Panasonic

^{プログラマブル表示器} GVシリーズ 通信ユニットマニュアル

Ethernet

ARCT1F354-3

安全に関するご注意

ケガや事故防止のため、以下のことを必ずお守りください。 据付、運転、保守、点検の前に、必ずこのマニュアルをお読みいただき、正しくご使用下さい。 機器の知識、安全の情報、その他注意事項のすべてを習熟してからご使用下さい。 このマニュアルでは、安全注意事項のレベルを「警告」と「注意」に区分しています。 **苔女 /**取扱いを誤った場合に、使用者が死亡または重傷を負う危険の状態を ●本製品の故障や外部要因による異常が発生しても、システム全体が安全側に働くように本製品 の外部で安全対策を行ってください。 ●表示器を使ってシステムを構成する際、重要な操作を行うスイッチ(非常停止スイッチなど)には 表示器を使用しないでください。 表示器が通信異常を起こした場合、誤出力、誤動作などにより重大な事故につながるおそれが あります。 ●燃焼性ガスの雰囲気中では使用しないでください。 爆発の原因となります。 ●本製品を火中に投棄しないでください。 電池や電子部品などが破裂する原因となります。 ●リチウム電池は衝撃を与えたり、充電したり、火への投入、加熱をしないでください。

発火・破裂の原因となります。

介. 文. 市. 市. 取扱いを誤った場合に、使用者が傷害を負うかまたは物的損害のみが チェリングを引きた。 発生する危険の状態が生じることが想定される場合

- ●異常発熱や発煙を防止するため、本製品の保証特性・性能の数値に対し余裕をもたせて使用してください。
- ●分解、改造はしないでください。異常発熱や発煙の原因となります。
- ●通電中は端子に触れないでください。感電のおそれがあります。
- ●非常停止、インターロック回路は外部で構成してください。
- ●電線やコネクタは確実に接続してください。接続不十分な場合は、異常発熱や発煙の原因となります。

●製品内部に液体、可燃物、金属などの異物を入れないでください。異常発熱や発煙の原因となります。

- ●電源を入れた状態では施工(接続、取り外しなど)しないでください。感電のおそれがあります。
- ●タッチスイッチの操作力は商品の仕様以下としてください。
- それ以上の力で操作すると破損してケガをするおそれがあります。
- ●本タッチスイッチはアナログ抵抗膜方式です。スクリーン上を同時に2点以上押さないでください。

同時に2点以上押した場合は、押した点の中心にスイッチがあるとそのスイッチが動作し、設備の破損や事故の原因となります。

もくじ

第1章	概 要	1-1
第2章	仕 様	2-1
	Ethernet 通信仕様	
	性能仕様	
第3章	Ethernet 通信ユニットの設定と配線	3-1
	Ethernet 通信ユニット	3-1
	Ethernet 通信ユニット型式	3-1
	Ethernet 通信ユニット外形寸法	
	各部の名称と機能	
	Ethernet 通信ユニットの取り付け	3-3
	CE 対応時の注意点	
	通信ユニット装着時の外形寸法	
	配線について	3-5
	AUI で接続する場合	
	10BASE5	
	10BASE-T で接続する場合	
	ケーノル記録図	
		3-7
第4章	システム設定	4-1
	接続例	4-1
	(A) RS-232C、RS-485 で PLC と接続する場合	4-2
	(B) Ethernet 上の PLC と接続する場合	
第5章	ネットワークテーブル編集	5-1
	ネットワークテーブル	5-1
	起動と終了	5-2
	メニューとアイコン	
	ネットワークテーブル編集の設定方法	

第6章	マクロ	6-1
	マクロコマンド	
	[EREAD]	
	EWRITE]	
	[SEND]	
第7章	システムメモリ	7-1
	一覧	
第8章	画面転送	8-1
	転送方法	
	注意事項	
	設定方法	
第9章	Ethernet アクセス関数(HKEtn10.DLL)	9-1
	Sample フォルダ	
	□数什様	9-2
	— 暫	9-2
	ی Pood	0_3
		9-3 0-3
	「こうべこう」 「読み込み」	9-4
	「「「「「「」」」」、「「」」、「「」」、「」」、「」、「」、「」、「」、「」、	9-4
	メモリカードメモリーワード読み込み	9-5
	アビジン イン ビット読み込み	
	内部メモリ ビット読み込み	
	メモリカードメモリ ビット読み込み	
	PLC メモリ ワード(ブロック)読み込み	
	Write	
	PLC メモリ ワード書き込み	
	PLC メモリ ダブルワード書き込み	
	内部メモリ ワード書き込み	
	メモリカードメモリ ワード書き込み	
	PLC メモリ ビット書き込み	
	内部メモリ ビット書き込み	
	メモリカードメモリ ビット書き込み	

その他の関数	9-13
初期化関数	9-13
GV からの受信待ち	9-13
受信待ち関数のキャンセル	9-14
接続情報の要求	9-14
終了処理	9-14
受信した相手先 IP アドレスの取得	9-14
エラー内容の取り出し	9-15
サーバとの通信手順	9-16
GV からサーバヘデータを要求する場合	9-16
サーバから GV へ PLC データを要求する場合	9-17

第 10 章	エラー表示	10-1
÷	通信エラー	10-1
-	マクロコマンドの実行によるエラー	10-3
÷	チェック	10-4

Ethernet 通信ユニットは GV を Ethernet に接続するためのユニットで、UDP/ IP (P1-3) プロトコルをサポートしています。

メモリ内容の転送

 ・マクロコマンド(EREAD/EWRITE)により、Ethernet上のGVまたは GVに上位リンク接続されたPLCへメモリ内容が転送できます。

サーバと GV の通信

- ・弊社供給のHKEtn10.dllを使用して、VC++、VB等でユーザが作成した アプリケーションにより、サーバからGV内部メモリ、メモリカード、 GVと上位リンク接続されたPLCメモリへアクセスができます。・・・(a)
- マクロコマンド(SEND)により、GVからサーバへのアクセスもできます。・・・(b)

概要

・ サーバの GVWIN から GV へ画面データの転送ができます。

Ethernet 対応 PLC と GV の通信

・ Ethernet 上に接続された PLC と通信ができます。

・ Ethernet 上の複数の PLC と通信することもできます。

1

UDP/IP (User Datagram Protocol / Internet Protocol) 相手局とのコネクションを設定しないで通信を行うので、毎回 IP アドレ スで相手先を指定してデータを送信します。そのため、高速にデータを 送信できますが、相手先に確実に届く保証がありません。信頼性をあげ るためにユーザーアプリケーションなどの対応が必要になります。

ただし、弊社の Ethernet 通信ユニットは、すでに対応済みなので、その ためのユーザーアプリケーションは必要ありません。

Ethernet 通信仕様

性能仕様

	住樣		
項目	Al	IL	
	10BASE5	10BASE2	IUDASE-I
伝送速度		10Mbps	
伝送方式		ベースバンド	
最大ネットワーク長 または最大ノード間隔	2500m (5セグメント)	925m (5セグメント)	500m (HUB4台)
最大セグメント長	500m	185m	100m ノードとHUB間
最大ノード数	100台/セグメント	30台/セグメント	2台/セグメント
最小ノード間隔	2.5m	0.5m	無
接続ケーブル	Ethernet 同軸ケーブル(50)	RG58A/U,RG58C/U 同軸ケーブル(50)	UTP (シールド無ツイストペア) 22-26AWG

< AUIの例 >

用語

・ノード	: Ethernet 上の GV、PLC、サーバなど
	それぞれに IP アドレス () が設定されています
・セグメント	:ターミネータが接続されたケーブル区間
・セグメント長	:ターミネータ間の距離
・ノード間最長距離	:ネットワーク上の最も遠いノード間距離
・リピータ	:セグメント間を接続するため、信号中継を行う機器

IP アドレスの設定について、詳しくは P5-4 を参照してください。

Ethernet 通信ユニットの設定と配線

Ethernet 通信ユニット

Ethernet 通信ユニット型式

GVシリーズで Ethernet 通信する場合、弊社オプション品の Ethernet 通信ユニットが必要です。

以下の Ethernet 通信ユニットを準備してください。

GV本体型式	Ethernet通信ユニット型式
GV62	
GV52	AIGV833
GV42	

Ethernet 通信ユニット外形寸法

(単位:mm)

各部の名称と機能

LED

通信状態を表示します。

名称	内容	点 灯	消灯
RX	データ受信状態	受信中	受信なし
ТХ	データ送信状態	送信中	送信なし
LNK	リンク状態	正常	異常
	(10BASE-Tのみ)		
CI	コリジョン	データ衝突	正常

局番設定スイッチ

ロータリスイッチでネットワークテーブル上の GV の局番を設定をします。

同ーネットワーク上で使用するI/Fユニットの局番は重ならないように設定してください。

ヒューズ

DC12V 電源供給用ヒューズです。(定格 2A)

10BASE-T コネクタ 10BASE-T に接続するためのコネクタです。(IEEE802.3 準拠)

AUI コネクタ

10BASE2、10BASE5 で接続する場合にトランシーバーケーブルを接続する コネクタです。

DC12V 電源供給端子 AUIで接続する場合、トランシーバーに電源が必要になります。 Ethernet 通信ユニットの電圧降下(最大 0.7V)を考慮して、供給してくだ さい。

10BASE-T で接続する場合は必要ありません。

Ethernet 通信ユニットの取り付け

 GV本体裏の"ゴミよけシール"をはがしてから Ethernet 通信ユニットを取 り付け、付属の取付ネジ(M3 × 8)で3箇所を固定します。
 締め付けトルク: 0.3 ~ 0.5N·m (3 ~ 5kgf·cm)

CE対応させる場合は「CE対応時の注意点」をご覧ください。

CE 対応時の注意点

Ethernet 通信ユニットは、以下の注意事項に従って使用した場合に限り CE 対応品として使用することができます。

使用可能機種

AIGV6430012 AIGV5430012 AIGV5320012 AIGV4020012

上記の機種に取り付けることで CE 対応品となります。

周辺アクセサリに関する注意点

Ethernet 通信ユニットとカードレコーダ(AIGV850)を同時に使用した場合は、CE に対応できません。

GV40の場合、左上の取付穴に付属のスペーサを挿入し、M3 × 15の取付ネジで固定します。
 締め付けトルク: 0.3 ~ 0.5N·m (3 ~ 5kgf·cm)

ばりがついている 方を上向きにし、 Rの方を内側にし て取り付けてくだ さい。 ばり 本体裏図

3. 通信ケーブルを配線します。

通信ユニット装着時の外形寸法

(単位:mm)

配線について

AUI で接続する場合

10BASE5

10BASE5で接続する場合、次に示す機器が必要になります。

- ・10BASE5 用の同軸ケーブル
- ・AUI ケーブル
- ・N形コネクタ
- ・N形ターミネータ
- ・トランシーバー
- ・トランシーバー供給用電源:DC12V

トランシーバーについて

トランシーバーは SQE TEST 機能があるものをご使用ください。 (SQE TEST : Signal Quality Error Test)

<u>推奨トランシーバー</u>

メーカー名	型式	
アライドテレシス	CentreCOM 107	

2 mm	

トランシーバーの POWER ランプが点灯しない場合は、まず DC12V 電源の配線が間違いないか確認した上で、Ethernet 通信ユニットのヒューズ^(P3-2参照)を交換してください。 交換方法は Ethernet 通信ユニット本体に付属の「施工説明書」をご覧く

交換方法は Ethernet 通信ユニット本体に付属の「施工説明書」をご覧 ださい。

10BASE2

10BASE2で接続する場合、次に示す機器が必要になります。

- ・10BASE2用の同軸ケーブル
- ・AUI ケーブル
- ・T形アダプタ
- ・10BASE2 用ターミネータ
- ・トランシーバー
- ・トランシーバー供給用電源:DC12V

トランシーバーについて

トランシーバーは SQE TEST 機能があるものをご使用ください。 (SQE TEST : Signal Quality Error Test)

推奨トランシーバ・	-	
メーカー名	型式	
アライドテレシス	CentreCOM 107	

[™] AUIコネクタに強い力が加わるとユニットが破損する恐れがあります。 ☆ トランシーバーを接続する際はAUIケーブルを使用してください。

トランシーバーの POWER ランプが点灯しない場合は、まず DC12V 電源の配線が間違いないか確認した上で、Ethernet 通信ユニットのヒューズ^(P3-2参照)を交換してください。 交換方法は Ethernet 通信ユニット本体に付属の「施工説明書」をご覧く

交換方法は Ethernet 通信ユニット本体に付属の「施工説明書」をご覧く ださい。

10BASE-T で接続する場合

ケーブルについて

ケーブルはメーカー推奨品をご使用ください。

推奨ケーブル(10BASE-T)		
各社	ツイストペアケーブル カテゴリー5	

(A)か(B)かによって、システム設定の内容が異なります。 接続方法を確認の上、GVWINで設定してください。

4-1

PLC タイプ設定

「編集項目(I)」 「システム設定(A)」 「PLCタイプ設定(P)」で、使 用する PLC を選択してください。

PLC選択[松下 : MEWNET]	×
松 ト: MEWNET 三菱: AnA/N/Uシリーズ 三菱: QnAシリーズ 三菱: QnHQ)シリーズ 三菱: ACPU ボート 三菱: ACPU ボート 三菱: QnHCPU ボート 三菱: ACPU ボート 三菱: QnHCPU ボート 三菱: QnHCPU ボート 三菱: QnHCPU ボート 三菱: CNHCPU ボート 三菱: FX:)リーズ 三菱: FX:)リーズ(A7 コトコル) 三菱: FX:>ジリーズ 三菱: FX:>ジリーズ 三菱: FX:>ジリーズ 三菱: FX:>ジリーズ 三菱: FX:>ジーズ	
 ○ マルチリンク2対応機種を表示 ● すべての機種を表示 	OK ++v2h

通信パラメータ設定

「編集項目(I)」 「システム設定(A)」 「通信パラメータ設定(T)」で 「Ethernetを使用する」にチェックマーク(☑)を付けます。

編集項目の ツール(工) ウィントウ		通信パラメータ	×
スクリーン(S) グラフィックライブラリ(G)		メイン1 細かい設定	
マルチオーバーラップ (M) データブロック(D)		π [*] −μ−k 19200BPS	
メッセージ(E) パターン(T)		/==1.6% @ R\$2320 @ R\$422	
マクロブロック(<u>R</u>)			
ダイレクトブロックΦ		読込IU7 DM00000	
スクリーンフロック(C) タイル(L)		書込IUF DM00050	
外字16(J) 外字32(K)		□ 読込/書込エリア GD-80互換	
帳票(H) スカリーンライブラリ(N)		カレンタ [×] \$u16330	
システム設定(A)・	PLCタイプ設定(P) 毎集機類選択(M)		
4	通信パラメータ設定(1)	Up thernet を使用する	
	ハッファリンクエリア設定(凹) メモリカード設定(凹)	接流死	
	バーコード設定(<u>C</u>) ファンクションスイッチ設定(E)		
	その他の設定(Q) イベントタイママクロ(E)		4
	ネットワークテーブル 編集(出)		

「編集項目(I)」 「システム設定(A)」 「ネットワークテーブル編集(H)」でネット ワークテーブルの設定をします。 ネットワークテーブル編集については第5章を参照してください。

(B) Ethernet 上の PLC と接続する場合

PLC タイプ設定

「編集項目(I)」 「システム設定(A)」 「PLCタイプ設定(P)」で、 [XXXXX(Etherenet)]となっている PLCを選択してください。

ただし、現在 (2000 年 12 月) サポートしている PLC は以下の機種になります。 三菱 QnAシリース^{*} 横河 FA-M3

通信パラメータ設定

編集項目型 ツール(T) ウィンドウ スクリーン(S)... グラフィックライブラリ(G)...

マルチオーバーラップ(<u>M</u>). データブロック(<u>D</u>)... 「編集項目(I)」 「システム設定(A)」 「通信パラメータ設定(T)」で GVの接続先となる PLC の設定をします^(P4-4)。

システム設定

4

Ethernet 上にある複数の PLC (同一機種)と通信する場合は [細かい設定]の [接続形式]で [1:n]を選択してください。

この場合、[メイン1]で設定した[接続先]のPLCのメモリに読込エリア/書込エリアが設定されます。

通信パラメータ	×
メイン1 細かい設定	
接待形式 1 加 可設定。 相氏体	
パリティ 」 通信異常処:	理
(○ 停止	 C 維続
- データ長	- 文字処理
C 7년 까사 💿 1년 까사 💿 DEC	
C Stroph C Stroph C BCD	C MSB→LSB
タイムアウト時間 50 📑 *10msec リトライロ	18ty 3
	웹 🕛 🖬 *msec

「編集項目(I)」 「システム設定(A)」 「ネットワークテーブル編集(H)」でネット ワークテーブルの設定をします。

ネットワークテーブル編集については第5章を参照してください。

ネットワークテープ Iの設定がされていない場合は「接続先」の選択ができません。
通信パラメータ
メイン1 細かい設定
ポーレート. 19200BPS 🔽
(信号UAND)
読込IJ7 DM00000
書込IU7 DM00050
□ 読込/書込IJ7 GD-80互換
カレンダ \$u16330
✓ Ethernetを使用する
接続
'編集頃日(Ⅰ)」 'システム設定(Α)」 'ネットワーグーフル編集(Η)」でネットワーク
ァーノル編果をしに俊に、もつ一度、'迪信ハフメータ」の設定をしてくたさい。

ネットワークテーブル

ネットワークテーブルでは、Ethernet に接続する GV、PLC、PC の登録を行 います。

下図のようなネットワークの場合は(*)の付いているノードをネットワー クテーブルに登録します。

ネットワークテーブルは画面データと一緒にGV に転送されます。

「通信パラメータ設定(T)」で「Ethernetを使用する」にした場合は、必ず 「ネットワークテーブル編集(H)」を行ってください。

各メニューとアイコンは次のように対応しています。

ファイルメニュー

・ネットワークテーフ゛ルのインホ゜ート(ー)

すでにファイルとして保存されているネットワークテーブルを呼び出します。

・ネットワークテーフ゛ルのエクスホ゜ート(E)

編集中のネットワークテーブルをファイルとして保存します。

編集メニュー

編集(E) 表示(V)	^ルプ(<u>H</u>)	
元に戻す(凹)	Ctrl+Z =	
やり直し(型)	Ctrl+Y −	
切り取り(<u>T</u>)	Otrl+X =	
⊐t°−(<u>C</u>)	Gtrl+G =	
貼り付け(P)	Ctrl+V =	
削除(<u>D</u>)	Del	
変更(<u>M</u>)		
すべて選択(<u>A</u>)	Ctrl+A	
モニタ登録使用(S)	•	
モニタ登録解除(N)	•	

・モニタ登録使用(S)

Ethernet 上の PLC と通信する場合に、<u>1台の GV のみモニタ登録</u>を使用する ことができます。

ネットワークテーブルNo.の左側にマークが表示されます。

┉ネットワークテーブル編集						
Ata	局名	IP7ドレス	送			
(M(Ö ``)	608	192.168.1.52	15			
N	рс	192.168.1.172	15			
2	plc	192.168.1.51	15			
3	610	192.168.1.55	-15			
ll a -	610	100120155	10			

・モニタ登録解除(N)

モニタ登録を解除する場合にクリックします。

表示メニュー

チェックマークを付けたものがネットワークテーブル編集上に表示されます。

ネットワークテーブル編集の設定方法

No.をダブルクリックします。 ネットワークテーブル設定ダイアログが表示されます。

	が配配し	?	
局名	IP7hUz	送信外仏アウト	
1 2			
3 4 5			
6			N
8 9 10			\square
11 12			\neg
13 14			
15 16 17			
1 16			

ネットワークテーフ [・] ルN	lo.0 設定	×
局名	V610-1	
IP7ኑ レス	192.168.1.50	
		_
送信外仏アウト時間	15	≭sec
π°−トNo	10000	
 TOBaseT 	C AUI	
「内部灯」		
□ メモリカート・メモリ		
□ デフォルトケートウェイ	(0.0.0.0	
□ サフ*ネットマスク	0.0.0	
	ОК キ ャン	th l

局名

Ethernet 上で使用する GV 等の名 前を設定します。

```
IPアドレス
IPアドレスの設定をします。
```

Ethernet 対応 PLC を登録する場合は、必ず PLC 側の IP7ドレスと合わせて ください。 PLC 側の IP7ドレスの設定方法については、各 PLC マニュアルをご覧くだ さい。 サーバとなる PC を登録する場合は、必ず PC 側の IP7ドレスと合わせてく ださい。 PC 側の IP7ドレスの設定は、Windows 上の「ネットワーク」の設定で、 「TCP/IP」の「プロパティ」を開いて設定します。

送信タイムアウト時間

PLC からのレスポンスを監視する時間を設定します。

ポートNo.

ポートNo.の設定をします。

使用する PLC によって、ポートNo. が固定の場合もあります。 各メーカーのマ ニュアルをご覧ください。

<例>

横河 FA-M3 12289 : 固定 三菱 Qシリーズ 5000 : デフォルト(変更可)

ぱ−ト 接続方法がAUIと10BASE-Tのどちらかを選択します。 メモリプ ロテクト

内部メモリ、メモリカードメモリへの書き込みを禁止する場合にチェックマーク() を付けます。

デフォルトゲートウェイ

デフォルトゲートウェイの設定をする場合にチェックマーク(▽)を付けます。

デフォルトゲートウェイとは

ネットワーク間の通信を行うものに、ゲートウェイ、ルータがあります。 これらを使用して、他のネットワークのノードと通信をする場合に、ゲートウェイ (ルータ)のIPアドレスを設定します。

サブ ネットマスク

サブネットマスクの設定をする場合にチェックマーク(▽)を付けます。 ただし、チェックマークを付けない場合は[255.255.255.0]に設定した場 合と同じ扱いになります。

サブネットマスク 一つのネット [」] きに使用しま IP アドレスの ネットが割り	とは ワークアドレスを す。 ホストアドレスの 振られます。	- 複数のネットワ)一部をサブネッ	リーク(サブネッ リトアドレスとす	ト)に分割する。 ることで、サブ	Ŀ
クラスB	1 0 ネットワークス	'Ի ፝ ዞス (14)	ホストアト	LZ (16)	
サ プ [*] ネットマスク	255. 111111111	255. 111111111	255. 111111111	00000000	
	ネットワーク	りアト・レス	サフ゛ネットアト゛レス	ホストアト・レス	

Ethernet で使用するマクロコマンド(SEND/EREAD/EWRITE)の説明をしま す。その他のマクロコマンドについては、『リファレンスマニュアル』を参照 してください。

(マクロコマンド

【EREAD】

F3 で指定したネットワークテーブルNo.を持つ GV の F1 メモリから F2 ワード数分を F0 メモリに読み込みます。

使用可能デバイス

	内部メモリ	PLCメモリ	定数	メモリカード	間接指定	Wワード	IPアドレス
F0	0	0		0	0		
F1	0	0		0	0		
F2	0		0				
F3	0		0				Ó

EREAD: メモリの読み込み EREAD F0 = F1 C:F2 F3

例)GV:Aのマクロコマンド

GV:A が PLC:B のデータを読み込んで PLC:A に転送する場合に GV:A で 使用するマクロコマンドは下記のようになります。

[記述] EREAD D200 = D100 C:2 B | | | | | | 読込元先頭メモリ | 読込元アドレス 転送先先頭メモリ 転送ワード数

[内容] PLC:BのD100から2ワードをPLC:AのD200に読み込みます。

[EWRITE]

F2 メモリから F3 ワード数分を F1 で指定したネットワークテーブ INo. を持つ GV の F0 メモリに書き込みます。

	内部メモリ	PLCメモリ	定数	メモリカード	間接指定	Wワード	IPアドレス
F0	0	0		0	0		
F1	0		0				0
F2	0	0		0	0		
F3	0		0				

使用可能デバイス

EWRITE:メモリの書き込み EWRITE F0 F1 = F2 C:F3

例) GV:A のマクロコマンド

GV:A のデータを PLC:B に書き込む場合に、GV:A で使用するマクロコ マンドは下記のようになります。

[記述] EWRITE D100 B = \$u100 C:2 | | | | 書込先アドレス | 転送ワード数 書込先先頭メモリ 転送元先頭メモリ

[内容] GV:Aの\$u100から2ワードをPLC:BのD100に書き込みます。

[SEND]

F0 メモリから F1 ワード数分を F2 で指定したネットワークテーブルNo. を持つサーバに 転送します。

	使用可能デバイス							
	内部メモリ	PLCメモリ	定数	メモリカード	間接指定	Wワード	IPアドレス	
F0	0	0		0	0			
F1	0		0					
F2	0		0				0	

SEND: サーバに転送 SEND F0 C:F1 TO:F2

例) GV:B のマクロコマンド

GV:B からサーバ:A にデータを送る場合に GV:B で使用するマクロコマ ンドは下記のようになります。

[記述]SEND \$u100 = C:2 A | | | 転送元先頭メモリ | 転送先アドレス 転送ワード数

[内容] GV:Bの内部メモリ \$u100 から 2 ワードをサーバ:A に送ります。

システムメモリ

GVのシステムメモリ(\$s)にEthernetの状態が出力されます。

本章では Ethernet の状態が出力される範囲(\$s514~619)の説明をしています。

その他の範囲については、『リファレンスマニュアル』を参照してください。

一覧

アドレス	内容
:	E
\$s514	マクロユーザー要求ウエイト(0:なし 1:あり)
515	マクロユーザー要求ウェイト実行結果
516	
517	
518	イーサネット状態
519	
520	ネットワークテーブル0状態
521	ネットワークテーブル 1 状態
522	ネットワークテーブル2状態
523	ネットワークテーブル3状態
524	ネットワークテーブル4状態
525	ネットワークテーブル5状態
526	ネットワークテーブル6状態
527	ネットワークテーブル 7 状態
528	ネットワークテーブル8状態
529	ネットワークテーブル9状態
530	ネットワークテーブル 10 状態
531	ネットワークテーブル 11 状態
532	ネットワークテーブル 12 状態
533	ネットワークテーブル 13 状態
534	ネットワークテーブル 14 状態
535	ネットワークテーブル 15 状態
536	ネットワークテーブル 16 状態
537	ネットワークテーブル 17 状態
538	ネットワークテーブル 18 状態
539	ネットワークテーブル 19 状態
540	ネットワークテーブル 20 状態
541	ネットワークテーブル 21 状態

システムメモリ

アドレス	内容
\$s542	ネットワークテーブル 22 状態
543	ネットワークテーブル 23 状態
544	ネットワークテーブル 24 状態
545	ネットワークテーブル 25 状態
546	ネットワークテーブル 26 状態
547	ネットワークテーブル 27 状態
548	ネットワークテーブル 28 状態
549	ネットワークテーブル 29 状態
550	ネットワークテーブル 30 状態
551	ネットワークテーブル 31 状態
552	ネットワークテーブル 32 状態
553	ネットワークテーブル 33 状態
554	ネットワークテーブル 34 状態
555	ネットワークテーブル 35 状態
556	ネットワークテーブル 36 状態
557	ネットワークテーブル 37 状態
558	ネットワークテーブル 38 状態
559	ネットワークテーブル 39 状態
560	ネットワークテーブル 40 状態
561	ネットワークテーブル 41 状態
562	ネットワークテーブル 42 状態
563	ネットワークテーブル 43 状態
564	ネットワークテーブル 44 状態
565	ネットワークテーブル 45 状態
566	ネットワークテーブル 46 状態
567	ネットワークテーブル 47 状態
568	ネットワークテーブル 48 状態
569	ネットワークテーブル 49 状態
570	ネットワークテーブル 50 状態
571	ネットワークテーブル 51 状態
572	ネットワークテーブル 52 状態
573	ネットワークテーブル 53 状態
574	ネットワークテーブル 54 状態
575	ネットワークテーブル 55 状態
576	ネットワークテーブル 56 状態
577	ネットワークテーブル 57 状態
578	ネットワークテーブル 58 状態
579	ネットワークテーブル 59 状態
580	ネットワークテーブル 60 状態
581	ネットワークテーブル 61 状態
582	ネットワークテーブル 62 状態
583	ネットワークテーブル 63 状態

アドレス	内	容
\$s584	ネットワークテーブル 64 状態	
585	ネットワークテーブル 65 状態	
586	ネットワークテーブル 66 状態	
587	ネットワークテーブル 67 状態	
588	ネットワークテーブル 68 状態	
589	ネットワークテーブル 69 状態	
590	ネットワークテーブル 70 状態	
591	ネットワークテーブル 71 状態	
592	ネットワークテーブル 72 状態	
593	ネットワークテーブル 73 状態	
594	ネットワークテーブル 74 状態	
595	ネットワークテーブル 75 状態	
596	ネットワークテーブル 76 状態	
597	ネットワークテーブル 77 状態	
598	ネットワークテーブル 78 状態	
599	ネットワークテーブル 79 状態	
600	ネットワークテーブル 80 状態	
601	ネットワークテーブル 81 状態	
602	ネットワークテーブル 82 状態	
603	ネットワークテーブル 83 状態	
604	ネットワークテーブル 84 状態	
605	ネットワークテーブル 85 状態	
606	ネットワークテーブル 86 状態	
607	ネットワークテーブル 87 状態	
608	ネットワークテーブル 88 状態	
609	ネットワークテーブル 89 状態	
610	ネットワークテーブル 90 状態	
611	ネットワークテーブル 91 状態	
612	ネットワークテーブル 92 状態	
613	ネットワークテーブル 93 状態	
614	ネットワークテーブル 94 状態	
615	ネットワークテーブル 95 状態	
616	ネットワークテーブル 96 状態	
617	ネットワークテーブル 97 状態	
618	ネットワークテーブル 98 状態	
619	ネットワークテーブル 99 状態	

アドレス説明

\$s514、515

マクロコマンド【SEND】【EREAD】【EWRITE】に関するメモリです。

- \$s514: マクロの実行形態を設定します。
 [0]の場合、Ethernetに対してコマンドの要求を行ったとき、コマンドの終了を待たずに次のマクロを実行します。
 [0以外]の場合、コマンドが終了するまで待機状態となり、終了後に、次のマクロを実行します。
- \$s515: マクロの実行結果を格納します。[0]以外の値はエラーです。 内容についてはエラーコード(P10-3)を参照してください。 ただし、\$s514が[0]の場合、コマンド要求までの内容を格納し ます。

\$s518

Ethernet の現在の状態を格納します。[0] 以外の値はエラーです。 内容についてはエラーコード (P10-2) を参照してください。

\$s520 ~ 619

ネットワークテーブル No.0~99の状態を格納します。

現時点で使用しないエリアなので、必ず[0]に設定します。

サーバ上のGVWINから Ethernet で画面転送をする方法について説明します。

転送方法

1. [転送] アイコンをクリックすると、[転送] ダイアログが表示されます。

ファイル(F) 編集(E) 表示(V) 作i	転送	×
	転送デバイス © 添香 © メモリカート*	転送データ
	 シミュレータを使用する 受信時コントを取り込む すべてを送信する Ethernetで転送 / 00.00 	C フォントデータ
	- 転送方法 PC ->PC <pc< th=""><th><-> 「店朝近</th></pc<>	<-> 「店朝近
	41	システムのアップゲート シセル 詳細設定

2. [Ethernet で転送] にチェック (()) を付けます。

転送	×
 転送デバイス ● 床価 ● メリカード ● ジミュレータを使用する ● 受信時コメントを取り込む *べて法送信する ▼ Enernetで転送 / 0.0.00 	転送データ © 画面データ C I/Fドライバ C 本体ブログラム C フォントデータ
─転送方法PC <	PC <-> 「情報!!!! システムのアップ ^や テ ^ゃ ート

画面転送

3. [詳細設定]スイッチをクリックします。[IPアドレス設定]ダイアログが 表示されます。

 4. 画面転送する GV を選んで、[<<] スイッチをクリックすると、[局名], [IP アドレス]が表示されます。

[OK]をクリックします。

IPアドレス	没定	×
局名	V612	PLC(192.168.1.50) PC(192.168.1.55)
IPアドレス	192.168.1.61	GV50(192.168.1.60) GV60(192.168.1.61)
	OK	キャンセル 参照

5. 転送先の IP アドレスを確認して [PC->]をクリックします。

6. 転送が開始します。

注意事項

故障等で GV を交換する際、GV にはネットワークテーブルが転送されていな い場合があり、サーバからのデータ転送ができません。 この時は、ローカルメイン画面で ・IP アドレス ・デフォルトゲートウェイ

- ・サブネットマスク
- の設定を一時的に行います。

ただし、ポート No. は 10000 固定です。 GVWIN からネットワークテーブルが転送された時点で、データは更新されま す。

設定方法

1. ローカルメイン画面の [Ethernet] スイッチを押します。

Ethernet 設定画面が表示されます。
 IP アドレスと接続方法(10BASE-T/AUI)の設定をしてください。
 必要ならばデフォルトゲートウェイ、サブネットマスクの設定もしてください。

		Ŋ
イーサネット	ローカルメイン	
ゲートウェイ、サブマスクが0の場合は使用しませ IPアドレス: 100.000.000000000000000000000000000000	th. •	
ゲートウェイ: 0. 0. 0. 0. サブマスク: 0. 0. 0. 0.		
10BASE-T		
	•	
	設定完	Н
çağı		IJ

- 3. 設定が終了したら、[設定完]スイッチを押してローカルメイン画面に戻り ます。
- 4. P8-1の手順でサーバから画面転送をしてください。

Ethernet アクセス関数 (HKEtn10.DLL)

サーバとGVをEthernetで通信する場合は、弊社供給のHKEtn10.dllを用いた アプリケーションをVisual C++、Visual Basic等で作成しなければなりません。

Sample フォルダ

GVWINのCD-ROMにはEthernet通信用のSampleフォルダがあります。 フォルダ内のファイルはVisual C++で作成したサンプルプログラムです。 アプリケーション作成時に参考にしてください。 必要ならば、コピーして使用してください。

9

関数仕様

一覧

Read		
PLC メモリ	int HKEtn_ReadPlcMemory(WORD *dp,unsigned short Wordcnt,int	
ワード	DeviceType,DWORD addr,char *lpAddr,int DFlag=TRUE)	F 9-3
PLC メモリ	int HKEtn_ReadPlcMemory2(DWORD *dp,unsigned short Wordcnt,int	
ダブルワード	DeviceType,DWORD addr,char *lpAddr,int DFlag=TRUE)	
内部メモリ	int HKEtn_ReadInternalMemory(WORD *dp,unsigned short Wordcnt,int	F 9-4
ワード	DeviceType,DWORD addr,char *lpAddr,int DFlag=TRUE)	
メモリカード	int HKEtn_ReadCardMemory(WORD *dp,unsigned short Wordcnt,int FileNo,int	P0-5
メモリワード	RecordNo,DWORD addr,char *lpAddr,int DFlag=TRUE)	1 3-3
PLC メモリ	int HKEtn_ReadPlcBitMemory(int *lpOnFlag,int DeviceType,DWORD addr,int	
ビット	BitNo,char *lpAddr)	DO 6
内部メモリ	int HKEtn_ReadInternalBitMemory(int *lpOnFlag,int DeviceType,DWORD addr,int	F9-0
ビット	BitNo,char *lpAddr)	
メモリカード	int HKEtn_ReadCardBitMemory(int *lpOnFlag,int FileNo,int RecordNo,DWORD	
メモリビット	addr,int BitNo,char *lpAddr)	P0 7
PLC メモリ	int HKEtn_ReadBlockMemory(WORD *sp,BYTE *pReadblockData,int	F 9-1
ワード(ブロック)	BlockCnt,char *lpAddr)	

Write

PLC メモリ	int HKEtn_WritePlcMemory(WORD *sp,unsigned short Wordcnt,int	
ワード	DeviceType,DWORD addr,char *lpAddr,int DFlag=TRUE)	
PLC メモリ	int HKEtn_WritePlcMemory2(DWORD *sp,unsigned short Wordcnt,int	F9-0
ダブルワード	DeviceType,DWORD addr,char *lpAddr,int DFlag=TRUE)	
内部メモリ	int HKEtn_WriteInternalMemory(WORD *sp,unsigned short Wordcnt,int	
ワード	DeviceType,DWORD addr,char *lpAddr,int DFlag=TRUE)	F9-9
メモリカード	int HKEtn_WriteCardMemory(WORD *sp,unsigned short Wordcnt,int FileNo,int	D0 10
メモリワード	RecordNo,DWORD addr,char *lpAddr,int DFlag=TRUE)	F 9-10
PLC メモリ	int HKEtn_WritePlcBitMemory(int DeviceType,DWORD addr,int BitNo,int	DO 11
ビット	OnFlag,char *lpAddr)	F9-11
内部メモリ	int HKEtn_WriteInternalBitMemory(int DeviceType,DWORD addr,int BitNo,int	
ビット	OnFlag,char *lpAddr)	DO 10
メモリカード	int HKEtn_WriteCardBitMemory(int FileNo,int RecordNo,DWORD addr,int	F9-12
メモリビット	BitNo,int OnFlag,char *lpAddr)	

その他

初期化関数	int HKEtn_Init(unsigned short Port=10000,int Retry=3,int	
	RecvTime=2,int RecvTime2=10)	P9-13
GV からの受信待ち	int HKEtn_Recvfrom(BYTE *dp,short *lpCnt)	
受信待ち関数のキャンセル	void HKEtn_Cancel(void)	
接続情報の要求	int HKEtn_GetInf(struct inf *lpinf,char *lpAddr)	
終了処理	int HKEtn_Close()	P9-14
受信した相手先	int HKEtn_GetSinAddr(char *lpAddr)	
IP アドレスの取得		
エラー内容の取り出し	int HKEtn_GetLastError()	P9-15

PLC メモリ ワード読み込み

int HKEtn_ReadPlcMemory(WORD *dp,unsigned short Wordcnt,int DeviceType,DWORD addr,char *lpAddr, int DFlag=TRUE)

GV から PLC データが転送されるまで保持します。

パラメータ

エラー詳細

*dp

読み込みデータの転送先ポインタ 内容ワード数 No. 1 1

内容	ワード数
No. 1	1
No. 2	1
	:
No. n	1

Mardont	きれい ルロード粉 (昌士 2000 ロード)
vvoracni	読み込みワート数(取入2000ワート)
DeviceType	読み込みデバイス No.(GV ハード仕様書参照)
addr	読み込み先頭アドレス
*lpAddr	IP アドレスをドット表記文字列で入力
	(例)"192.168.XXX.XXX"
DFlag	TRUE:分割転送
	FALSE:一括転送
戻り値	
正常終了	TRUE
失敗	FALSE

HKEtn_GetLastError()

で取得してください。

על
Ð
g

PLC メモリ ダブルワード読み込み

int HKEtn_ReadPlcMemory2(DWORD *dp,unsigned short Wordcnt,int DeviceType,DWORD addr,char *lpAddr, int DFlag=TRUE)

GV から PLC データが転送されるまで保持します。

パラメータ

*dp

読み込みデータの転送先ポインタ

内容	ワード数
No. 1	2
No. 2	2
:	
No. n	2

Wordcnt	読み込みワード数(最大 1000 ワード)			
DeviceType	読み込みデバイス No.(GV ハード仕様書参照)			
addr	読み込み先頭アドレス	読み込み先頭アドレス		
*lpAddr	IP アドレスをドット表記	IP アドレスをドット表記文字列で入力		
	(例)"192.168.XXX.XXX	11		
DFlag	TRUE:分割転送			
	FALSE:一括転送			
戻り値				
正常終了	TRUE			
失敗	FALSE			
エラー詳細	HKEtn_GetLastError()	で取得してください。		

内部メモリ ワード読み込み

int HKEtn_ReadInternalMemory(WORD *dp,unsigned short Wordcnt,int DeviceType,DWORD addr,char *IpAddr,int DFlag=TRUE)

GV から PLC データが転送されるまで保持します。

パラメータ *dp

転送ブロックのポインタ

内容	ワード数
No. 1	1
No. 2	1
No. n	1

メモリカードメモリ ワード読み込み

int HKEtn_ReadCardMemory(WORD *dp,unsigned short Wordcnt,int FileNo,int RecordNo,DWORD addr,char *lpAddr,int DFlag=TRUE)

GV からデータが転送されるまで保持します。

パラメータ

*dp

転送ブロックのポインタ

内容	ワード数
No. 1	1
No. 2	1
:	
No. n	1

Wordcnt	転送ワード数(最大 2000 ワード)
FileNo	ファイルNo.
RecordNo	レコード No.
addr	読み込み先頭アドレス
*lpAddr	IP アドレスをドット表記文字列で入力
	(例)"192.168.XXX.XXX"
DFlag	TRUE:分割転送
	FALSE:一括転送

戻り値 正常終了 TRUE 失敗 FALSE エラー詳細 HKEtn_GetLastError() で取得してください。 9

PLC メモリ ビット読み込み

int HKEtn_ReadPlcBitMemory(int *lpOnFlag,int DeviceType,DWORD addr,int

BitNo,char *lpAddr)

GV から PLC デー	タが転送されるまで保持します。			
パラメータ				
*lpOnFlag	ビットの状態を返します。 0:OFF 1:ON			
DeviceType	読み込みデバイス No.(GV ハード仕様書参照)			
addr	読み込み先頭アドレス			
BitNo	読み込む Bit No.			
	(例1) 三菱 PLC、D20-05 にアクセスする場合			
	DeviceType 0			
	addr 20			
	BitNo 5			
(例 2) 三菱 PLC、M20 にアクセスする場合				
	20 ÷ 16 = 14			
	DeviceType 6			
	addr 1			
	BitNo 4			
*lpAddr	IP アドレスをドット表記文字列で入力			
	(例)"192.168.XXX.XXX"			
戻り値				
正常終了	TRUE			
失敗	FALSE			
エラー詳細	HKEtn_GetLastError() で取得してください。			

内部メモリ ビット読み込み

int HKEtn_ReadInternalBitMemory(int *lpOnFlag,int DeviceType,DWORD addr,int BitNo,char *lpAddr)

GV からデータが転送されるまで保持します。

パラメータ				
*lpOnFlag	ビットの状態を述	返します。	0:OFF	1:ON
DeviceType	0:\$u 1:\$	òs		
addr	読み込み先頭ア	ドレス		
BitNo	読み込む Bit No.			
*lpAddr	IP アドレスをド	ット表記文	マ字列で入力	
	(例)"192.168.X	XX.XXX"		
戻り値				
正常終了	TRUE			
失敗	FALSE			
エラー詳細	HKEtn_GetLastE	rror()	で取得して	ください。

メモリカードメモリ ビット読み込み

int HKEtn_ReadCardBitMemory(int *lpOnFlag,int FileNo,int RecordNo,DWORD addr,int BitNo,char *lpAddr)

GV からデータが転送されるまで保持します。

パラメータ			
*lpOnFlag	ビットの状態を返します。	0:OFF	1:ON
FileNo	ファイル No.		
RecordNo	レコード No.		
addr	読み込み先頭アドレス		
BitNo	読み込む Bit No.		
*lpAddr	IP アドレスをドット表記文	、字列で入力	
	(例)"192.168.XXX.XXX"		
戻り値			
正常終了	TRUE		
失敗	FALSE		
エラー詳細	HKEtn_GetLastError()	で取得してく	ださい。

PLC メモリ ワード (ブロック) 読み込み

int HKEtn_ReadBlockMemory(WORD *sp,BYTE *pReadblockData,int BlockCnt,char *IpAddr)

GV からデータが転送されるまで保持します。				
パラメータ				
*sp	読み込んだデータを	返します。		
*pReadblockData	読込データの先頭ポ	インタ		
	ワード数	2バイト		
	読込先 PLC メモリ	9バイト		
BlockCnt	読込ブロック数			
*lpAddr	IP アドレスをドット	表記文字列で入力		
	(例)"192.168.XXX.)	<xx"< td=""></xx"<>		
戻り値				
正常終了	TRUE			
失敗	FALSE			
エラー詳細	HKEtn_GetLastError	() で取得してください。		

Write

PLC メモリ ワード書き込み

int HKEtn_WritePIcMemory(WORD *sp,unsigned short Wordcnt,int

DeviceType,DWORD addr,char *lpAddr, int DFlag=TRUE)

GVから書き込み完了を受信するまで保持します。 (PLCメモリへの書き込み時の完了通知を受けて戻ります。)

パラメータ

*sp 転送ブロックのポインタ 内容ワード数 No.111 No.21 E E

No. n

Wordcnt	転送ワード数(最大 2000 ワード)
DeviceType	書き込み先デバイス No.(GV ハード仕様書参照)
addr	書き込み先先頭アドレス
*lpAddr	IP アドレスをドット表記文字列で入力
	(例)"192.168.XXX.XXX"
DFlag	TRUE:分割転送
	FALSE:一括転送
戻り値	

1

正常終了	TRUE	
失敗	FALSE	
エラー詳細	HKEtn_GetLastError()	で取得してください。

PLC メモリ ダブルワード書き込み

int HKEtn_WritePlcMemory2(DWORD *sp,unsigned short Wordcnt,int DeviceType,DWORD addr,char *lpAddr, int DFlag=TRUE)

> GVから書き込み完了を受信するまで保持します。 (PLCメモリへの書き込み時の完了通知を受けて戻ります。)

パラメータ

*sp

転送ブロックのポインタ

内 容	ワード数
No. 1	2
No. 2	2
÷	:
No. n	2

内部メモリ ワード書き込み

int HKEtn_WriteInternalMemory(WORD *sp,unsigned short Wordcnt,int DeviceType,DWORD addr,chr *IpAddr,int DFlag=TRUE)

> GV から書き込み完了を受信するまで保持します。 (PLCメモリへの書き込み時の完了通知を受けて戻ります。)

パラメータ

*sp

転送ブロックのポインタ

内容	ワード数
No. 1	1
No. 2	1
1	
No. n	1

Wordcnt	転送ワード数	(最大 2000 ワード)
DeviceType	0:\$u	1:\$s
addr	書き込み先先語	頭アドレス
*lpAddr	IP アドレスを	ドット表記文字列で入力
	(例)"192.168	3.XXX.XXX"
DFlag	TRUE:分割轉	云送
	FALSE:一括	転送
戻り値		

人う直		
正常終了	TRUE	
失敗	FALSE	
エラー詳細	HKEtn_GetLastError()	で取得してください。

Write

関数

メモリカードメモリ ワード書き込み

int HKEtn_WriteCardMemory(WORD *sp,unsigned short Wordcnt,int FileNo,int RecordNo,DWORD addr,char *lpAddr,int DFlag=TRUE)

> GVから書き込み完了を受信するまで保持します。 (PLCメモリへの書き込み時の完了通知を受けて戻ります。)

パラメータ

*sp

転送ブロックのポインタ

内容	ワード数
No. 1	1
No. 2	1
:	÷
No. n	1

Wordcnt	転送ワード数(最大 2000 ワード)
FileNo	ファイル No.
RecordNo	レコード No.
addr	書き込み先先頭アドレス
*lpAddr	IP アドレスをドット表記文字列で入力
	(例)"192.168.XXX.XXX"
DFlag	TRUE:分割転送
	FALSE:一括転送
戻り値	
正常終了	TRUE
失敗	FALSE

エラー詳細	HKEtn_GetLastError()	で取得してください。
-------	----------------------	------------

PLC メモリ ビット書き込み

int HKEtn_WritePIcBitMemory(int DeviceType,DWORD addr,int BitNo,int OnFlag,char

*lpAddr)

GVから書き込み完了を受信するまで保持します。 (PLCメモリへの書き込み時の完了通知を受けて戻ります。)

パラメータ			
DeviceType	書き込み先デバイスト	No.(GV ハード仕様書参照)	
addr	書き込み先先頭アドレス		
BitNo	アクセスする Bit No.		
	(例1) 三菱 PLC、D2	20-05 にアクセスする場合	
	DeviceType	0	
	addr	20	
	BitNo	5	
	(例2) 三菱 PLC、M2	20 にアクセスする場合	
	20 ÷ 16 = 1	.4	
	DeviceType	6	
	addr	1	
	BitNo	4	
OnFlag	0:OFF 1:ON		
*lpAddr	IP アドレスをドット	表記文字列で入力	
	(例)"192.168.XXX.X	ΚΧΧ "	
定り値			
次 7 ie 正堂终了	TRUE		
生的	FALSE		
エラー詳細	HKEtn GetLastError	() で取得してください。	

内部メモリ ビット書き込み

int HKEtn_WriteInternalBitMemory(int DeviceType,DWORD addr,int BitNo,int

OnFlag,char *lpAddr)

GVから書き込み完了を受信するまで保持します。 (PLCメモリへの書き込み時の完了通知を受けて戻ります。)

パラメータ		
DeviceType	0:\$u 1:	\$s
addr	書き込み先先頭アドレス	ス
BitNo	アクセスする Bit No.	
OnFlag	0:OFF 1:ON	
*lpAddr	IP アドレスをドット表	記文字列で入力
	(例)"192.168.XXX.XX	Χ"
白い店		
庆り恒		
正常終了	TRUE	
失敗	FALSE	
エラー詳細	HKEtn_GetLastError()	で取得してください。

メモリカードメモリ ビット書き込み

int HKEtn_WriteCardBitMemory(int FileNo,int RecordNo,DWORD addr,int BitNo,int OnFlag,char *IpAddr)

GVから書き込み完了を受信するまで保持します。 (PLCメモリへの書き込み時の完了通知を受けて戻ります。)

パラメータ FileNo RecordNo addr BitNo OnFlag *IpAddr	ファイル No. レコード No. 書き込み先先頭アド アクセスする Bit No 0:OFF 1:ON IP アドレスをドット (例) "192.168.XXX	・ レス 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	字列で入力
戻り値 正常終了 失敗 エラー詳細	TRUE FALSE HKEtn_GetLastErro	or()	で取得してください。

その他の関数

初期化関数

int HKEtn_Init(unsigned short Port=10000,int Retry=3,int RecvTime=2,int RecvTime2=10)

ここでソケットの作成を行います。

パラメータ		
Port	10000 以上を設定してくだ	さい。
Retry	送信リトライ回数	
RecvTime	受信タイムオーバー	
RecvTime2	受信タイムオーバー 2	
戻り値		
正常終了	TRUE	
失敗	FALSE	
エラー詳細	HKEtn_GetLastError()	で取得してください。

GV からの受信待ち

int HKEtn_Recvfrom(BYTE *dp,short *lpCnt)

GVからデータを受信するまで処理を関数内部で保持します。 コマンドを受信した場合のみ、レスポンスを返して終了します。 ユーザは受け取ったデータを解釈し、次のアクションを作成してください。 ユーザはスレッド内部でこの関数を実行するようにしてください。

パラメータ

*dp	受信バッファの先頭ポイ	ンタ
	5000 バイト用意してくた	ごさい
*lpCnt	受信バイト数を返します	
戻り値		
正常終了	TRUE	
失敗	FALSE	
エラー詳細	HKEtn_GetLastError()	で取得してください。

受信待ち関数のキャンセル

void HKEtn_Cancel(void)

Recvfrom()などで受信待ちになっている関数をキャンセルします。

接続情報の要求

int HKEtn_GetInf(struct inf *lpinf,char *lpAddr)

パラメータ *lpinf *lpAddr	全て[0] IP アドレスをドット表記文 (例) "192.168.XXX.XXX"	字列で入力
戻り値 正常終了 失敗 エラー詳細	TRUE FALSE HKEtn_GetLastError()	で取得してください。

終了処理

int HKEtn_Close()

HKEtn10.dllを終了するときに実行してください。

受信した相手先 IP アドレスの取得

int HKEtn_GetSinAddr(char *lpAddr)

recvfrom()のあとに受信後実行してください。

エラー内容の取り出し

int HKEtn_GetLastError()

エラ	ーコ	ード	と対策
----	----	----	-----

コード	内容	対策
-1	未定義コマンド	コマンドを確認する
	(受信タイムアウト)	
-2	未定義 IP アドレス	IP アドレスを確認する
-3	相手局がコマンド処理中	通信回数を減らす
-4	パケットバイト数が不正	相手局の応答処理を確認する
-5	パケットバイト数が	送信パケットサイズを減らす
	最大数をオーバー	
-6	ローカルモードエラー	相手局が RUN であるか確認する
-7	通信準備中	相手局が正常に立ち上がって
		から通信を開始する
-8	通信ダウン アクセス不能	相手局を確認する
-9	メモリ不足により処理不能	相手局のメモリの空きを確認する
-50	要求パケットバイトが	要求サイズを減らす
	最大数をオーバー	
-51	指定アドレスエラー	要求メモリタイプを確認する
-52	通信ダウン アクセス不能	相手局を確認する
-54	ライトプロテクト	カードのライトプロテクトを
		確認する
-55	メモリ不足のため処理不能	相手局のメモリの空きを確認する
-56	サンプリングバッファエラー	コマンドを確認する
-100	他のコマンド処理中	リトライを続ける
-101	コマンド管理	通信回数を減らす
	バッファオーバー	

サーバとの通信手順

GV からサーバヘデータを要求する場合

サーバ側のアプリケーションで RecvFrom()を使った、受信待ちスレッドを 実行します。

マクロコマンド SEND で GV からサーバにコマンドを送信します。

サーバ側でコマンドを解析後、コマンドに応じたアクションを行います。

GVから転送	
項目	バイト数
パケットバイト数	2
2+2+1+n バイト	
トランザクション No.	2
コマンド(0x33)	1
ユーザデータ	n

ユーザーデータフォーマット

サーバから GV へ PLC データを要求する場合

サーバ側のアプリケーションから GV へ要求。 ReadPlcMemory()を使用して、メモリの要求を行います。

GV が PLC メモリを読み込みます。

サーバ側へ PLC メモリを返します。

GV本体にでるエラーメッセージとシステムメモリに格納されるエラーについて説明します。

通信エラー

Ethernet 通信の際、システムメモリ \$s518 に Ethernet の状態が格納されます。 \$s518 に0(正常)以外のコードが入った場合にエラーとなります。

ここにエラー No. が表示されます。

ローカルメイン画面で確認する場合

[通信パラメータ]の[細かい設 定]の[通信異常処理]を[継 続]にした場合は以下のような画 面となります。

|--|

ここにエラー No. が 表示されます。

10-1

10

エラー

システムメモリ:\$s518

No.	内容	対策
0	正常	
200	送信要求失敗	
201	送信異常	
202	送信指定ポートのエラー	
300	ネットワークビジー	電源を入れ直してください。
301		
350	プロトコルスタック異常	
351		
352		
801	リンクダウンエラー	ケーブルの配線と接続を確認してく ださい。
802	トランシーバーエラー	トランシーバーの故障、ケーブルの 接続を確認してください
		ネットワークテーブルで自局のIP
900	自局にアドレスなし	アドレスが設定されているか確認し
		てください。
		ネットワークテーブル上に同一 IP
901	同一 IP アドレスエラー	アドレスが設定されていないか確認
		してください。
1000	Ethernet 通信ユニットが実装されて いません	
1001	Ethernet 通信ユニットがレディにな りません	
1002	Ethernet 通信ユニット DPRAM 異常	
1003	Ethernet 通信ユニットから応答があ りません	Ethernet 通信ユニットが正しく取り
1004	Ethernet 受信バッファオーバーです	付けられているか確認し、電源を入 れ直してください。
1005	Ethernet 送信登録異常	
1006	通信ユニット未登録割り込みコード	
110X	初期化異常(通信ユニット)	
1120	デュアルポートアクセスエラー	
1200	未定義レジスタ	
1201	送信バッファアクセス領域オーバー	
1202	MAC アドレス異常	
1203	ポート指定エラー	
1301	ウォッチドックオーバーフロー	
1302	ジャバエラー、LANC 異常	

マクロコマンドの実行によるエラー

マクロコマンド SEND/EREAD/EWRITE を実行したときの実行結果がシステム メモリ \$s515 に格納されます。

システムメモリ: \$s515 (要求に対する要求局からのレスポンス)

コード	内容	対 策
0	正常	
正数値	通信エラー	前項の [通信エラー] を参照
-30	タイムアウト	送信先の GV がエラーになっていない
		か確認してください。
-31	送信ワード数がオーバー	マクロ編集で送信ワード数の確認して
		ください。
-32	指定したテーブル No. が未使用	ネットワークテーブルの設定を確認し
		てください。
-33	送信コマンドが使用不可	マクロ編集でマクロコマンドの確認を
		してください。
-34	指定したテーブル No. が通信中	通信回数を減らしてください
-35	メモリ不足	相手局のメモリの空きを確認してくだ
		さい
-36	受信パケットバイト数が不正である	要求ワード数を確認してください。
-37	自局のメモリアクセスエラー	要求メモリの設定を確認してくださ
		L ۱.
-38	マクロ設定エラー	マクロの設定を確認してください。

゙チェック

エラー No.(下表を参照してください。)

エラー No.	内容	対処方法
131	自局のテーブルが設定されていま せん。	通信ユニットの局番を確認の上、 ネットワークテーブル編集で自局が 設定されているか確認してくださ い。
133	IP アドレス No. 異常です	ネットワークテーブル編集で IP ア ドレスの設定を確認してください。
134	ポート No. 異常です。	ネットワークテーブル編集でポート No.の設定を確認してください。

改訂履歴

マニュアル番号は、表紙下に記載されています。

発行日付	マニュアル番号	改訂内容
2002年2月	ARCT1F354	初版
2005 年 9月	ARCT1F354-1	2版
2008年11月	ARCT1F354-2	3版 社名変更
2011 年 8 月	ARCT1F354-3	4版社名変更

● 在庫・納期・価格など、販売に関するお問い合わせは -

技術に関するお問い合わせは
 コールセンタ・フリーダイヤル
 TEL 0120-394-205 FAX 0120-336-394
 ※サービス時間/9:00~17:00(12:00~13:00、当社休業日を除く)
 Webでのお問い合わせ panasonic-denko.co.jp/sunx

パナソニック電工SUNX株式会社

〒486-0901 愛知県春日井市牛山町2431-1 © Panasonic Electric Works SUNX Co., Ltd. 2011 本書からの無断の複製はかたくお断りします。 このマニュアルの記載内容は2011年8月現在のものです。