				\$	7	
F83	DBIN	S, D	8-digit BCD data \rightarrow 32-bit data					\$	7
F84	INV	D	16-bit data invert					\$	3

• Specification of flag operation in the above table:

[Ĵ]: The flag (special relay) available for the instruction (turns ON/OFF according to the condition).

[] [blank): The flag (special relay) not available for the instruction (keeps the state regardless of the instruction).
For more about the instructions above, refer to "FP-M /FP1 Programming Manual".

Number	Boolean	Operand	Description		Step				
				> R900A	= R900B	< R900C	CY R9009	ER R9007 R9008	
F85	NEG	D	16-bit data two's complement					\$	3
F86	DNEG	D	32-bit data two's complement					\$	3
F87	ABS	D	16-bit data absolute				\$	\$	3
F88	DABS	D	32-bit data absolute				\$	\$	3
F89	EXT	D	16-bit data sign extension					\$	3
F90	DECO	S, n, D	Decode					\$	7
F91	SEGT	S, D	16-bit data 7-segment decode					\$	5
F92	ENCO	S, n, D	Encode					\$	7
F93	UNIT	S, n, D	16-bit data combine					\$	7
F94	DIST	S, n, D	16-bit data distribute					\$	7
F95	ASC	S, D	Character \rightarrow ASCII code					\$	15
F96	SRC	S1, S2, S3	Table data search					\$	7
F100	SHR	D, n	Right shift of 16-bit data in bit units				\$	\$	5
F101	SHL	D, n	Left shift of 16-bit data in bit units				\$	\$	5
F105	BSR	D	Right shift of one hexadecimal digit (4 bits) of 16-bit data					\$	3
F106	BSL	D	Left shift of one hexadecimal digit (4 bits) of 16-bit data					\$	3
F110	WSHR	D1, D2	Right shift of one word (16 bits) of 16-bit data range					\$	5
F111	WSHL	, D1, D2	Left shift of one word (16 bits) of 16-bit data range					, ↓	5
F112	WBSR	D1, D2	Right shift of one hexadecimal digit (4 bits) of 16-bit data range					\$	5
F113	WBSL	D1, D2	Left shift of one hexadecimal digit (4 bits) of 16-bit data range					\$	5
F118	UDC	S, D	UP/DOWN counter		\$		\$		5
F119	LRSR	D1, D2	Left/right shift register		•		\$	\$	5
F120	ROR	D, n	16-bit data right rotate				\$	\$	5
F121	ROL	<i>D</i> , n	16-bit data left rotate				\$	\$	5
F122	RCR	<i>D</i> , n	16-bit data right rotate with carry flag data				\$	\$	5
F123	RCL	D, n	16-bit data left rotate with carry flag data				\$	\$	5
F130	BTS	D, n	16-bit data bit set					\$	5
F131	BTR	D, n	16-bit data bit reset					\$	5
F132	BTI	D, n	16-bit data bit invert					\$	5
F133	BTT	D, n	16-bit data test		\$			\$	5
F135	BCU	S, D	Number of ON bits in 16-bit data					\$	5
F136	DBCU	S, D	Number of ON bits in 32-bit data					\$	7
F137	STMR	S, D	Auxiliary timer						5
F138	HMSS	S, D	Hours, minutes, and seconds data to seconds data					\$	5
F139	SHMS	S, D	Seconds data to hours, minutes, and seconds data					\$	5
F140	STC		Carry flag (R9009) set				\$		1
F141	CLC		Carry flag (R9009) reset				\$		1

• Specification of flag operation in the above table:

 $[\uparrow]$: The flag (special relay) available for the instruction (turns ON/OFF according to the condition).

[](blank): The flag (special relay) not available for the instruction (keeps the state regardless of the instruction).

Number	Boolean	olean Operand	Description		Flag	g opera	ation		Step
				> R900A	= R900B	< R900C	CY R9009	ER R9007 R9008	
F143	IORF	D1, D2	Partial I/O update					\$	5
F144	TRNS	S, n	Serial communication					\$	5
			FP-M C types (C20RC/C20TC/C32TC) only						
F147	PR	S, D	Parallel printout FP-M transistor output type only					\$	5
F148	ERR	n	Self-diagnostic error set					\$	3
F149	MSG	S	Message display						13
F157	CADD	S1, S2, D	Time addition					\$	9
			$[(S1+2, S1+1, S1) + (S2+1, S2) \rightarrow (D+2, D+1, D)]$						
F158	CSUB	S1, S2, D	Time subtraction					\$	9
			$[(S1+2, S1+1, S1) - (S2+1, S2) \rightarrow (D+2, D+1, D)]$						
F0	ΜV	S, DT9052	High-speed counter control					\$	5
F1	DMV	S, DT9044	Change and read of the elapsed value of high-					\$	7
		or	speed counter						
		DT9044, D							
F162	HC0S	S, Yn	High-speed counter output set					\$	7
F163	HC0R	S, Yn	High-speed counter output reset					\$	7
F164	SPD0	S	Pulse output control					\$	3
			FP-M transistor output type only						
			Pattern output control						
F165	CAM0	S	Cam control					\$	3

• Specification of flag operation in the above table:

[\$]: The flag (special relay) available for the instruction (turns ON/OFF according to the condition).

[](blank): The flag (special relay) not available for the instruction (keeps the state regardless of the instruction).

8-10. Table of Binary/BCD Expressions

Decimal number		(hexad	Binary ecimal		ssion)	BCD data (BCD H code)					
0	0000	0000	0000	0000	(H 0 0 0 0)	0000	0000	0000	0000	(H 0 0 0 0)	
1	0000	0000	0000	0001	(H 0 0 0 1)	0000	0000	0000	0001	(H 0 0 0 1)	
2	0000	0000	0000	0010	(H 0 0 0 2)	0000	0000	0000	0010	(H 0 0 0 2)	
3	0000	0000	0000	0011	(H 0 0 0 3)	0000	0000	0000	0011	(H 0 0 0 3)	
4	0000	0000	0000	0100	(H 0 0 0 4)	0000	0000	0000	0100	(H 0 0 0 4)	
5	0000	0000	0000	0101	(H 0 0 0 5)	0000	0000	0000	0101	(H 0 0 0 5)	
6	0000	0000	0000	0110	(H 0 0 0 6)	0000	0000	0000	0110	(H 0 0 0 6)	
7	0000	0000	0000	0111	(H 0 0 0 7)	0000	0000	0000	0111	(H 0 0 0 7)	
8	0000	0000	0000	1000	(H 0 0 0 8)	0000	0000	0000	1000	(H 0 0 0 8)	
9	0000	0000	0000	1001	(H 0 0 0 9)	0000	0000	0000	1001	(H 0 0 0 9)	
10	0000	0000	0000	1010	(H 0 0 0 A)	0000	0000	0001	0000	(H 0 0 1 0)	
11	0000	0000	0000	1011	(H 0 0 0 B)	0000	0000	0001	0001	(H 0 0 1 1)	
12	0000	0000	0000	1100	(H 0 0 0 C)	0000	0000	0001	0010	(H 0 0 1 2)	
13	0000	0000	0000	1101	(H 0 0 0 D)	0000	0000	0001	0011	(H 0 0 1 3)	
14	0000	0000	0000	1110	(H 0 0 0 E)	0000	0000	0001	0100	(H 0 0 1 4)	
15	0000	0000	0000	1111	(H 0 0 0 F)	0000	0000	0001	0101	(H 0 0 1 5)	
16	0000	0000	0001	0000	(H 0 0 1 0)	0000	0000	0001	0110	(H 0 0 1 6)	
17	0000	0000	0001	0001	(H 0 0 1 1)	0000	0000	0001	0111	(H 0 0 1 7)	
18	0000	0000	0001	0010	(H 0 0 1 2)	0000	0000	0001	1000	(H 0 0 1 8)	
19	0000	0000	0001	0011	(H 0 0 1 3)	0000	0000	0001	1001	(H 0 0 1 9)	
20 :	0000	0000	0001	0100	(H 0 0 1 4)	0000	0000	0010 :	0000	(H 0 0 2 0)	
: 63 :	0000	0000	0011	1111	(H 0 0 3 F)	0000	0000	0110	0011	(H 0 0 6 3)	
255 :	0000	0000	1111 :	1111	(H 0 0 F F)	0000	0010	0101 :	0101	(H 0 2 5 5)	
: 9999	0010	0111	: 0000	1111	(H 2 7 0 F)	1001	1001	: 1001	1001	(H 9 9 9 9)	

8-11. Versions of Programming Tools

1. Differences Between NPST-GR Ver. 2.4 and 3.1

NPST-GR Software Ver. 3.1 is designed to support all the functions of the FP series programmable controllers described in this manual. However, compared with previous NPST-GR Software, version 3.1 requires an additional system. For this reason, NPST-GR Ver. 2.4 has been introduced for computers without the system required for Ver. 3.1.

The differences in functions and requirements between NPST-GR Ver. 2.4 and 3.1 are explained in the table below.

System requirements

ltem	NPST-GR Ver. 2.4 (AFP266528)	NPST-GR Ver. 3.1 (AFP266538)					
Type of computer	IBM PC-AT or 100% compatible						
CPU	i80286, i80386, or i80486	i80386 or i80486 recommended					
Hard Disk Space	2 MB or more if installed in your hard disk drive. [If your computer has two floppy disk drives (including RAM drive), no hard disk drive is required.]	Approx. 2 MB or more					
Floppy Disk Drive	One disk drive for 3.5-inch 2HD floppies formatted at 1.44 MB or one for 5.25-inch 2HD floppies formatted at 1.2 MB.						
Main Memory	500 KB or more free	550 KB or more free					
EMS	Not required	800 KB or more free					
Video Mode	EGA or VGA (CGA type can also be used i is not used.)	f the time chart monitoring function					
RS232C port	COM 1 c	r COM 2					
Operating System	PC-DOS or MS-DOS version 3.3 or later ANSI. SYS required	PC-DOS or MS-DOS version 3.3 or later (version 5.0 is recommended) ANSI. SYS required for installation EMS driver based on LIM V4.0					

■ Functions

I	tem	NPST-GR Ver. 2.4 (AFP266528)	NPST-GR Ver. 3.1 (AFP266538)	
Programmable controllers supported		FP1: 0.9 k FP1/FP-M: 2.7 k FP1/FP-M: 5 k FP3: 10 k FP3/FP-C: 16 k FP5: 16 k	FP1: 0.9 k FP1/FP-M: 2.7 k FP1/FP-M: 5 k FP3: 10 k FP3/FP-C: 16 k FP5: 16 k FP10/FP10S: 30 k FP10: 60 k	
Instructions	36 comparison instructions	36 comparison instructions (ST= , AN < , etc.) not available	All the instructions of an FP-M can be programmed.	
Modem communication settings		Not available. Modem communication parameters cannot be set. (System register 416 for the RS232C port and 411 for the RS422 port cannot be set using NPST-GR Ver. 2.4.)	Available. Modem communication parameters can be set. (System register 416 for the RS232C port and 411 for the programming tool port)	
Error clear function		Not available.	Available.	
Battery error disregarding function		Operation without backup battery cannot be selected. (System register 4 cannot be set using NPST-GR Ver. 2.4.)	Operation without backup battery can be selected. (System register 4 can be modified.)	

2. Differences Between the FP Programmer and FP Programmer II

The FP Programmer II is designed to support all the functions of the FP series programmable controllers described in this manual. Differences in functions between the FP Programmer and the FP Programmer II are explained in the table.

ltem	FP Programmer (AFP1112)	FP Programmer (AFP1112A)	FP Programmer II (AFP1114)	
Programmable controllers supported	FP1, FP3, FP5	FP1, FP3, FP5	FP-M, FP-C, FP1, FP3, FP5, FP10S, FP10	
Communication parameters	Fixed as: Baud rate: 19,200 bps Character bits: 8 bits Parity: ODD Stop bit: 1 bit	The parameters are automatically adjusted when connected to the programmable controller. Baud rate: 19,200 bps or 9,600 bps Character bits: 8 bits or 7 bits Parity: ODD Stop bit: 1 bit	The parameters are automatically adjusted when connected to the programmable controller. Baud rate: 19,200 bps or 9,600 bps Character bits: 8 bits or 7 bits Parity: ODD Stop bit: 1 bit	
36 comparison instructions (ST = etc.)	Not available	Not available	Available	
NSTL instruction	Not available	Available	Available	
F12 (ICRD)/P12 (PICRD), F13 (ICWT)/P13 (PICWT), F14 (PGRD)/P14 (PPGRD) instructions	Not available	Not available	Available	
F64 (BCMP)/P64 (PBCMP), F98 (CMPR)/ P98 (PCMPR), F99 (CMPW)/P99 (PCMPW), F157 (CADD)/P157 (PCADD), F158 (CSUB)/ P158 (PCSUB) instructions	Not available. These instructions cannot be programmed. However, you can monitor the instructions with it.	Available	Available	

■ FP Programmer (AFP1112 and AFP1112A) and FP Programmer II (AFP1114)

Item	FP Programmer (AFP1112)	FP Programmer (AFP1112A)	FP Programmer II (AFP1114)
OP 21 (route number settings)	Available Only routes 1 to 3 can be selected.	Available Routes 1 to 6 can be selected.	Available Routes 1 to 6 can be selected.
OP 72 (password enabled/disabled settings)	Not available	Available	Available
OP 73 (password registration function)			Available
OP 74 (password forcing clear function)*	Not available	Not available	Available
OP 91 (program/system register read/write function)	Not available	Not available	Available
OP 92 (system register read/write function)	Not available	Not available	Available
OP 99 (EEPROM write function) Available. However, "BCC ERR" is displayed on the LCD if a program with more than 11 k steps is written to EEPROM.		Available	Available
OP 112 (Error cancellation function)	Not available	Not available	Available

Note:

• *If the OP 74 function is executed, the program stored in the programmable controller will be deleted.

8-12. Modem Communication

FP-M programmable controllers have modem communication functions.

This allows data transfer and long-distance communication between a personal computer and an FP-M. This function is available not only for the computer link function but also when NPST-GR Software is used. Using C-NET adapters, you can control up to 32 programmable controllers with one computer.

1. Using the Programming Tool Port (FP-M control board all types)

When modem communication is performed using the programming tool port of an FP-M, not only computer link but also programming with NPST-GR Software can be performed.

To perform modem communication using the programming tool port, set system registers 410 and 411 as follows:

- System register 410.....Station number setting

- Setting: K1 through K32 (See notes.)
- System register 411.....Communication format and modem setting

Setting: H8000 or H8001

H8000 means

Modem communication: enabled Character bit: 8 bits H8001 means Modem communication: enabled Character bit: 7 bits

Notes:

- With NPST-GR Software version 3.0 or higher, you cannot set system register 411 to the modem enable mode.
- The baud rate is fixed at 2,400 bps and the setting in system register 414 is ignored.
- The same station number (UNIT NO.) cannot be assigned to FP-Ms in the same network.
- Since initialization of the modem is performed only by a FP-M whose UNIT NO. (system register 410) is set to K1, pay attention to the following when station numbers (UNIT NO.s) are assigned to FP-Ms:
 - when one computer communicates with one FP-M, system register 410 should be set to K1.
 - when one computer communicates with two or more FP-Ms, no two FP-Ms can have the same station number (UNIT NO.) and one of the FP-Ms in the network must be assigned as station number 1 (UNIT NO. 1).
- Modem initialization is performed only when the mode of the programmable controller is set from PROG. to RUN or when the power turns ON in the RUN mode by an FP-M whose UNIT NO. (system register 410) is set to K1. Therefore, be sure to apply power to the modem, before the FP-M is turned ON.
- Once the modem is initialized successfully, it will not re-initialize if the mode of the programmable controller is set to RUN from PROG. again.
- When one computer communicates with two or more programmable controllers, set the modem to the mode without character echo.
- Be sure to set the computer and C-NET adapters to the same communication format.

■ How to set system registers 410 and 411

• Using NPST-GR Software version 3.1

<If you are using MENU 1 screen type> Open the [NPST MENU] by pressing **Esc**, and then select "PLC CONFIGURATION" to skip to the [PLC CONFIGURATION] subwindow. In the [PLC CONFIGURATION] subwindow, select "1. SYSTEM REGISTER". <If you are using MENU 2 screen type> Open [NPST FUNCTION MENU] by pressing **Esc**], and then select "R. SYSTEM REGISTER".

Open the [SYSTEM REGISTER]-[SET RS422 PORT] window by pressing **Sift** + **F9** together. The following is displayed:

410 UNIT NO.411 RS422 FORMAT DATA LENGTH

[1] (1- 32).....Set K1. [8BIT/ 7BIT].....Select 8-bit or 7-bit. [ENAB / DISA].....Select ENAB.

After setting, save the status of system registers by pressing **F1**.

• Using FP Programmer II

Press the keys on the FP Programmer II as follows.

RS422 MODEM CONNECTION

■ System configuration: One computer and one FP-M control board

The following diagrams show the pin layout of the cables for modem communication.

Cable pin layout

Cable 1:

• Between IBM PC-AT (9 pins) and a modem (25 pins)

IBM P	C-AT (9 pins)		Mod	em (25 pins)
Pin No.	Abbreviation		Pin No.	Abbreviation
1	CD (DCD)		8	CD (DCD)
2	RD (RXD)		3	RD (RXD)
3	SD (TXD)		2	SD (TXD)
4	ER (DTR)		20	ER (DTR)
5	SG		7	SG
6	DR (DSR)		6	DR (DSR)
7	RS (RTS)		4	RS (RTS)
8	CS (CTS)		5	CS (CTS)
9	RI (CI)		22	RI (CI)

• Between a personal computer (25 pins) and a modem (25 pins)

Personal computer (25 pins)			Modem (25 pins)		
Pin No.	Abbreviation		Pin No.	Abbreviation	
1	FG		1	FG	
2	SD (TXD)		2	SD (TXD)	
3	RD (RXD)		3	RD (RXD)	
4	RS (RTS)		4	RS (RTS)	
5	CS (CTS)		5	CS (CTS)	
6	DR (DSR)		6	DR (DSR)	
7	SG		7	SG	
8	CD (DCD)		8	CD (DCD)	
20	ER (DTR)		20	ER (DTR)	

Cable 2: Between a modem and RS232C interface adap	ter
--	-----

Mod	em (25 pins)	_		32C interface oter (25 pins)
Pin No.	Abbreviation		Pin No.	Abbreviation
1	FG		1	FG
2	SD (TXD)		2	SD (TXD)
3	RD (RXD)		3	RD (RXD)
4	RS (RTS)		4	RS (RTS)
5	CS (CTS)		5	CS (CTS)
6	DR (DSR)		6	DR (DSR)
7	SG		7	SG
8	CD (DCD)		8	CD (DCD)
20	ER (DTR)		20	ER (DTR)

2. Using the RS232C Port [FP-M C type control boards (C20RC/C20TC/C32TC)]

When modem communication is performed using the RS232C port, the computer link function can be performed. To perform modem communication using the RS232C port, set system registers 412, 413, 415, and 416 as follows:

- System register 412.....K1 (select computer link)

- System register 413..... Data format

 Start bit:
 1 (fixed, no need to set this)

 Character bits:
 7 bits or 8 bits

 Parity bit:
 None or 1 bit (ODD or EVEN)

 Stop bit:
 1 bit or 2 bits

 Set the character bits, parity bit, and stop bit so that the total number of bits used to send a character adds up to 10 bits.

 Control code

 Header:
 NO STX or STX

 Terminator:
 CR, CR + LF, or ETX

 These settings are ignored when the computer link is selected.

- System register 415.....K1 though K32 (See notes below.)

- System register 416......H8000 (RS232C MODEM CONNECTION ENABLED)

Notes:

- With NPST-GR Software version 3.0 or higher, you cannot set system register 416 to the modem enable mode.
- The baud rate is fixed at 2,400 bps and the setting of system register 414 is ignored.
- The same station number (UNIT NO.) cannot be assigned to FP-Ms in the same network.
- Since initialization of the modem is performed only by an FP-M whose UNIT NO. (system register 415) is set to K1, pay attention to the following when station numbers (UNIT NO.s) are assigned to FP-Ms:
- when one computer communicates with one FP-M, system register 415 should be set to K1.
- when one computer communicates with two or more FP-Ms, no two FP-Ms can have same station number (UNIT NO.) and one of the FP-Ms in the network must be assigned as station number 1 (UNIT NO. 1).
- Modem initialization is performed only when the mode of the programmable controller set to RUN from PROG., or when the power is turned ON in the RUN mode by an FP-M whose UNIT NO (system register 415) is set to K1. Therefore, be sure to apply power to the modem, before the FP-M is turned ON.
- Once the modem is initialized successfully, it will not re-initialize if the mode of the programmable controller is set to RUN from PROG. again.
- When one computer communicates with two or more programmable controllers, set the modem to the mode without character echo.
- Be sure to set the computer and C-NET adapters to the same communication format.

■ How to set system registers 412, 413, 416, and 415

• Using NPS	T-GR Software version	on 3.1	
	ou are using MENU 1		<if 2="" are="" menu="" screen="" type="" using="" you=""></if>
	n [NPST MENU] by p		
selec	t "PLC CONFIGURA	TION" to skip to th	e Esc , and then select "R. SYSTEM REGISTER".
[PLC	C CONFIGURATION] subwindow.	
In th	e [PLC CONFIGURA	TION] subwindow,	,
selec	t "1. SYSTEM REGI	STER".	
Open	the [SYSTEM REGI	STER]-[SET RS232	C] window by pressing Shift + F8 together.
	ollowing is displayed:		
412	RS232C PORT SEL	ECTION	[UNUSED / COMPUTER LNK / GENERAL]
			Select COMPUTER LNK.
413	RS232C SEND FOI	RM	
		DATA LENG*	[7BIT / 8BIT]Select 7-bit or 8-bit.
		PARITY CHK	[NONE / WITH]Select with or without parity check
			[ODD / EVEN]Select ODD or EVEN when the parity, above, is selected.
		STOP BIT	[1BIT / 2BIT]Select 1-bit or 2-bit.
		TERMINATOR	[CR / CR+LF / CR / ETX]
		HEADER	[NO STX / STX]
			Terminator and header settings are ignored in the computer
			link mode.
414	RS232C BAUDRA	ГF	[1]This setting is ignored when the
414	K5252C DAUDKA		modem connection is selected.
416	RS232C MODEM	CONNECTION	[ENAB / DISA]Select "ENAB".
410	K5252C WIODEWI	JOININECTION	[ENAD / DISA JSelect ENAD .
Open	the [SYSTEM REGI	STER]-[COMPUTE	R LNK] window by pressing Shift + F7 together and the

 Open the [SYSTEM REGISTER]-[COMPUTER LNK] window by pressing Shift + F7 together and the following is displayed:

 415
 UNIT NO.

 [1].....Select K1 though K32.

After setting, save the status of the system registers by pressing **F1**.

Note:

character a		•	•	ty check, a	nd	stop bit so	that	t the total number of bits used to send a
EXAMPLES								
Start bit	Cha	aracter b	oits	Parity bit		Stop bits		Total
1	+	7	+	1	+	1	=	10 bits
1	+	7	+	0	+	2	=	10 bits
1	+	8	+	0	+	1	=	10 bits

• Using FP Programmer II

Press the keys on the FP Programmer II as follows.

■ System configuration: One computer and one FP-M control board

The following diagrams show the pin layout of the cables for modem communication.

Cable pin layout

Cable 1:

• Between IBM PC-AT (9 pins) and a modem (25 pins)

IBM P	C-AT (9 pins)	Мос
Pin No.	Abbreviation	Pin No.
1	CD (DCD)	8
2	RD (RXD)	3
3	SD (TXD)	2
4	ER (DTR)	20
5	SG	7
6	DR (DSR)	6
7	RS (RTS)	4
8	CS (CTS)	5
9	RI (CI)	22

• Between a personal computer (25 pins) and a modem (25 pins)

Personal computer (25 pins)			Modem (25 pins)		
Pin No.	Abbreviation		Pin No.	Abbreviation	
1	FG		1	FG	
2	SD (TXD)		2	SD (TXD)	
3	RD (RXD)		3	RD (RXD)	
4	RS (RTS)		4	RS (RTS)	
5	CS (CTS)		5	CS (CTS)	
6	DR (DSR)		6	DR (DSR)	
7	SG		7	SG	
8	CD (DCD)		8	CD (DCD)	
20	ER (DTR)		20	ER (DTR)	

Cable 2: Between a modem and RS232C port of FP-M control board

Mod	em (25 pins)			C port (25 pins) I control board
Pin No.	Abbreviation		Pin No.	Abbreviation
1	FG		1	FG
2	SD (TXD)		2	SD (TXD)
3	RD (RXD)		3	RD (RXD)
4	RS (RTS)		4	RS (RTS)
5	CS (CTS)		5	CS (CTS)
7	SG		7	SG
8	CD (DCD)		8	
20	ER (DTR)]	9	ER (DTR)
22	RI (CI)		6	

System configuration: One computer and two or more FP-M control board

The following diagrams show the pin layout of the cables for modem communication.

Cable pin layout Cable 1:

• Between IBM PC-AT (9 pins) and a modem (25 pins)

IBM P	PC-AT (9 pins)	Mod	em (25 pins)
Pin No.	Abbreviation	Pin No.	Abbreviation
1	CD (DCD)	 8	CD (DCD)
2	RD (RXD)	 3	RD (RXD)
3	SD (TXD)	 2	SD (TXD)
4	ER (DTR)	 20	ER (DTR)
5	SG	 7	SG
6	DR (DSR)	 6	DR (DSR)
7	RS (RTS)	 4	RS (RTS)
8	CS (CTS)	 5	CS (CTS)
9	RI (CI)	 22	RI (CI)

• Between a personal computer (25 pins) and a modem (25 pins)

Personal	computer (25 pin	Modem (25 pins)			
Pin No.	Abbreviation		Pin No.	Abbreviation	
1	FG		1	FG	
2	SD (TXD)		2	SD (TXD)	
3	RD (RXD)		3	RD (RXD)	
4	RS (RTS)		4	RS (RTS)	
5	CS (CTS)		5	CS (CTS)	
6	DR (DSR)		6	DR (DSR)	
7	SG		7	SG	
8	CD (DCD)		8	CD (DCD)	
20	ER (DTR)		20	ER (DTR)	

Cable 2: Between a modem and RS232C port of FP-M control board

Mod	em (25 pins)		C port (25 pins) NET adapter
Pin No.	Abbreviation	Pin No.	Abbreviation
1	FG	 1	FG
2	SD (TXD)	 2	SD (TXD)
3	RD (RXD)	 3	RD (RXD)
4	RS (RTS)	 4	RS (RTS)
5	CS (CTS)	5	CS (CTS)
7	SG	7	SG
8	CD (DCD)	 8	
20	ER (DTR)	 9	ER (DTR)
22	RI (CI)	 6	

8-13. Terminology

address:	An alphanumeric value that identifies where data is stored.
ambient temperature:	The temperature of the air surrounding a system.
American Wire Gauge (AWG)	A standard system used for designating the size of electrical conductors. Larger gauge numbers have smaller diameter.
AND:	A Boolean operation that produces a logic "1" output if all inputs are "1", and a logic "0" if any input is "0".
ASCII:	American Standard Code for Information Interchange. ASCII is normally used when alphanumeric (letters and decimal numbers) and control codes are sent as information to printers, etc. ASCII can be represented using 7 or 8 bits and is often expressed in a 2-digit hexadecimal form converted from specific binary expressions. ASCII expressed in 2-digit hexadecimals is called "ASCII HEX code". For details about actual ASCII codes, refer to the table for ASCII. [EXAMPLE] When a letter "M" is expressed in ASCII code: 7-bit ASCII : 1001101 (binary) ASCII HEX code: 4D (hexadecimal)
asynchronous:	Not synchronous. Repeated operations that take place in patterns unrelated over time.
AWG:	See American Wire Gauge (AWG).
backplane:	A printed circuit board located in the back of a chassis, that contains a data bus, power bus, and mating connectors for units. For FP3, FP5, FP10S and FP10 programmable controllers, two types of backplanes are available: Master Backplane Expansion Backplane
backup:	A device that is kept available to replace something that may fail during operation.
battery backup:	A battery or set of batteries that will provide power to the processor memory only when system power is lost. All FP-Ms and FP1 C24, C40, C56, and C72 series programmable controllers have a battery backup system.
battery low:	A condition that exists when the backup battery voltage drops low enough to require battery replacement. For all FP-Ms and FP1 C24, C40, C56, and C72 series, the ERR. LED turns ON.
baud:	Formally defined as the shortest pulse width in data communication. However, usually used to refer to the number of binary bits transmitted per second (bps) during serial data communication.
BCC:	See Block Check Code.
BCD:	See Binary Coded Decimal.

binary:

In general, programmable controllers work with binary numbers in one form or another to represent various codes or quantities. The binary number system uses the number 2 as the base and the only allowable symbols are "0" and "1". There are no 2s, 3s, etc. Each digit of binary is called as "bit". "Bit" means "binary digit". A group of 8 bits is called a "byte" and a group of 16 bits (two bytes) is called a "word".

The binary number "000000000101011" is expressed in decimal as follows: $1 \times 2^{0} + 1 \times 2^{1} + 0 \times 2^{2} + 1 \times 2^{3} + 0 \times 2^{4} + 1 \times 2^{5} + \dots + 0 \times 2^{15}$ $= 1 + 2 + 0 + 8 + 0 + 32 + \dots + 0$ = 43

Binary Coded Decimal (BCD): One of the codes expressed in binary. BCD is a binary code in which each decimal digit from 0 to 9 is represented by four binary digits (bits). The four positions have a weighted value of 1, 2, 4, and 8, respectively, starting with the least significant bit. A thumbwheel switch is specified as a BCD device, and when connected to a programmable controller, each decimal digit requires four inputs.

BCD is usually expressed grouping four bits as one digit in the same way as the hexadecimal constant H. When BCD is grouped in four bit units, the BCD is expressed by adding the prefix H to the data. Since the weight of each BCD H code is same as that of decimals, be sure to pay attention not to be confused with hexadecimal numbers when BCD H code is handled.

binary number system:

A number system that uses two symbols, "0" and "1". Each digit position has a weighted value of 1, 2, 4, 8, 16, 32, 64, and so on begining with the least significant (right-most) digit.

Bit position	n	•	•	•	•	•	3	2	1	0 Base = 2
	Zn	•	•	•	•	•	Z3	Z2	Z1Z	0
	1							Î		$Z0 \times 2^0 = N0$
										$Z1 \times 2^{1} = N1$
										$Z2 \times 2^2 = N2$
										$Z3 \times 2^3 = N3$
										•
										${}^{\bullet}$ Zn × 2 ⁿ = Nn

	The sum of N0 through Nn is the decimal equivalent of the number in base "2".
Block Check Code (BCC):	This code is used to detect errors in message transmissions. It is created by Exclusive ORing all of the codes from the header though the last text character, then translating the result (8-bit) data into two ASCII characters.
buffer:	A group of registers used for temporary data storage. This is used for data transmission and works effectively when there are transmission rate differences between sending and receiving devices.
bug:	Software errors which will cause unexpected actions.
bus:	Power distribution conductors.
Central Processing Unit:	The Central Processing Unit is usually referred to as the CPU. The CPU controls system activities of the programmable controller.
character:	A symbol such as a letter of the alphabet or decimal number. An ASCII character is most commonly used to express characters using binary.
complement:	A logical operation that inverts a signal or bit. The complement of "1" is "0", and the complement of "0" is "1".
computer link:	One of the communication methods between a computer and programmable controllers. In a computer link, the computer is the host, and it can control programmable controllers using a protocol. For FP series programmable controllers, communication between a computer and programmable controllers is performed using the MEWTOCOL-COM, a half-duplex communication protocol. From the computer, you can read, write, or monitor data stored in the memory of a programmable controller.
CPU:	See Central Processing Unit.
CRT:	Abbreviation for cathode-ray tube.
debug:	Removing errors from a program.

decimal number system:	The decimal number system uses the number 10 as the base and the allowable symbols are "0", "1", "2", "3", "4", "5", "6", "7", "8", and "9". Each digit position has a weighted value of 1, 10, 100, 1000, and so on, begining with the least significant (right-most) digit.								
duplex:	See full-duplex.								
EEPROM:	Electrically Erasable Programmable Read Only Memory. EEPROM can be programmed and erased by electrical pulses.								
EPROM:	Erasable Program after being entirel				n be reprogrammed ight source.				
FIFO:	See First-In-First-	Out.							
First-In-First-Out:	The order that dat	a is written in	n, and read fro	om registers.					
flag:	A relay used to de controller. In FP s internal relays are	series progran	nmable contro						
full-duplex:	A communication link in which data can be transmitted and received at the same time.								
half-duplex:	A communication link in which transmission is limited to one direction at a time.								
hexadecimal:	The hexadecimal number system uses 16 as the base. The allowable symbols are numbers 0 through 9 and letters A through F. The letters are substituted for numbers 10 to 15, respectively, to represent all 16 numbers in one digit. The binary number system can easily be represented in hexadecimal with 4 bit groups. In this manner, a very large binary number can be represented by a hexadecimal number with significantly fewer digits.								
	Μ	lost significa digit	nt	Le	east significant digit				
		Ļ							
	Digit position	3	2	1	0				
	Hexadecimal	9	F 						
	Dit monition	4	11 • • 8	7 • • 4					
	Bit position Binary	15 • • 12 1 0 0 1		7 · · 4	3 · · 0 1 0 1 0				
hold:	The memory area	whose conter	nts will not be	e lost or modi					
interrupt:	The act of perform executing task. FF interrupts, as follo - input initiated in - high-speed coun - time initiated int	P series progra ows: aterrupt ater initiated in	ammable con						

I/O:	Abbreviation of Input/Output.
I/O update:	Taking the input data at the input interface into the memory for program execution and outputting the result of program execution to the output interface.
ladder diagram:	A standard for representing relay-logic systems.
LCD:	Abbreviation for Liquid Crystal Display.
leading edge differential:	A programming technique to operate a bit only for one scan at the moment its input condition turns ON from the OFF state.
Least Significant Bit (LSB):	The bit which represents the smallest value in a byte, word, or double-word.
Least Significant Digit (LSD):	The digit which represents the smallest value in a number.
LED:	Abbreviation for Light-Emitting Diode.
malfunction:	Incorrect function.
Master Control Relay:	A relay which controls any series of programs with its operation. If the master control relay is de-energized, all of the contacts and devices controlled by the master control relay are de-energized.
MEWTOCOL-COM:	A half-duplex communication protocol for FP series programmable controllers that performs communication between a computer and programmable controllers.
modem:	Abbreviation for MOdulator/DEModulator. The modem modulates digital signals and transmits them through a telephone line.
Most Significant Bit (MSB):	The bit which represents the greatest value in a byte, word, or double-word.
Most Significant Digit (MSD):	The digit which represents the greatest value in a number.
multidrop link:	A communication link in which one host can communicate with two or more stations.
noise:	Random, unexpected electrical signals, that are caused by radio waves or by electrical or magnetic fields.
non-hold:	The memory area whose contents will be lost or modified if operating power is lost or if the mode of the programmable controller is changed from RUN to PROG.
normally-closed contact:	A contact which is closed when the coil of the relay is not activated.
normally-open contact:	A contact which is open when the coil of the relay is not activated.
offline:	Not being in continuous communication with another processor.
online:	Being in continuous communication with another processor.
overflow:	The act of exceeding the maximum limit in a registers capacity.

parity check:	A check method for the number of 1s in a character when data communication is performed. The parity check is performed by calculating the number of ones in a character.				
peripheral device:	Devices that are connected to the programmable controller.				
PLC:	Abbreviation for Programmable Logic Controller. See programmable controller.				
potentiometer:	A simple transducer which works based on resistance change. The FP-M manual-set registers work according to the potentiometers named "V0", "V1", "V2", or "V3".				
programmable controller:	A control device which can be programmed to control process or machine operations. A programmable controller is often referred to as a PLC when abbreviated.				
RAM:	Random Access Memory. RAM provides an excellent means for easily creating and altering a program. Many of the FP series programmable controllers use RAM with battery backup for the application memory.				
register:	A unit of memory for various types of data. A register is usually 16 bits wide.				
ROM:	Read Only Memory. See EEPROM and EPROM.				
RS232C:	An EIA communication standard for data transmission media that is less than 15 m. Most common serial communication standard.				
RS422:	An EIA communication standard for data transmission media.				
rung:	Term for a ladder program. A rung refers to the programmed instructions that drive one output.				
scan:	Time required to read all inputs, execute the program, and update local and remote information.				
self-diagnostic function:	A function within the programmable controller which monitors operation and indicates any fault that is detected.				
serial communication:	A communication style in which data is transmitted bit by bit serially.				
stop bit:	The last bit when a character is transmitted.				
system errors:	Errors resulting from the device or the environment.				
system register:	The registers used only for system settings of the programmable controller.				
trailing edge differential:	A programming technique to operate a bit only for one scan at the moment its input condition turns OFF from the ON state.				
two's complement:	A number system used to express positive and negative numbers in binary. In this system, the number becomes negative if the most significant bit of the data is "1". In FP series programmable controllers, numbers are expressed using the two's complement.				
underflow:	The act of going below the minimum limit in a register's capacity.				

watchdog timer:	A timer that monitors processing time of the programmable controller. If the program does not time out, the processor is assumed to be faulty.
word:	A unit of bits which is usually executed at the same time. A word is composed of 16 bits.

8-14. Product Types

1. Case Type

■ Refer to the part numbers below when using a case type control board.

Туре	Combination of	Memory		Desci	ription		Part
	control board and case	(program capacity)	Operating voltage	I/O point	Input	Output	number
C20R	Control Board: AFC12212	RAM	24 V DC	Total: 20	24 V DC	Relay	AFC10212
	Case: AFC18011	(2.7 k steps)		Input: 12		2 A	
				Output: 8			
C20RC	Control Board: AFC22212C	RAM	24 V DC	Total: 20	24 V DC	Relay	AFC20212C
	Case: AFC18011	(5 k steps)		Input: 12		2 A	
				Output: 8			
C20T	Control Board: AFC12242	RAM	24 V DC	Total: 20	24 V DC	Transistor	AFC10242
	Case: AFC18012	(2.7 k steps)		Input: 12		0.8 A	
				Output: 8		NPN type	
	Control Board: AFC12252			Total: 20	24 V DC	Transistor	AFC10252
	Case: AFC18012			Input: 12		0.8 A	
				Output: 8		PNP type	
C20TC	Control Board: AFC22242C	RAM	24 V DC	Total: 20	24 V DC	Transistor	AFC20242C
	Case: AFC18012	(5 k steps)		Input: 12		0.8 A	
				Output: 8		NPN type	
	Control Board: AFC22252C			Total: 20	24 V DC	Transistor	AFC20252C
	Case: AFC18012			Input: 12		0.8 A	
				Output: 8		PNP type	
C32T	Control Board: AFC12342	RAM	24 V DC	Total: 32	24 V DC		AFC10342
	Case: AFC18013	(2.7 k steps)		Input: 16		0.8 A	
				Output: 16		NPN type	
	Control Board: AFC12352			Total: 32	24 V DC		AFC10352
	Case: AFC18013			Input: 16		0.8 A	
				Output: 16		PNP type	
C32TC	Control Board: AFC22342C	RAM	24 V DC	Total: 32	24 V DC	Transistor	AFC20342C
	Case: AFC18013	(5 k steps)		Input: 16		0.8 A	
				Output: 16		NPN type	
	Control Board: AFC22352C			Total: 32	24 V DC		AFC20352C
	Case: AFC18013			Input: 16		0.8 A	
				Output: 16		PNP type	

■ Use the appropriate case below when expanding a case type board (expansion, intelligent and link board).

Туре	Description	Part number
Case for expansion board	Install the case between stacked boards	AFC1802
	Spacers supplied (18 mm, AFB8803): 4 pieces	
Skirt case	Install the case on the bottom of the boards	AFC1803
	Spacers supplied (18 mm, AFB8803): 4 pieces	

Notes:

■ Structure of case type

- 1 Case for the control board
- 2 Screws (8 mm)
- ③ Screws (20 mm)
- ④ Connector P.C.B.
- (5) Control board
- 6 Spacers (18 mm)
- ⑦ Case for expansion board
- (8) Expansion board
- (9) Skirt case
- 10 Expansion board
- (1) Spacers (8 mm)
- 12 Mounting plate
- **13 Screws**

2. Board Type

■ Control boards

Туре	Memory		Description			Part
	(program	Operating	I/O point	Input	Output	number
	capacity)	voltage				
C20R	RAM	24 V DC	Total: 20	24 V DC	Relay	AFC12212
	(2.7 k steps)		Input: 12	Sink/source	2 A	
			Output: 8			
C20RC	RAM	24 V DC				AFC22212C
	(5 k steps)					
C20T	RAM	24 V DC	Total: 20	24 V DC	Transistor	AFC12242
	(2.7 k steps)		Input: 12	Source	0.8 A	
			Output: 8		NPN type	
				24 V DC	Transistor	AFC12252
				Sink	0.8 A	
					PNP type	
C20TC	RAM	24 V DC	Total: 20	24 V DC	Transistor	AFC22242C
	(5 k steps)		Input: 12	Source	0.8 A	
			Output: 8		NPN type	
				24 V DC	Transistor	AFC22252C
				Sink	0.8 A	
					PNP type	
C32T	RAM	24 V DC	Total: 32	24 V DC	Transistor	AFC12342
	(2.7 k steps)		Input: 16	Source	0.8 A	
			Output: 16		NPN type	
				24 V DC	Transistor	AFC12352
				Sink	0.8 A	
					PNP type	
C32TC	RAM	24 V DC	Total: 32	24 V DC	Transistor	AFC22342C
	(5 k steps)		Input: 16	Source	0.8 A	
			Output: 16		NPN type	
				24 V DC	Transistor	AFC22352C
				Sink	0.8 A	
					PNP type	

Notes:

• The board type consists of the control board and packing parts.

- Packing parts:
- Screws for control board (8 mm): 2 screws; for connector board (20 mm): 2 screws
- Spacers (20 mm, AFB88021): 4 pieces
- Backup battery (AFB8801): 1 piece
- Power supply cable (APL9511): 1 piece
- Jumper cable (AFB8505): 1 piece
- Connector board (This board is already connected in C20RC and C32TC types when shipped.)
- Since the lengths of the attached spacers for case and board types are different, use the spacers attached to the board.
 - Spacers: board type 20 mm, case type 8 mm
- 12 V DC type operating voltage is also available. Please contact your dealer.

■ Expansion I/O boards

Туре	Description				Part
	Operating voltage	I/O point	Input type	Output type	number
Expansion I/O Board	24 V DC	Total: 20	24 V DC	Relay	AFC13012
E20R		Input: 12	Sink/source	2 A	
		Output: 8			
Expansion I/O Board	24 V DC	Total: 40	24 V DC	Transistor	AFB6342
M1T-E		Input: 24	Source	0.8 A	
		Output: 16		NPN type	
			24 V DC	Transistor	AFB6342P
			Sink	0.8 A	
				PNP type	
Expansion Input Board	24 V DC	Total: 36	24 V DC		AFB6392
M1T-EI		Input: 36	Source		
Expansion Output Board	24 V DC	Total: 32		Transistor	AFB6340
M1T-EO		Output: 32		0.8 A	
				NPN type	

Intelligent boards

Туре	Description	Part number
Analog I/O Board	Operating voltage: 24 V DC	AFB6480
	Number of I/O channels:	
	- Input: 4 channels, Output: 1 channel	
	I/O range: 0 to 5 V, 0 to 10 V, and 0 to 20 mA	
	Resolution: 1/256 (8 bits)	
A/D Converter Board	Operating voltage: 24 V DC	AFB6400
	Number of input channels: 4 channels	
	Input range: 0 to 5 V, 0 to 10 V, and 0 to 20 mA	
	Resolution: 1/1000 (10 bits)	
D/A Converter Board	Operating voltage: 24 V DC	AFB6410
	Number of output channels: 2 channels	
	Output range: 0 to 5 V, 0 to 10 V, and 0 to 20 mA	
	Resolution: 1/1000 (10 bits)	
High-speed Counter	Counter points: 2 points (channel 0 and 1)	AFB6420
Board	Max. counting speed:	
	- 1-phase mode: 20 k Hz, 2-phase mode: 5 k Hz	

Note:

• The expansion I/O and intelligent boards consist of the preceding board and spacers (20 mm, AFB8802): 4 pieces.

Link boards

Туре	Description	Part number		
FP-M Transmitter	FP-M transmitter master board enables the FP-M to	AFC1752		
Master Board	I/O information with slave stations at remote site us	ing a twisted		
(MEWNET-TR)	pair cable. Connecting with another FP-M transmitte	ting with another FP-M transmitter master		
	board or with an FP3 transmitter master unit, you can exchange			
	I/O information with another FP-M at remote site. Communication			
	medium (RS485 port): twisted pair cable up to 32 in			
	outputs can be controlled per board.			
FP I/O	Operating voltage: 24 V DC	4 points	AFP87525	
Transmitter Unit	Input type	8 points	AFP87521	
		16 points	AFP87522	
	Operating voltage: 24 V DC	4 points	AFP87527	
	Output type (transistor NPN type, 0.5 A)	8 points	AFP87523	
		16 points	AFP87524	
FP I/O Terminal Unit	Operating voltage: 24 V DC	8 points	AFP87425	
(with an expansion	Input type	16 points	AFP87426	
cable APL 2510)	Operating voltage: 24 V DC	8 points	AFP87427	
	Output type (transistor NPN type, 0.5 A)	16 points	AFP87428	
FP-M I/O Link Board	This board is an interface board for exchanging I/O	information	AFC1732	
	between an FP3/FP5 and an FP-M. When an FP-M	control board		
	is connected to the FP3/FP5 remote I/O system via	this board,		
	you can exchange I/O information using 2-conducto			
	Controllable I/O points: Max. total 64 points			
	(Input: 32 points, Output: 32			
	Operating voltage: 24 V DC			
C-NET Adapter	Operating voltage: 24 V DC/100 to 240 V AC	AFP8532		
standard type	e RS485 ↔ RS422/RS232C signal converter			
	Used for communication between an FP-M and your computer		AFP8536	
	using a shielded twisted pair or 2-conductor cable.			
C-NET Adapter	RS485 ↔ RS232C signal converter for FP-M only	AFP15402		
S2 type	Used for communication between the C-NET adapt			
type and an FP-M control board.				

Notes:

- When setting the I/O allocation of an FP-M transmitter master board and an FP-M I/O link board using the operation mode selector, be sure not to overlap I/O addresses.
- The FP-M transmitter master board and FP-M I/O link board (board type) consist of the board and four spacers (20 mm, AFB8802).

■ Structure of board type

- ① Screws (8 mm)
- ② Screws (20 mm)
- ③ Connector P.C.B.
- 4 Control board
- (5) Spacers (20 mm, AFB88021)
- (6) Expansion board
- ⑦ Spacers (20 mm, AFB8802)

3. Programming Tools

■ FP Programmer II

Туре	Description	Part number
FP Programmer II	Hand held programming tool for FP programmable controller.	AFP1114
FP-M Peripheral Cable (for FP Programmer II) (See note.)	Cable needed for connection, - between the programming tool port of FP-M control board and FP Programmer II communication port (RS232C interface). - between the FP-M control board and FP data access unit.	AFC8521 (1 m/3.3 ft.) AFC8523 (3 m/9.8 ft.)

■ NPST-GR Software

Туре	Description	Part number
NPST-GR Software Ver.3	Program editing software used	AFP266538
	System required: IBM PC-AT or 100 % compatible with 2 MB or	
	more hard disk drive, MS-DOS Ver. 3.30 or	
	higher, and EGA or VGA display mode	
FP-M Personal Computer	Cable needed for connection between the programming tool	AFC8513
Cable (for NPST-GR)	port of FP-M control board and D-SUB 25 connector of	(3 m/9.8 ft.)
(See note.)	RS232C interface adapter.	
RS232C Interface	Adapter needed for connection between the programming tool	Needs to be
Adapter	port of FP-M personal computer cable (for NPST-GR) and	made to match
	RS232C interface (9 or 25 pins) of personal computer.	your computer
	Refer to example of adapter specifications on page 245.	
RS232C Cable	Cable needed for connections between the RS232C port of C	Needs to be
(See note.)	type control boards (C20RC/C20TC/C32TC) and RS232C	made to match
	interface (9 or 25 pins) of your personal computer.	your computer

Note:

• The specifications for each cable used for communications are shown on page 246 to 248.

■ Memory

Туре	Description	Part number
Memory (EPROM)	Memory for storing the programs. Writing is done with a commercial ROM programmer. EPROM (27C256 type or equivalent) We recommend Aval Data Corporation's ROM programmer, "PECKER 11".	AFP5202 (2 pieces in a set)
Master memory (EEPROM)	Memory for copying and transmitting the programs. Writing is done with a master memory attached to an FP-M control board. EEPROM (28C256 type or equivalent)	AFP5207 (1 piece in a set)

Peripheral devices

Туре	Description	Part number
FP Panel Mounting Cord	A cord that can be mounted on the panel to extend the programming tool connector of the FP-M control board. Refer to specifications for cord on page 249.	AFC8531 (1 m/3.3 ft.) AFC8532 (2 m/6.6 ft.)
FP Data Access Unit	A unit for monitoring and changing values of timer/counter/data registers after the programmable controller has been installed to the machine.	AFP1682

Pin layout diagram of RS232C interface adapter

The following diagrams show pin layout examples for the RS232C interface adapter.

Example 1:

FP-M personal computer cable (for NPST-GR) to IBM PC-AT (9 pins)

RS232C interface adapter

Example 2:

FP-M personal computer cable (for NPST-GR) to personal computer (25 pins)

RS232C interface adapter

FF	FP-M personal computer cable RS232C interface 25 pins, male			RS23	nal computer 2C interface ins, female
	Pin No.	Abbreviation		Pin No.	Abbreviation
	1	FG		1	FG
	2	SD (TXD)		2	SD (TXD)
	3	RD (RXD)		3	RD (RXD)
	4	RS (RTS)		4	RS (RTS)
	5	CS (CTS)		5	CS (CTS)
	6	DR (DSR)		6	DR (DSR)
	7	SG		7	SG
	8	CD (DCD)		8	CD (DCD)
	20	ER (DTR)		20	ER (DTR)

Specifications for cable and cord

• FP-M peripheral cable (for FP Programmer II)

Programming tool port of FP-M control board to connector (RS232C interface) of FP Programmer II
Programming tool port of FP-M control board to connector of FP data access unit

	m/3.3	ft.:	AFC8521
3	m/9.8	ft.:	AFC8523

Pin No.	Abbreviation		Pin No.	Abbreviation
	FG			FG
1	SG	•	2	SG
2	SD	├ ─── }	3	RD
3	RD	◀────	11	SD
4			4	—
5	+5 V		1	+5 V
FP-M c	control board		5	—
			6	—
			7	—
			8	—
			9	—
		L ,	10	SG
			12	_
			13	_

FP Programmer II or FP data access unit

14 15

• FP-M personal computer cable (for NPST-GR)

Connects the programming tool port of the FP-M control board to the D-SUB 25 connector of the RS232C interface adapter

RS232C interface adapter

• RS232C cable

Connects the RS232C port of a C type control board (C20RC/C20TC/C32TC) to the RS232C interface (9 or 25 pins) of a personal computer

RS232C port of C20RC/C20TC/C32TC types to RS232C interface (9 pins) of personal computer

3				3	30 (170)
4	RS (RTS)	_		4	ER (DTR)
5	CS (CTS)			5	SG
6	RI (CI)	$\sim \gg$		6	DR (DSR)
7	SG	$\vdash \times \land$	/	7	RS (RTS)
8	CD (DCD)	$\vdash \land$		8	CS (CTS)
9	ER (DTR)	Ľ `		9	RI (CI)

RS232C port of C20RC/C20TC/C32TC types to RS232C interface (25 pins) of personal computer

Pin No.	Abbreviation	Pin No.	Abbreviation
1	FG	1	FG
2	SD (TXD)	2	SD (TXD)
3	RD (RXD)	3	RD (RXD)
4	RS (RTS)	4	RS (RTS)
5	CS (CTS)	5	CS (CTS)
6	RI (CI)	6	DR (DSR)
7	SG	7	SG
8	CD (DCD)	8	CD (DCD)
9	ER (DTR)	20	ER (DTR)

• FP panel mounting cord

Dimensions

Mounting hole dimensions

(unit: mm/in.)

4. Wiring Parts for I/O Terminal

• Applicable boards:

- Control boards: C20R and C20RC types
- Expansion board: E20R type
- Intelligent boards: Analog I/O, A/D converter, and D/A converter boards

Solderless terminal

Туре	Description	Part number
Solderless terminal	Applicable wire: AWG28 to AWG16 (0.08 mm ² to 2.5 mm ²)	AFC8805
		(100 pieces in a set)

5. Wiring Parts for I/O Connectors (MIL connectors)

• Applicable boards:

- Control boards: C20T, C20TC, C32T, and C32TC types
- Expansion boards: M1T-E, M1T-EI, and M1T-EO types
- Intelligent board: High-speed counter board

■ CT-2 connector terminal (DIN rail mounting type)

Board type	Connector	CT-2 connector terminal
		Part number
C20T/C20TC	Output connector (16-pin)	CT2-20
	Input connector (20-pin)	
C32T/C32TC	Output connector (34-pin)	CT2-34
	Input connector (30-pin)	CT2-30
M1T-E	Output connector (34-pin)	CT2-34
	Input connector (40-pin)	CT2-40
M1T-EI	Input connector B (20-pin)	CT2-20
	Input connector A (40-pin)	CT2-40
M1T-EO	Output connector B (34-pin)	CT2-34
	Output connector A (34-pin)	

Cable for CT-2 connector terminal

Product name	e Applicable I/O connector (number of pins) Part nu		umber	
		1 m/3.3 ft.	2 m/6.6 ft.	
Cable with	Output connector (16-pin) for C20T and C20TC types	AYT51163	AYT51165	
connector				
	Input connector (20-pin) for C20T and C20TC types Input connector B (20-pin) for M1T-EI type		AYT51205	
	Input connector (30-pin) for C32T and C32TC types		AYT51305	
	Output connector (34-pin) for C32T, C32TC, and M1T-E types Output connector A and B (34-pin) for M1T-EO type Input connector (40-pin) for M1T-E type		AYT51345	
			AYT51405	
	Input connector A (40-pin) for M1T-EI type			

■ RT-2 relay terminal

Board type	Connector	RT-2 relay terminal	
		Part number	
C20T/C20TC	Output connector (16-pin)	DIN rail mounting type: RT1S-OD08-24V-S	
C32T/C32TC	Output connector (34-pin)	DIN rail mounting type: RT2S-OD16-24V	
M1T-E	Output connector (34-pin)	Direct mounting type: RT2S-M-OD16-24V	
M1T-EO	Output connector B (34-pin)		
	Output connector A (34-pin)		

Cable for RT-2 relay terminal

Applicable I/O connector (number of pins)	Part number	
	1 m/3.3 ft.	2 m/6.6 ft.
Output connector (16-pin) for C20T and C20TC types	AY15723	AY15725
Output connector (34-pin) for C32T, C32TC, and M1T-E types	AY25523	AY25525
Output connector A and B (34-pin) for M1T-EO type		

■ Wire-press socket

Board type	Connector	Part number		
		Housing	Cover	Contact
C20T/C20TC	Output connector (16-pin)	AXW1164A	AXW61601A	AXW7221
	Input connector (20-pin)	AXW1204A	AXW62001A	
C32T/C32TC	Output connector (34-pin)	AXW1344A	AXW63401A	
	Input connector (30-pin)	AXW1304A	AXW63001A	
M1T-E	Output connector (34-pin)	AXW1344A	AXW63401A	
	Input connector (40-pin)	AXW1404A	AXW64001A	
M1T-EI	Input connector B (20-pin)	AXW1204A	AXW62001A	
	Input connector A (40-pin)	AXW1404A	AXW64001A	
M1T-EO	Output connector B (34-pin)	AXW1344A	AXW63401A	
	Output connector A (34-pin)			

■ Flat cable connector (flat cable with one side connector)

Board type	Connector	Part number	
		1 m/3.3 ft.	2 m/6.6 ft.
C20T/C20TC	Output connector (16-pin)	APL9531	APL9532
	Input connector (20-pin)	APL9541	APL9542
C32T/C32TC	Output connector (34-pin)	AFB8531	AFB8532
	Input connector (30-pin)	AFB8521	AFB8522
M1T-E	Output connector (34-pin)	AFB8531	AFB8532
	Input connector (40-pin)	AFB8541	AFB8542
M1T-EI	Input connector B (20-pin)	APL9541	APL9542
	Input connector A (40-pin)	AFB8541	AFB8542
M1T-EO	Output connector B (34-pin)	AFB8531	AFB8532
	Output connector A (34-pin)		

Connector

Applicable I/O connector (number of pins)	Part number
Output connector (16-pin) for C20T and C20TC types	AXM116415
Input connector (20-pin) for C20T and C20TC types Input connector B (20-pin) for M1T-EI type	AXM120415
Input connector (30-pin) for C32T and C32TC types	AXM130415
Output connector (34-pin) for C32T, C32TC, and M1T-E types Output connector A and B (34-pin) for M1T-EO type	AXM134415
Input connector (40-pin) for M1T-E type Input connector A (40-pin) for M1T-EI type	AXM140415

6. Accessories

Туре	Description	Part number
Case for control board	Put the case on top of the control board.	C20R type: AFC18011
	Spacers supplied (8 mm, AFB88032): 4 pieces	C20T type: AFC18012
		C32T type: AFC18013
Case for expansion board	Install the case between stacked boards.	AFC1802
	Spacers supplied (18 mm, AFB8803): 4 pieces	
Skirt case with spacers	Install the case on the bottom of boards.	AFC1803
	Spacers supplied (18 mm, AFB8803): 4 pieces	
I/O number label for	To indicate I/O location of expansion board.	E20R type: AFC18062
expansion I/O board	The seal is on the side of case.	M1T-E type: AFC18061
		M1T-EI type: AFC18063
		M1T-EO type: AFC1806
Mounting plate with screws	This metal plate attaches the boards.	AFB6804
	Attached 4 screws	
	Refer to page 35, "2-2. Dimensions, 2. Case Type"	
	for mounting hole dimensions.	
DIN rail	DIN standard rail (width 35 mm/length 1 m)	AT8-DLA1
Fastening plate	To fix FP-M on the DIN rail	ATA4806

7. Maintenance Parts

Туре	Description		Part number
Spare battery for FP-M	Replacement for backup battery		AFB8801
	BR2032/CR2032 or equivalent		
Power supply cable	Available with control board		APL9511
Jumper cable	Available with control board		AFB8505
Spacers	For case type	Shape: 🔲 , Length: 8 mm	AFB88032
		Shape: 🔤 , Length: 18 mm	AFB8803
	For board type	Shape:, Length: 20 mm	AFB88021
		Shape: 🔤 , Length: 20 mm	AFB8802

INDEX

Α

A/D converter board	
dimensions	134
parts terminology	135, 136
pin layout	137
programming	143 to 147
restriction of expansion	134
specifications	133
type	10
wiring	137
Advanced control functions	3 to 5
ALARM LED	117
Analog I/O board	
dimensions	129
parts terminology	130, 131
pin layout	132
programming	143 to 147
restriction of expansion	129
specifications	128
type	10
wiring	132

B

<u>D</u>	
Backup battery	125
Baud rate selector	22 to 27, 84, 100
Binary/BCD expressions	219
Board type structure	32

С

C-NET adapter (standard type/S2 type)	6, 11
C20R and C20RC type control boards	
dimensions	33
I/O allocation	38
internal circuit	63
parts terminology	22, 23
pin layout	63
types	9
wiring	48, 49, 63

C20T and C20TC type control boar	ds
dimensions	33
I/O allocation	38
internal circuit	64, 65
parts terminology	24, 25
pin layout	64
types	9
wiring	50, 51, 64, 65
C32T and C32TC type control boar	ds
dimensions	33
I/O allocation	38
internal circuit	66, 67
parts terminology	26, 27
pin layout	66
types	9
wiring	50, 51, 66, 67
Case type structure	32
Clock/calendar control function	5
Computer link function (MEWTOC	COL) 6
Constant length scan setting function	n 5
CPU	74
CT-2 connector terminal 55 to	
Current consumption 18	

D

D/A converter board	
dimensions	139
parts terminology	140, 141
pin layout	142
programming	143 to 147
restriction of expansion	139
specifications	138
type	10
wiring	142
Dimensions	
building (board/case type)	34, 35, 179, 180
case dimensions	35, 180
C20R, C20RC, C20T, C20T	С, С32Т,
and C32TC types	33, 177

E20R, M1T-E, M1T-EI,	
and M1T-EO types	33, 177
intelligent and link boards	178
mounting hole (board/case type)	34, 35, 179, 180

____E

E20R type expansion I/O board	
dimensions	33
I/O allocation	39
internal circuit	68
parts terminology	28
pin layout	68
type	10
wiring	48, 49, 68
ERR. LED	115
Error	
battery error	113
duplicated output error	113
operation error	113
"PLC = COMM. ERR"	121
"PROTECT ERROR"	122
self-diagnostic error	112
system watchdog timer error	112
total-check error	112
Error codes	210, 211
Expansion	12, 13

F

Features	2
Flat cable connector	55, 60
Forced ON/OFF control function	5
FP I/O terminal unit	11
FP I/O transmitter unit	11
FP Programmer II	14, 100 to 102
FP ROM writer	15
FP-M I/O link board (MEWNET-F)
dimensions	166
parts terminology	167, 168
restriction of expansion	166
specifications	166
type	11

FP-M transmitter master board (MEWNET-TR)		
162		
163, 164		
162		
162		
11		

G

0	
General communication	8
General specification	18
Grounding	47

Η

<u> </u>	
High-speed counter board	
dimensions	150
I/O allocation	153, 154
internal circuit	156
parts terminology	151, 152
pin layout	156
programming	157 to 160
restriction of expansion	150
specifications	148 to 150
type	10
wiring	156
High-speed counter function	3
How to program	
programming with FP Programmer II	100 to 102
programming with NPST-GR Software	84 to 99
ROM	15, 16, 107 to 109

Ι

I/O allocation	38 to 40, 181 to 184
Input/output terminal	28, 61, 130
Input time filtering function	4
Input wiring examples	
LED-equipped limit swite	ch 53
LED-equipped reed switc	h 53
photoelectric sensors	52
two-wire type sensor	53
Inrush current	54

INDEX

Installation

cautions	45
DIN rail mount	44
panel mount (board/case type)	44
Instructions	212 to 218
Internal circuit	63 to 72
Interrupt input function	4

М

M1T-E type expansion I/O board	
dimensions	33
I/O allocation	39
internal circuit	69, 70
parts terminology	29
pin layout	69
type	10
wiring	50, 51, 69, 70
M1T-EI type expansion input board	l
dimensions	33
I/O allocation	39
internal circuit	71
parts terminology	30
pin layout	71
type	10
wiring	50, 51, 71
M1T-EO type expansion output boa	urd
dimensions	33
I/O allocation	39
internal circuit	72
parts terminology	31
pin layout	72
type	10
wiring	50, 51, 72
Maintenance	
backup battery	125
check items	126
Manual dial-set register control fund	ction 4
Memory areas	185, 186
Memory (ROM) type	
master memory (EEPROM)	15, 106, 107
memory (EPROM)	15, 106, 107

MEWNET-F system	7, 165
MEWNET-TR system	7, 161
Modem communication	8, 224 to 231

0

Operating principles	
basic configuration	74, 75
basic operation	76
making a ladder diagram	80
operation procedure	79
relays and timer/counter contacts	81, 82
scan time	77
Operation without backup battery enabled	d 104
Outline of system registers	187, 188
Output wiring examples	
AC inductive load	54
capacitive load	54
DC inductive load	54
Output specification	20

Р

<i>P</i>	
Password protection function	on 5, 122
Pattern output function	3
Performance specifications	18, 170 to 176
Pin layout 63	3, 64, 66, 68, 69, 71, 72
Power cable	46
Power supply lines	46
Product types	9 to 11, 239 to 253
Programming tools	
FP Programmer II	14, 100 to 102
NPST-GR Software	14, 84 to 99
versions	220 to 223
Protective device	54
Pulse catch input function	4
Pulse output function	3

R

R		
RAM operation		103
ROM operation	15, 103, 105, 107 to	109
RS232C port		
computer link funct	tion	6
general communica	tion	8

RT-2 relay terminal

S

Safety	
power supply wiring	47
momentary power drop	47
Self-diagnostic error codes	
E26 (ROM error)	124
E28 (system register error)	124
E31 (interrupt error)	124
E32 (interrupt error)	124
E45 (operation error)	124
E50 (battery error)	124
E100 to E299 (self-diagnostic error	rs) 124
Self-diagnostic function	112,118
Solderless terminal	61
Spacer	42, 43
Special data registers	201 to 209
Special internal relays	198 to 200
Specifications (control and expansion l	ooards)
general	18
input	20
output	20
performance	18
Stacking	
board type	42
case type	43
System registers	189 to 197

T

Total-check error codes	
E1 (syntax error)	123
E2 (duplicated output error)	123
E3 (not paired error)	123
E4 (system register parameter error)) 123
E5 (program area error)	123
E8 (operand error)	123
Troubleshooting	114 to 122

55 to 60
48 to 51
61
46
62
62
63 to 72

RECORD OF CHANGES

ACG No.	Date	Description of Changes
ACG-M0045-1	DEC. 1994	First edition

Please contact

Matsushita Electric Works, Ltd.

Automation Controls Company

- Head Office: 1048, Kadoma, Kadoma-shi, Osaka 571-8686, Japan
- Telephone: +81-6-6908-1050
- Facsimile: +81-6-6908-5781

All Rights Reserved © 2006 COPYRIGHT Matsushita Electric Works, Ltd.